[mlir][vector] LoadOp/StoreOp: Allow 0-D vectors (#76134)

Similar to `vector.transfer_read`/`vector.transfer_write`, allow 0-D
vectors.

This commit fixes
`mlir/test/Dialect/Vector/vector-transfer-to-vector-load-store.mlir`
when verifying the IR after each pattern (#74270). That test produces a
temporary 0-D load/store op.
This commit is contained in:
Matthias Springer 2023-12-22 11:12:58 +09:00 committed by GitHub
parent 7db28dd3f8
commit c99670ba51
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
3 changed files with 67 additions and 15 deletions

View File

@ -1582,22 +1582,27 @@ def Vector_LoadOp : Vector_Op<"load"> {
vector. If the memref element type is vector, it should match the result
vector type.
Example 1: 1-D vector load on a scalar memref.
Example: 0-D vector load on a scalar memref.
```mlir
%result = vector.load %base[%i, %j] : memref<100x100xf32>, vector<f32>
```
Example: 1-D vector load on a scalar memref.
```mlir
%result = vector.load %base[%i, %j] : memref<100x100xf32>, vector<8xf32>
```
Example 2: 1-D vector load on a vector memref.
Example: 1-D vector load on a vector memref.
```mlir
%result = vector.load %memref[%i, %j] : memref<200x100xvector<8xf32>>, vector<8xf32>
```
Example 3: 2-D vector load on a scalar memref.
Example: 2-D vector load on a scalar memref.
```mlir
%result = vector.load %memref[%i, %j] : memref<200x100xf32>, vector<4x8xf32>
```
Example 4: 2-D vector load on a vector memref.
Example: 2-D vector load on a vector memref.
```mlir
%result = vector.load %memref[%i, %j] : memref<200x100xvector<4x8xf32>>, vector<4x8xf32>
```
@ -1608,12 +1613,12 @@ def Vector_LoadOp : Vector_Op<"load"> {
loaded out of bounds. Not all targets may support out-of-bounds vector
loads.
Example 5: Potential out-of-bound vector load.
Example: Potential out-of-bound vector load.
```mlir
%result = vector.load %memref[%index] : memref<?xf32>, vector<8xf32>
```
Example 6: Explicit out-of-bound vector load.
Example: Explicit out-of-bound vector load.
```mlir
%result = vector.load %memref[%c0] : memref<7xf32>, vector<8xf32>
```
@ -1622,7 +1627,7 @@ def Vector_LoadOp : Vector_Op<"load"> {
let arguments = (ins Arg<AnyMemRef, "the reference to load from",
[MemRead]>:$base,
Variadic<Index>:$indices);
let results = (outs AnyVector:$result);
let results = (outs AnyVectorOfAnyRank:$result);
let extraClassDeclaration = [{
MemRefType getMemRefType() {
@ -1660,22 +1665,27 @@ def Vector_StoreOp : Vector_Op<"store"> {
to store. If the memref element type is vector, it should match the type
of the value to store.
Example 1: 1-D vector store on a scalar memref.
Example: 0-D vector store on a scalar memref.
```mlir
vector.store %valueToStore, %memref[%i, %j] : memref<200x100xf32>, vector<f32>
```
Example: 1-D vector store on a scalar memref.
```mlir
vector.store %valueToStore, %memref[%i, %j] : memref<200x100xf32>, vector<8xf32>
```
Example 2: 1-D vector store on a vector memref.
Example: 1-D vector store on a vector memref.
```mlir
vector.store %valueToStore, %memref[%i, %j] : memref<200x100xvector<8xf32>>, vector<8xf32>
```
Example 3: 2-D vector store on a scalar memref.
Example: 2-D vector store on a scalar memref.
```mlir
vector.store %valueToStore, %memref[%i, %j] : memref<200x100xf32>, vector<4x8xf32>
```
Example 4: 2-D vector store on a vector memref.
Example: 2-D vector store on a vector memref.
```mlir
vector.store %valueToStore, %memref[%i, %j] : memref<200x100xvector<4x8xf32>>, vector<4x8xf32>
```
@ -1685,21 +1695,23 @@ def Vector_StoreOp : Vector_Op<"store"> {
target-specific. No assumptions should be made on the memory written out of
bounds. Not all targets may support out-of-bounds vector stores.
Example 5: Potential out-of-bounds vector store.
Example: Potential out-of-bounds vector store.
```mlir
vector.store %valueToStore, %memref[%index] : memref<?xf32>, vector<8xf32>
```
Example 6: Explicit out-of-bounds vector store.
Example: Explicit out-of-bounds vector store.
```mlir
vector.store %valueToStore, %memref[%c0] : memref<7xf32>, vector<8xf32>
```
}];
let arguments = (ins AnyVector:$valueToStore,
let arguments = (ins
AnyVectorOfAnyRank:$valueToStore,
Arg<AnyMemRef, "the reference to store to",
[MemWrite]>:$base,
Variadic<Index>:$indices);
Variadic<Index>:$indices
);
let extraClassDeclaration = [{
MemRefType getMemRefType() {

View File

@ -2059,6 +2059,36 @@ func.func @vector_store_op_index(%memref : memref<200x100xindex>, %i : index, %j
// -----
func.func @vector_load_op_0d(%memref : memref<200x100xf32>, %i : index, %j : index) -> vector<f32> {
%0 = vector.load %memref[%i, %j] : memref<200x100xf32>, vector<f32>
return %0 : vector<f32>
}
// CHECK-LABEL: func @vector_load_op_0d
// CHECK: %[[load:.*]] = memref.load %{{.*}}[%{{.*}}, %{{.*}}]
// CHECK: %[[vec:.*]] = llvm.mlir.undef : vector<1xf32>
// CHECK: %[[c0:.*]] = llvm.mlir.constant(0 : i32) : i32
// CHECK: %[[inserted:.*]] = llvm.insertelement %[[load]], %[[vec]][%[[c0]] : i32] : vector<1xf32>
// CHECK: %[[cast:.*]] = builtin.unrealized_conversion_cast %[[inserted]] : vector<1xf32> to vector<f32>
// CHECK: return %[[cast]] : vector<f32>
// -----
func.func @vector_store_op_0d(%memref : memref<200x100xf32>, %i : index, %j : index) {
%val = arith.constant dense<11.0> : vector<f32>
vector.store %val, %memref[%i, %j] : memref<200x100xf32>, vector<f32>
return
}
// CHECK-LABEL: func @vector_store_op_0d
// CHECK: %[[val:.*]] = arith.constant dense<1.100000e+01> : vector<f32>
// CHECK: %[[cast:.*]] = builtin.unrealized_conversion_cast %[[val]] : vector<f32> to vector<1xf32>
// CHECK: %[[c0:.*]] = llvm.mlir.constant(0 : index) : i64
// CHECK: %[[extracted:.*]] = llvm.extractelement %[[cast]][%[[c0]] : i64] : vector<1xf32>
// CHECK: memref.store %[[extracted]], %{{.*}}[%{{.*}}, %{{.*}}]
// -----
func.func @masked_load_op(%arg0: memref<?xf32>, %arg1: vector<16xi1>, %arg2: vector<16xf32>) -> vector<16xf32> {
%c0 = arith.constant 0: index
%0 = vector.maskedload %arg0[%c0], %arg1, %arg2 : memref<?xf32>, vector<16xi1>, vector<16xf32> into vector<16xf32>

View File

@ -725,6 +725,16 @@ func.func @flat_transpose_int(%arg0: vector<16xi32>) -> vector<16xi32> {
return %0 : vector<16xi32>
}
// CHECK-LABEL: @vector_load_and_store_0d_scalar_memref
func.func @vector_load_and_store_0d_scalar_memref(%memref : memref<200x100xf32>,
%i : index, %j : index) {
// CHECK: %[[ld:.*]] = vector.load %{{.*}}[%{{.*}}] : memref<200x100xf32>, vector<f32>
%0 = vector.load %memref[%i, %j] : memref<200x100xf32>, vector<f32>
// CHECK: vector.store %[[ld]], %{{.*}}[%{{.*}}] : memref<200x100xf32>, vector<f32>
vector.store %0, %memref[%i, %j] : memref<200x100xf32>, vector<f32>
return
}
// CHECK-LABEL: @vector_load_and_store_1d_scalar_memref
func.func @vector_load_and_store_1d_scalar_memref(%memref : memref<200x100xf32>,
%i : index, %j : index) {