mirror of
https://github.com/capstone-engine/llvm-capstone.git
synced 2024-12-24 17:01:07 +00:00
[InstCombine] fold fmul/fdiv with fabs operands
fabs(X) * fabs(Y) --> fabs(X * Y) fabs(X) / fabs(Y) --> fabs(X / Y) If both operands of fmul/fdiv are positive, then the result must be positive. There's a NAN corner-case that prevents removing the more specific fold just above this one: fabs(X) * fabs(X) -> X * X That fold works even with NAN because the sign-bit result of the multiply is not specified if X is NAN. We can't remove that and use the more general fold that is proposed here because once we convert to this: fabs (X * X) ...it is not legal to simplify the 'fabs' out of that expression when X is NAN. That's because fabs() guarantees that the sign-bit is always cleared - even for NAN values. So this patch has the potential to lose information, but it seems unlikely if we do the more specific fold ahead of this one. Differential Revision: https://reviews.llvm.org/D82277
This commit is contained in:
parent
b044a82270
commit
c9e8c9e3ea
@ -635,6 +635,7 @@ private:
|
||||
Value *getSelectCondition(Value *A, Value *B);
|
||||
|
||||
Instruction *foldIntrinsicWithOverflowCommon(IntrinsicInst *II);
|
||||
Instruction *foldFPSignBitOps(BinaryOperator &I);
|
||||
|
||||
public:
|
||||
/// Inserts an instruction \p New before instruction \p Old
|
||||
|
@ -402,7 +402,7 @@ Instruction *InstCombiner::visitMul(BinaryOperator &I) {
|
||||
return Changed ? &I : nullptr;
|
||||
}
|
||||
|
||||
static Instruction *foldFPSignBitOps(BinaryOperator &I) {
|
||||
Instruction *InstCombiner::foldFPSignBitOps(BinaryOperator &I) {
|
||||
BinaryOperator::BinaryOps Opcode = I.getOpcode();
|
||||
assert((Opcode == Instruction::FMul || Opcode == Instruction::FDiv) &&
|
||||
"Expected fmul or fdiv");
|
||||
@ -420,6 +420,19 @@ static Instruction *foldFPSignBitOps(BinaryOperator &I) {
|
||||
if (Op0 == Op1 && match(Op0, m_Intrinsic<Intrinsic::fabs>(m_Value(X))))
|
||||
return BinaryOperator::CreateWithCopiedFlags(Opcode, X, X, &I);
|
||||
|
||||
// fabs(X) * fabs(Y) --> fabs(X * Y)
|
||||
// fabs(X) / fabs(Y) --> fabs(X / Y)
|
||||
if (match(Op0, m_Intrinsic<Intrinsic::fabs>(m_Value(X))) &&
|
||||
match(Op1, m_Intrinsic<Intrinsic::fabs>(m_Value(Y))) &&
|
||||
(Op0->hasOneUse() || Op1->hasOneUse())) {
|
||||
IRBuilder<>::FastMathFlagGuard FMFGuard(Builder);
|
||||
Builder.setFastMathFlags(I.getFastMathFlags());
|
||||
Value *XY = Builder.CreateBinOp(Opcode, X, Y);
|
||||
Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, XY);
|
||||
Fabs->takeName(&I);
|
||||
return replaceInstUsesWith(I, Fabs);
|
||||
}
|
||||
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
|
@ -598,9 +598,8 @@ define float @fabs_same_op_extra_use(float %x) {
|
||||
|
||||
define float @fabs_fabs(float %x, float %y) {
|
||||
; CHECK-LABEL: @fabs_fabs(
|
||||
; CHECK-NEXT: [[X_FABS:%.*]] = call float @llvm.fabs.f32(float [[X:%.*]])
|
||||
; CHECK-NEXT: [[Y_FABS:%.*]] = call float @llvm.fabs.f32(float [[Y:%.*]])
|
||||
; CHECK-NEXT: [[R:%.*]] = fdiv float [[X_FABS]], [[Y_FABS]]
|
||||
; CHECK-NEXT: [[TMP1:%.*]] = fdiv float [[X:%.*]], [[Y:%.*]]
|
||||
; CHECK-NEXT: [[R:%.*]] = call float @llvm.fabs.f32(float [[TMP1]])
|
||||
; CHECK-NEXT: ret float [[R]]
|
||||
;
|
||||
%x.fabs = call float @llvm.fabs.f32(float %x)
|
||||
@ -613,8 +612,8 @@ define float @fabs_fabs_extra_use1(float %x, float %y) {
|
||||
; CHECK-LABEL: @fabs_fabs_extra_use1(
|
||||
; CHECK-NEXT: [[X_FABS:%.*]] = call float @llvm.fabs.f32(float [[X:%.*]])
|
||||
; CHECK-NEXT: call void @use_f32(float [[X_FABS]])
|
||||
; CHECK-NEXT: [[Y_FABS:%.*]] = call float @llvm.fabs.f32(float [[Y:%.*]])
|
||||
; CHECK-NEXT: [[R:%.*]] = fdiv ninf float [[X_FABS]], [[Y_FABS]]
|
||||
; CHECK-NEXT: [[TMP1:%.*]] = fdiv ninf float [[X]], [[Y:%.*]]
|
||||
; CHECK-NEXT: [[R:%.*]] = call ninf float @llvm.fabs.f32(float [[TMP1]])
|
||||
; CHECK-NEXT: ret float [[R]]
|
||||
;
|
||||
%x.fabs = call float @llvm.fabs.f32(float %x)
|
||||
@ -626,10 +625,10 @@ define float @fabs_fabs_extra_use1(float %x, float %y) {
|
||||
|
||||
define float @fabs_fabs_extra_use2(float %x, float %y) {
|
||||
; CHECK-LABEL: @fabs_fabs_extra_use2(
|
||||
; CHECK-NEXT: [[X_FABS:%.*]] = call fast float @llvm.fabs.f32(float [[X:%.*]])
|
||||
; CHECK-NEXT: [[Y_FABS:%.*]] = call fast float @llvm.fabs.f32(float [[Y:%.*]])
|
||||
; CHECK-NEXT: call void @use_f32(float [[Y_FABS]])
|
||||
; CHECK-NEXT: [[R:%.*]] = fdiv reassoc ninf float [[X_FABS]], [[Y_FABS]]
|
||||
; CHECK-NEXT: [[TMP1:%.*]] = fdiv reassoc ninf float [[X:%.*]], [[Y]]
|
||||
; CHECK-NEXT: [[R:%.*]] = call reassoc ninf float @llvm.fabs.f32(float [[TMP1]])
|
||||
; CHECK-NEXT: ret float [[R]]
|
||||
;
|
||||
%x.fabs = call fast float @llvm.fabs.f32(float %x)
|
||||
@ -639,6 +638,8 @@ define float @fabs_fabs_extra_use2(float %x, float %y) {
|
||||
ret float %r
|
||||
}
|
||||
|
||||
; negative test - don't create an extra instruction
|
||||
|
||||
define float @fabs_fabs_extra_use3(float %x, float %y) {
|
||||
; CHECK-LABEL: @fabs_fabs_extra_use3(
|
||||
; CHECK-NEXT: [[X_FABS:%.*]] = call float @llvm.fabs.f32(float [[X:%.*]])
|
||||
|
@ -482,9 +482,8 @@ define float @fabs_squared_fast(float %x) {
|
||||
|
||||
define float @fabs_fabs(float %x, float %y) {
|
||||
; CHECK-LABEL: @fabs_fabs(
|
||||
; CHECK-NEXT: [[X_FABS:%.*]] = call float @llvm.fabs.f32(float [[X:%.*]])
|
||||
; CHECK-NEXT: [[Y_FABS:%.*]] = call float @llvm.fabs.f32(float [[Y:%.*]])
|
||||
; CHECK-NEXT: [[MUL:%.*]] = fmul float [[X_FABS]], [[Y_FABS]]
|
||||
; CHECK-NEXT: [[TMP1:%.*]] = fmul float [[X:%.*]], [[Y:%.*]]
|
||||
; CHECK-NEXT: [[MUL:%.*]] = call float @llvm.fabs.f32(float [[TMP1]])
|
||||
; CHECK-NEXT: ret float [[MUL]]
|
||||
;
|
||||
%x.fabs = call float @llvm.fabs.f32(float %x)
|
||||
@ -497,8 +496,8 @@ define float @fabs_fabs_extra_use1(float %x, float %y) {
|
||||
; CHECK-LABEL: @fabs_fabs_extra_use1(
|
||||
; CHECK-NEXT: [[X_FABS:%.*]] = call float @llvm.fabs.f32(float [[X:%.*]])
|
||||
; CHECK-NEXT: call void @use_f32(float [[X_FABS]])
|
||||
; CHECK-NEXT: [[Y_FABS:%.*]] = call float @llvm.fabs.f32(float [[Y:%.*]])
|
||||
; CHECK-NEXT: [[MUL:%.*]] = fmul ninf float [[X_FABS]], [[Y_FABS]]
|
||||
; CHECK-NEXT: [[TMP1:%.*]] = fmul ninf float [[X]], [[Y:%.*]]
|
||||
; CHECK-NEXT: [[MUL:%.*]] = call ninf float @llvm.fabs.f32(float [[TMP1]])
|
||||
; CHECK-NEXT: ret float [[MUL]]
|
||||
;
|
||||
%x.fabs = call float @llvm.fabs.f32(float %x)
|
||||
@ -510,10 +509,10 @@ define float @fabs_fabs_extra_use1(float %x, float %y) {
|
||||
|
||||
define float @fabs_fabs_extra_use2(float %x, float %y) {
|
||||
; CHECK-LABEL: @fabs_fabs_extra_use2(
|
||||
; CHECK-NEXT: [[X_FABS:%.*]] = call fast float @llvm.fabs.f32(float [[X:%.*]])
|
||||
; CHECK-NEXT: [[Y_FABS:%.*]] = call fast float @llvm.fabs.f32(float [[Y:%.*]])
|
||||
; CHECK-NEXT: call void @use_f32(float [[Y_FABS]])
|
||||
; CHECK-NEXT: [[MUL:%.*]] = fmul reassoc ninf float [[X_FABS]], [[Y_FABS]]
|
||||
; CHECK-NEXT: [[TMP1:%.*]] = fmul reassoc ninf float [[X:%.*]], [[Y]]
|
||||
; CHECK-NEXT: [[MUL:%.*]] = call reassoc ninf float @llvm.fabs.f32(float [[TMP1]])
|
||||
; CHECK-NEXT: ret float [[MUL]]
|
||||
;
|
||||
%x.fabs = call fast float @llvm.fabs.f32(float %x)
|
||||
@ -523,6 +522,8 @@ define float @fabs_fabs_extra_use2(float %x, float %y) {
|
||||
ret float %mul
|
||||
}
|
||||
|
||||
; negative test - don't create an extra instruction
|
||||
|
||||
define float @fabs_fabs_extra_use3(float %x, float %y) {
|
||||
; CHECK-LABEL: @fabs_fabs_extra_use3(
|
||||
; CHECK-NEXT: [[X_FABS:%.*]] = call float @llvm.fabs.f32(float [[X:%.*]])
|
||||
|
Loading…
Reference in New Issue
Block a user