mirror of
https://github.com/capstone-engine/llvm-capstone.git
synced 2024-12-20 06:18:55 +00:00
Reapply "[llvm] Native size estimator for training -Oz inliner"
This reverts commit 9908a3b9f5
.
The fix was to exclude the content of TFUtils.h (automatically
included in the LLVM_Analysis module, when LLVM_ENABLE_MODULES is enabled).
Differential Revision: https://reviews.llvm.org/D82817
This commit is contained in:
parent
66550c36f4
commit
caf395ee8c
@ -981,6 +981,18 @@ if (NOT TENSORFLOW_AOT_PATH STREQUAL "")
|
||||
${CMAKE_ARCHIVE_OUTPUT_DIRECTORY}/tf_runtime)
|
||||
endif()
|
||||
|
||||
set(TENSORFLOW_C_LIB_PATH "" CACHE PATH "Path to TensorFlow C library install")
|
||||
find_library(tensorflow_c_api tensorflow PATHS ${TENSORFLOW_C_LIB_PATH}/lib)
|
||||
|
||||
# Similar to the above Tensorflow dependency, please refer to the same script.
|
||||
# In this case, the latest C API library is available for download from
|
||||
# https://www.tensorflow.org/install/lang_c
|
||||
if (tensorflow_c_api)
|
||||
set(LLVM_HAVE_TF_API "ON" CACHE BOOL "Full Tensorflow API available")
|
||||
add_definitions("-DLLVM_HAVE_TF_API")
|
||||
include_directories(${TENSORFLOW_C_LIB_PATH}/include)
|
||||
endif()
|
||||
|
||||
# Put this before tblgen. Else we have a circular dependence.
|
||||
add_subdirectory(lib/Demangle)
|
||||
add_subdirectory(lib/Support)
|
||||
|
35
llvm/include/llvm/Analysis/InlineSizeEstimatorAnalysis.h
Normal file
35
llvm/include/llvm/Analysis/InlineSizeEstimatorAnalysis.h
Normal file
@ -0,0 +1,35 @@
|
||||
//===- InlineSizeEstimatorAnalysis.h - ML size estimator --------*- C++ -*-===//
|
||||
//
|
||||
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
||||
// See https://llvm.org/LICENSE.txt for license information.
|
||||
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
|
||||
#ifndef LLVM_ANALYSIS_INLINESIZEESTIMATORANALYSIS_H
|
||||
#define LLVM_ANALYSIS_INLINESIZEESTIMATORANALYSIS_H
|
||||
|
||||
#include "llvm/IR/PassManager.h"
|
||||
|
||||
namespace llvm {
|
||||
class Function;
|
||||
|
||||
class TFModelEvaluator;
|
||||
class InlineSizeEstimatorAnalysis
|
||||
: public AnalysisInfoMixin<InlineSizeEstimatorAnalysis> {
|
||||
public:
|
||||
InlineSizeEstimatorAnalysis();
|
||||
InlineSizeEstimatorAnalysis(InlineSizeEstimatorAnalysis &&);
|
||||
~InlineSizeEstimatorAnalysis();
|
||||
|
||||
static AnalysisKey Key;
|
||||
using Result = Optional<size_t>;
|
||||
Result run(const Function &F, FunctionAnalysisManager &FAM);
|
||||
static bool isEvaluatorRequested();
|
||||
|
||||
private:
|
||||
std::unique_ptr<TFModelEvaluator> Evaluator;
|
||||
};
|
||||
} // namespace llvm
|
||||
#endif // LLVM_ANALYSIS_INLINESIZEESTIMATORANALYSIS_H
|
138
llvm/include/llvm/Analysis/Utils/TFUtils.h
Normal file
138
llvm/include/llvm/Analysis/Utils/TFUtils.h
Normal file
@ -0,0 +1,138 @@
|
||||
//===- TFUtils.h - utilities for tensorflow C API ---------------*- C++ -*-===//
|
||||
//
|
||||
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
||||
// See https://llvm.org/LICENSE.txt for license information.
|
||||
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
#ifndef LLVM_ANALYSIS_UTILS_TFUTILS_H
|
||||
#define LLVM_ANALYSIS_UTILS_TFUTILS_H
|
||||
|
||||
#ifdef LLVM_HAVE_TF_API
|
||||
#include "tensorflow/c/c_api.h"
|
||||
#include "llvm/IR/LLVMContext.h"
|
||||
|
||||
#include <memory>
|
||||
#include <vector>
|
||||
|
||||
namespace llvm {
|
||||
|
||||
/// Load a SavedModel, find the given inputs and outputs, and setup storage
|
||||
/// for input tensors. The user is responsible for correctly dimensioning the
|
||||
/// input tensors and setting their values before calling evaluate().
|
||||
/// To initialize:
|
||||
/// - construct the object
|
||||
/// - initialize the input tensors using initInput. Indices must correspond to
|
||||
/// indices in the InputNames used at construction.
|
||||
/// To use:
|
||||
/// - set input values by using getInput to get each input tensor, and then
|
||||
/// setting internal scalars, for all dimensions (tensors are row-major:
|
||||
/// https://github.com/tensorflow/tensorflow/blob/r1.5/tensorflow/c/c_api.h#L205)
|
||||
/// - prepare an output vector of TF_Output* type, with the correct number of
|
||||
/// outputs (i.e. same as OutputNames). Initialize the vector with nullptr
|
||||
/// values.
|
||||
/// - call evaluate. The input tensors' values are not consumed after this, and
|
||||
/// may still be read.
|
||||
/// - use the outputs in the output vector
|
||||
/// - deallocate each output tensor in the output vector, using TF_DeleteTensor.
|
||||
class TFModelEvaluator final {
|
||||
public:
|
||||
/// The result of a model evaluation. Handles the lifetime of the output
|
||||
/// TF_Tensor objects, which means that their values need to be used before
|
||||
/// the EvaluationResult's dtor is called.
|
||||
class EvaluationResult {
|
||||
public:
|
||||
~EvaluationResult() {
|
||||
for (auto *P : Output)
|
||||
if (P)
|
||||
TF_DeleteTensor(P);
|
||||
}
|
||||
|
||||
EvaluationResult(const EvaluationResult &) = delete;
|
||||
EvaluationResult(EvaluationResult &&Other)
|
||||
: OutputSize(Other.OutputSize), Output(std::move(Other.Output)) {
|
||||
Other.Output.clear();
|
||||
};
|
||||
|
||||
/// Get a pointer to the first element of the tensor at Index.
|
||||
template <typename T> T *getTensorValue(size_t Index) {
|
||||
return static_cast<T *>(TF_TensorData(Output[Index]));
|
||||
}
|
||||
|
||||
private:
|
||||
friend class TFModelEvaluator;
|
||||
EvaluationResult(size_t OutputSize)
|
||||
: OutputSize(OutputSize), Output(OutputSize){};
|
||||
|
||||
const size_t OutputSize;
|
||||
std::vector<TF_Tensor *> Output;
|
||||
};
|
||||
|
||||
using TFGraphPtr = std::unique_ptr<TF_Graph, decltype(&TF_DeleteGraph)>;
|
||||
using TFSessionOptionsPtr =
|
||||
std::unique_ptr<TF_SessionOptions, decltype(&TF_DeleteSessionOptions)>;
|
||||
using TFStatusPtr = std::unique_ptr<TF_Status, decltype(&TF_DeleteStatus)>;
|
||||
|
||||
TFModelEvaluator(StringRef SavedModelPath,
|
||||
const std::vector<std::string> &InputNames,
|
||||
const std::vector<std::string> &OutputNames,
|
||||
const char *Tags = "serve");
|
||||
~TFModelEvaluator();
|
||||
TFModelEvaluator(const TFModelEvaluator &) = delete;
|
||||
TFModelEvaluator(TFModelEvaluator &&) = delete;
|
||||
|
||||
/// Evaluate the model, assuming it is valid. Returns None if the evaluation
|
||||
/// fails or the model is invalid, or an EvaluationResult otherwise. The
|
||||
/// inputs are assumed to have been already provided via getInput(). When
|
||||
/// returning None, it also marks the object invalid. Pass an Output vector
|
||||
/// with the same size as OutputNames, but with nullptr values. evaluate()
|
||||
/// will populate it with tensors, matching in index the corresponding
|
||||
/// OutputNames. The caller is responsible for the deallocation of those
|
||||
/// tensors, using TF_DeleteTensor.
|
||||
Optional<EvaluationResult> evaluate();
|
||||
|
||||
/// Provides access to the input vector. It is already dimensioned correctly,
|
||||
/// but the values need to be allocated by the user.
|
||||
std::vector<TF_Tensor *> &getInput() { return Input; }
|
||||
|
||||
/// Returns true if the tensorflow model was loaded successfully, false
|
||||
/// otherwise.
|
||||
bool isValid() const { return !!Session; }
|
||||
|
||||
/// Initialize the input at Index as a tensor of the given type and dimensions
|
||||
void initInput(int Index, TF_DataType Type,
|
||||
const std::vector<int64_t> &Dimensions);
|
||||
|
||||
private:
|
||||
/// The objects necessary for carrying out an evaluation of the SavedModel.
|
||||
/// They are expensive to set up, and we maintain them accross all the
|
||||
/// evaluations of the model.
|
||||
TF_Session *Session = nullptr;
|
||||
TFGraphPtr Graph;
|
||||
TFSessionOptionsPtr Options;
|
||||
|
||||
/// The specification of the input nodes.
|
||||
std::vector<TF_Output> InputFeed;
|
||||
|
||||
/// The input tensors. They must match by index of the corresponding InputFeed
|
||||
/// value. We set up the tensors once and just mutate theirs scalars before
|
||||
/// each evaluation. The input tensors keep their value after an evaluation.
|
||||
std::vector<TF_Tensor *> Input;
|
||||
|
||||
/// The specification of the output nodes. When evaluating, the tensors in the
|
||||
/// output tensor vector must match by index the corresponding element in the
|
||||
/// OutputFeed.
|
||||
std::vector<TF_Output> OutputFeed;
|
||||
|
||||
/// Reusable utility for deleting the session.
|
||||
void deleteSession();
|
||||
|
||||
/// Reusable utility for ensuring we can bind the requested Name to a node in
|
||||
/// the SavedModel Graph.
|
||||
bool checkReportAndReset(const TF_Output &Output, StringRef Name);
|
||||
};
|
||||
} // namespace llvm
|
||||
|
||||
#endif // LLVM_HAVE_TF_API
|
||||
#endif // LLVM_ANALYSIS_UTILS_TFUTILS_H
|
@ -1,17 +1,35 @@
|
||||
set(CommonMLSources MLInlineAdvisor.cpp)
|
||||
set(ReleaseModeMLSources ReleaseModeModelRunner.cpp)
|
||||
set(DevelopmentModeMLSources TFUtils.cpp)
|
||||
|
||||
if (DEFINED LLVM_HAVE_TF_AOT)
|
||||
include(TensorFlowCompile)
|
||||
tfcompile(models/inliner serve action InlinerSizeModel llvm::InlinerSizeModel)
|
||||
list(APPEND ReleaseModeMLSources
|
||||
$<TARGET_OBJECTS:tf_xla_runtime_objects>
|
||||
${GENERATED_OBJS}
|
||||
)
|
||||
set(MLPolicySources ${CommonMLSources} ${ReleaseModeMLSources})
|
||||
if (DEFINED LLVM_HAVE_TF_AOT OR DEFINED LLVM_HAVE_TF_API)
|
||||
set(MLPolicySources ${CommonMLSources})
|
||||
if (DEFINED LLVM_HAVE_TF_AOT)
|
||||
include(TensorFlowCompile)
|
||||
tfcompile(models/inliner serve action InlinerSizeModel llvm::InlinerSizeModel)
|
||||
list(APPEND ReleaseModeMLSources
|
||||
$<TARGET_OBJECTS:tf_xla_runtime_objects>
|
||||
${GENERATED_OBJS}
|
||||
)
|
||||
LIST(APPEND MLPolicySources ${ReleaseModeMLSources})
|
||||
else()
|
||||
LIST(APPEND LLVM_OPTIONAL_SOURCES ${ReleaseModeMLSources})
|
||||
endif()
|
||||
|
||||
if (DEFINED LLVM_HAVE_TF_API)
|
||||
LIST(APPEND MLPolicySources ${DevelopmentModeMLSources})
|
||||
LIST(APPEND MLLinkDeps ${tensorflow_c_api})
|
||||
else()
|
||||
LIST(APPEND LLVM_OPTIONAL_SOURCES ${DevelopmentModeMLSources})
|
||||
endif()
|
||||
else()
|
||||
set(LLVM_OPTIONAL_SOURCES ${CommonMLSources} ${ReleaseModeMLSources})
|
||||
LIST(APPEND LLVM_OPTIONAL_SOURCES
|
||||
${CommonMLSources}
|
||||
${DevelopmentModeMLSources}
|
||||
${ReleaseModeMLSources}
|
||||
)
|
||||
endif()
|
||||
|
||||
|
||||
add_llvm_component_library(LLVMAnalysis
|
||||
AliasAnalysis.cpp
|
||||
@ -57,6 +75,7 @@ add_llvm_component_library(LLVMAnalysis
|
||||
InlineCost.cpp
|
||||
InlineAdvisor.cpp
|
||||
InlineFeaturesAnalysis.cpp
|
||||
InlineSizeEstimatorAnalysis.cpp
|
||||
InstCount.cpp
|
||||
InstructionPrecedenceTracking.cpp
|
||||
InstructionSimplify.cpp
|
||||
@ -124,4 +143,7 @@ add_llvm_component_library(LLVMAnalysis
|
||||
|
||||
DEPENDS
|
||||
intrinsics_gen
|
||||
|
||||
LINK_LIBS
|
||||
${MLLinkDeps}
|
||||
)
|
||||
|
299
llvm/lib/Analysis/InlineSizeEstimatorAnalysis.cpp
Normal file
299
llvm/lib/Analysis/InlineSizeEstimatorAnalysis.cpp
Normal file
@ -0,0 +1,299 @@
|
||||
//===- InlineSizeEstimatorAnalysis.cpp - IR to native size from ML model --===//
|
||||
//
|
||||
// The LLVM Compiler Infrastructure
|
||||
//
|
||||
// This file is distributed under the University of Illinois Open Source
|
||||
// License. See LICENSE.TXT for details.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// This implements feature and label extraction for offline supervised learning
|
||||
// of a IR to native size model.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
#include "llvm/Analysis/InlineSizeEstimatorAnalysis.h"
|
||||
|
||||
#ifdef LLVM_HAVE_TF_API
|
||||
#include "llvm/Analysis/Utils/TFUtils.h"
|
||||
#endif
|
||||
#include "llvm/Analysis/LoopInfo.h"
|
||||
#include "llvm/Analysis/TargetLibraryInfo.h"
|
||||
#include "llvm/Analysis/TargetTransformInfo.h"
|
||||
#include "llvm/IR/BasicBlock.h"
|
||||
#include "llvm/IR/Dominators.h"
|
||||
#include "llvm/IR/Function.h"
|
||||
#include "llvm/IR/Instructions.h"
|
||||
#include "llvm/IR/PassManager.h"
|
||||
#include "llvm/MC/MCAsmLayout.h"
|
||||
#include "llvm/Support/Casting.h"
|
||||
#include "llvm/Support/CommandLine.h"
|
||||
#include "llvm/Support/raw_ostream.h"
|
||||
|
||||
#include <algorithm>
|
||||
#include <deque>
|
||||
|
||||
using namespace llvm;
|
||||
|
||||
AnalysisKey InlineSizeEstimatorAnalysis::Key;
|
||||
|
||||
#define DEBUG_TYPE "inline-size-estimator"
|
||||
|
||||
#ifdef LLVM_HAVE_TF_API
|
||||
cl::opt<std::string> TFIR2NativeModelPath(
|
||||
"ml-inliner-ir2native-model", cl::Hidden,
|
||||
cl::desc("Path to saved model evaluating native size from IR."));
|
||||
|
||||
namespace {
|
||||
unsigned getMaxInstructionID() {
|
||||
#define LAST_OTHER_INST(NR) return NR;
|
||||
#include "llvm/IR/Instruction.def"
|
||||
}
|
||||
|
||||
class IRToNativeSizeLearning {
|
||||
public:
|
||||
enum class NamedFeatureIndex : size_t {
|
||||
InitialSize,
|
||||
Blocks,
|
||||
Calls,
|
||||
IsLocal,
|
||||
IsLinkOnceODR,
|
||||
IsLinkOnce,
|
||||
Loops,
|
||||
MaxLoopDepth,
|
||||
MaxDomTreeLevel,
|
||||
|
||||
NumNamedFeatures
|
||||
};
|
||||
static const size_t NumNamedFeatures =
|
||||
static_cast<size_t>(NamedFeatureIndex::NumNamedFeatures);
|
||||
struct FunctionFeatures {
|
||||
static std::vector<std::pair<size_t, size_t>>
|
||||
ImportantInstructionSuccessions;
|
||||
static const size_t FeatureCount;
|
||||
|
||||
std::array<int32_t, NumNamedFeatures> NamedFeatures = {0};
|
||||
std::vector<int32_t> InstructionHistogram;
|
||||
std::vector<int32_t> InstructionPairHistogram;
|
||||
|
||||
void fillTensor(int32_t *Ptr) const;
|
||||
int32_t &operator[](NamedFeatureIndex Pos) {
|
||||
return NamedFeatures[static_cast<size_t>(Pos)];
|
||||
}
|
||||
};
|
||||
IRToNativeSizeLearning() = default;
|
||||
|
||||
static FunctionFeatures getFunctionFeatures(Function &F,
|
||||
FunctionAnalysisManager &FAM);
|
||||
|
||||
private:
|
||||
/// Sort once the feature tuples.
|
||||
struct SortFeatureTuples {
|
||||
bool IsSorted = false;
|
||||
SortFeatureTuples() {
|
||||
std::sort(FunctionFeatures::ImportantInstructionSuccessions.begin(),
|
||||
FunctionFeatures::ImportantInstructionSuccessions.end());
|
||||
IsSorted = true;
|
||||
}
|
||||
};
|
||||
|
||||
static llvm::ManagedStatic<SortFeatureTuples> TupleSorter;
|
||||
|
||||
static bool ensureSortedTuples() { return TupleSorter->IsSorted; }
|
||||
};
|
||||
llvm::ManagedStatic<IRToNativeSizeLearning::SortFeatureTuples>
|
||||
IRToNativeSizeLearning::TupleSorter;
|
||||
|
||||
// This is a point in time - we determined including these pairs of
|
||||
// consecutive instructions (in the IR layout available at inline time) as
|
||||
// features improves the model performance. We want to move away from manual
|
||||
// feature selection.
|
||||
// The vector is given in opcode pairs rather than labels because 1) labels
|
||||
// weren't readily available, and 2) the successions were hand - extracted
|
||||
std::vector<std::pair<size_t, size_t>>
|
||||
IRToNativeSizeLearning::FunctionFeatures::ImportantInstructionSuccessions =
|
||||
{{1, 34}, {15, 27}, {53, 53}, {53, 34}, {1, 11}, {32, 2}, {2, 48},
|
||||
{28, 48}, {1, 45}, {49, 32}, {57, 56}, {55, 53}, {1, 28}, {57, 34},
|
||||
{1, 1}, {32, 28}, {32, 15}, {49, 28}, {53, 1}, {2, 53}, {48, 34},
|
||||
{28, 53}, {2, 32}, {1, 40}, {32, 48}, {29, 56}, {56, 32}, {55, 56},
|
||||
{48, 56}, {1, 31}, {33, 34}, {2, 28}, {1, 12}, {55, 1}, {31, 31},
|
||||
{65, 1}, {33, 56}, {32, 32}, {13, 13}, {1, 26}, {13, 26}, {2, 1},
|
||||
{1, 33}, {47, 49}, {64, 1}, {2, 38}, {34, 53}, {48, 2}, {55, 34},
|
||||
{34, 32}, {1, 5}, {56, 13}, {2, 2}, {2, 49}, {33, 2}, {49, 39},
|
||||
{56, 49}, {33, 49}, {32, 39}, {39, 57}, {29, 33}, {31, 34}, {32, 29},
|
||||
{47, 15}, {13, 34}, {2, 33}, {32, 49}, {49, 34}, {56, 33}, {1, 30},
|
||||
{33, 33}, {31, 33}, {2, 29}, {56, 7}, {32, 13}, {2, 55}, {56, 56},
|
||||
{2, 34}, {1, 42}, {34, 49}, {1, 20}, {32, 33}, {1, 25}, {53, 28},
|
||||
{1, 14}, {31, 49}, {28, 2}, {2, 13}, {2, 56}, {1, 32}, {56, 53},
|
||||
{65, 65}, {33, 53}, {64, 64}, {13, 2}, {34, 33}, {1, 4}, {49, 2},
|
||||
{1, 9}, {56, 1}, {33, 1}, {53, 57}, {32, 53}, {13, 56}, {32, 56},
|
||||
{55, 55}, {1, 18}, {49, 56}, {34, 34}, {1, 7}, {56, 64}, {32, 1},
|
||||
{13, 33}, {55, 28}, {49, 33}, {57, 57}, {56, 34}, {34, 56}, {33, 32},
|
||||
{32, 40}, {1, 29}, {53, 2}, {34, 1}, {32, 34}, {49, 49}, {1, 24},
|
||||
{40, 34}, {1, 13}, {38, 34}, {29, 2}, {34, 2}, {1, 39}, {1, 22},
|
||||
{1, 27}, {49, 1}, {1, 8}, {56, 2}};
|
||||
|
||||
// We have: 9 calculated features (the features here); 1 feature for each
|
||||
// instruction opcode; and 1 feature for each manually-identified sequence.
|
||||
// For the latter 2, we build a histogram: we count the number of
|
||||
// occurrences of each instruction opcode or succession of instructions,
|
||||
// respectively.
|
||||
// Note that instruction opcodes start from 1. For convenience, we also have an
|
||||
// always 0 feature for the '0' opcode, hence the extra 1.
|
||||
const size_t IRToNativeSizeLearning::FunctionFeatures::FeatureCount =
|
||||
IRToNativeSizeLearning::FunctionFeatures::ImportantInstructionSuccessions
|
||||
.size() +
|
||||
getMaxInstructionID() + 1 + IRToNativeSizeLearning::NumNamedFeatures;
|
||||
|
||||
size_t getSize(Function &F, TargetTransformInfo &TTI) {
|
||||
size_t Ret = 0;
|
||||
for (auto &BB : F)
|
||||
for (auto &I : BB)
|
||||
Ret += TTI.getInstructionCost(
|
||||
&I, TargetTransformInfo::TargetCostKind::TCK_CodeSize);
|
||||
return Ret;
|
||||
}
|
||||
|
||||
size_t getSize(Function &F, FunctionAnalysisManager &FAM) {
|
||||
auto &TTI = FAM.getResult<TargetIRAnalysis>(F);
|
||||
return getSize(F, TTI);
|
||||
}
|
||||
|
||||
unsigned getMaxDominatorTreeDepth(const Function &F,
|
||||
const DominatorTree &Tree) {
|
||||
unsigned Ret = 0;
|
||||
for (auto &BB : F)
|
||||
if (auto *TN = Tree.getNode(&BB))
|
||||
Ret = std::max(Ret, TN->getLevel());
|
||||
return Ret;
|
||||
}
|
||||
} // namespace
|
||||
|
||||
IRToNativeSizeLearning::FunctionFeatures
|
||||
IRToNativeSizeLearning::getFunctionFeatures(Function &F,
|
||||
FunctionAnalysisManager &FAM) {
|
||||
assert(ensureSortedTuples() && "expected lazy initialization");
|
||||
|
||||
auto &DomTree = FAM.getResult<DominatorTreeAnalysis>(F);
|
||||
FunctionFeatures FF;
|
||||
size_t InstrCount = getMaxInstructionID() + 1;
|
||||
FF.InstructionHistogram.resize(InstrCount);
|
||||
|
||||
FF.InstructionPairHistogram.resize(
|
||||
FunctionFeatures::ImportantInstructionSuccessions.size());
|
||||
|
||||
auto StartID = 0;
|
||||
auto LastID = StartID;
|
||||
auto getPairIndex = [](size_t a, size_t b) {
|
||||
auto I =
|
||||
std::find(FunctionFeatures::ImportantInstructionSuccessions.begin(),
|
||||
FunctionFeatures::ImportantInstructionSuccessions.end(),
|
||||
std::make_pair(a, b));
|
||||
if (I == FunctionFeatures::ImportantInstructionSuccessions.end())
|
||||
return -1;
|
||||
return static_cast<int>(std::distance(
|
||||
FunctionFeatures::ImportantInstructionSuccessions.begin(), I));
|
||||
};
|
||||
|
||||
// We don't want debug calls, because they'd just add noise.
|
||||
for (auto &BB : F) {
|
||||
for (auto I = BB.instructionsWithoutDebug().begin(),
|
||||
E = BB.instructionsWithoutDebug().end();
|
||||
I != E; ++I) {
|
||||
auto ID = I->getOpcode();
|
||||
|
||||
++FF.InstructionHistogram[ID];
|
||||
int PairIndex = getPairIndex(LastID, ID);
|
||||
if (PairIndex >= 0)
|
||||
++FF.InstructionPairHistogram[PairIndex];
|
||||
LastID = ID;
|
||||
if (isa<CallBase>(*I))
|
||||
++FF[NamedFeatureIndex::Calls];
|
||||
}
|
||||
}
|
||||
|
||||
FF[NamedFeatureIndex::InitialSize] = getSize(F, FAM);
|
||||
FF[NamedFeatureIndex::IsLocal] = F.hasLocalLinkage();
|
||||
FF[NamedFeatureIndex::IsLinkOnceODR] = F.hasLinkOnceODRLinkage();
|
||||
FF[NamedFeatureIndex::IsLinkOnce] = F.hasLinkOnceLinkage();
|
||||
FF[NamedFeatureIndex::Blocks] =
|
||||
std::distance(F.getBasicBlockList().begin(), F.getBasicBlockList().end());
|
||||
auto &LI = FAM.getResult<LoopAnalysis>(F);
|
||||
FF[NamedFeatureIndex::Loops] = std::distance(LI.begin(), LI.end());
|
||||
for (auto &L : LI)
|
||||
FF[NamedFeatureIndex::MaxLoopDepth] =
|
||||
std::max(FF[NamedFeatureIndex::MaxLoopDepth],
|
||||
static_cast<int32_t>(L->getLoopDepth()));
|
||||
FF[NamedFeatureIndex::MaxDomTreeLevel] = getMaxDominatorTreeDepth(F, DomTree);
|
||||
return FF;
|
||||
}
|
||||
|
||||
void IRToNativeSizeLearning::FunctionFeatures::fillTensor(int32_t *Ptr) const {
|
||||
std::copy(NamedFeatures.begin(), NamedFeatures.end(), Ptr);
|
||||
Ptr += NamedFeatures.size();
|
||||
std::copy(InstructionHistogram.begin(), InstructionHistogram.end(), Ptr);
|
||||
Ptr += InstructionHistogram.size();
|
||||
std::copy(InstructionPairHistogram.begin(), InstructionPairHistogram.end(),
|
||||
Ptr);
|
||||
}
|
||||
|
||||
bool InlineSizeEstimatorAnalysis::isEvaluatorRequested() {
|
||||
return !TFIR2NativeModelPath.empty();
|
||||
}
|
||||
|
||||
InlineSizeEstimatorAnalysis::InlineSizeEstimatorAnalysis() {
|
||||
if (!isEvaluatorRequested()) {
|
||||
return;
|
||||
}
|
||||
std::vector<std::string> InputNames{"serving_default_input_1"};
|
||||
std::vector<std::string> OutputName{"StatefulPartitionedCall"};
|
||||
Evaluator = std::make_unique<TFModelEvaluator>(
|
||||
TFIR2NativeModelPath.getValue().c_str(), InputNames, OutputName);
|
||||
if (!Evaluator || !Evaluator->isValid()) {
|
||||
Evaluator.reset();
|
||||
return;
|
||||
}
|
||||
static const std::vector<int64_t> Dim{
|
||||
1, static_cast<int64_t>(
|
||||
IRToNativeSizeLearning::FunctionFeatures::FeatureCount)};
|
||||
|
||||
Evaluator->initInput(0, TF_INT32, Dim);
|
||||
}
|
||||
|
||||
InlineSizeEstimatorAnalysis::Result
|
||||
InlineSizeEstimatorAnalysis::run(const Function &F,
|
||||
FunctionAnalysisManager &FAM) {
|
||||
if (!Evaluator)
|
||||
return None;
|
||||
auto Features = IRToNativeSizeLearning::getFunctionFeatures(
|
||||
const_cast<Function &>(F), FAM);
|
||||
int32_t *V = static_cast<int32_t *>(TF_TensorData(Evaluator->getInput()[0]));
|
||||
Features.fillTensor(V);
|
||||
auto ER = Evaluator->evaluate();
|
||||
if (!ER)
|
||||
return None;
|
||||
float Ret = *ER->getTensorValue<float>(0);
|
||||
if (Ret < 0.0)
|
||||
Ret = 0.0;
|
||||
return static_cast<size_t>(Ret);
|
||||
}
|
||||
|
||||
InlineSizeEstimatorAnalysis::~InlineSizeEstimatorAnalysis() {}
|
||||
InlineSizeEstimatorAnalysis::InlineSizeEstimatorAnalysis(
|
||||
InlineSizeEstimatorAnalysis &&Other)
|
||||
: Evaluator(std::move(Other.Evaluator)) {}
|
||||
|
||||
#else
|
||||
namespace llvm {
|
||||
class TFModelEvaluator {};
|
||||
} // namespace llvm
|
||||
InlineSizeEstimatorAnalysis::InlineSizeEstimatorAnalysis() {}
|
||||
InlineSizeEstimatorAnalysis ::InlineSizeEstimatorAnalysis(
|
||||
InlineSizeEstimatorAnalysis &&) {}
|
||||
InlineSizeEstimatorAnalysis::~InlineSizeEstimatorAnalysis() {}
|
||||
InlineSizeEstimatorAnalysis::Result
|
||||
InlineSizeEstimatorAnalysis::run(const Function &F,
|
||||
FunctionAnalysisManager &FAM) {
|
||||
return None;
|
||||
}
|
||||
bool InlineSizeEstimatorAnalysis::isEvaluatorRequested() { return false; }
|
||||
#endif
|
143
llvm/lib/Analysis/TFUtils.cpp
Normal file
143
llvm/lib/Analysis/TFUtils.cpp
Normal file
@ -0,0 +1,143 @@
|
||||
//===- TFUtils.cpp - tensorflow evaluation utilities ----------------------===//
|
||||
//
|
||||
// The LLVM Compiler Infrastructure
|
||||
//
|
||||
// This file is distributed under the University of Illinois Open Source
|
||||
// License. See LICENSE.TXT for details.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// This file implements utilities for interfacing with tensorflow C APIs.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#include "llvm/Analysis/Utils/TFUtils.h"
|
||||
#include "llvm/ADT/Twine.h"
|
||||
#include "llvm/Support/Debug.h"
|
||||
#include "llvm/Support/ManagedStatic.h"
|
||||
#include "llvm/Support/raw_ostream.h"
|
||||
|
||||
#include "tensorflow/c/c_api_experimental.h"
|
||||
|
||||
#include <cassert>
|
||||
|
||||
using namespace llvm;
|
||||
|
||||
namespace {
|
||||
|
||||
struct TFInitializer {
|
||||
TFInitializer() {
|
||||
assert(!IsInitialized && "TFInitialized should be called only once");
|
||||
int Argc = 1;
|
||||
const char *Name = "";
|
||||
const char **NamePtr = &Name;
|
||||
TF_InitMain(Name, &Argc, const_cast<char ***>(&NamePtr));
|
||||
IsInitialized = true;
|
||||
}
|
||||
bool IsInitialized = false;
|
||||
};
|
||||
|
||||
llvm::ManagedStatic<TFInitializer> TFLibInitializer;
|
||||
|
||||
bool ensureInitTF() { return TFLibInitializer->IsInitialized; }
|
||||
|
||||
TFModelEvaluator::TFGraphPtr createTFGraph() {
|
||||
return TFModelEvaluator::TFGraphPtr(TF_NewGraph(), &TF_DeleteGraph);
|
||||
}
|
||||
|
||||
TFModelEvaluator::TFStatusPtr createTFStatus() {
|
||||
return TFModelEvaluator::TFStatusPtr(TF_NewStatus(), &TF_DeleteStatus);
|
||||
}
|
||||
|
||||
TFModelEvaluator::TFSessionOptionsPtr createTFSessionOptions() {
|
||||
return TFModelEvaluator::TFSessionOptionsPtr(TF_NewSessionOptions(),
|
||||
&TF_DeleteSessionOptions);
|
||||
}
|
||||
} // namespace
|
||||
|
||||
TFModelEvaluator::TFModelEvaluator(StringRef SavedModelPath,
|
||||
const std::vector<std::string> &InputNames,
|
||||
const std::vector<std::string> &OutputNames,
|
||||
const char *Tags)
|
||||
: Graph(createTFGraph()), Options(createTFSessionOptions()),
|
||||
InputFeed(InputNames.size()), Input(InputNames.size()),
|
||||
OutputFeed(OutputNames.size()) {
|
||||
if (!ensureInitTF()) {
|
||||
errs() << "Tensorflow should have been initialized";
|
||||
return;
|
||||
}
|
||||
auto Status = createTFStatus();
|
||||
|
||||
Session = TF_LoadSessionFromSavedModel(Options.get(), nullptr,
|
||||
SavedModelPath.str().c_str(), &Tags, 1,
|
||||
Graph.get(), nullptr, Status.get());
|
||||
if (TF_GetCode(Status.get()) != TF_Code::TF_OK) {
|
||||
errs() << TF_Message(Status.get());
|
||||
deleteSession();
|
||||
}
|
||||
for (size_t I = 0; I < InputNames.size(); ++I) {
|
||||
InputFeed[I] = {
|
||||
TF_GraphOperationByName(Graph.get(), (InputNames[I]).c_str()), 0};
|
||||
if (!checkReportAndReset(InputFeed[I], InputNames[I]))
|
||||
return;
|
||||
}
|
||||
for (size_t I = 0; I < OutputNames.size(); ++I) {
|
||||
OutputFeed[I] = {
|
||||
TF_GraphOperationByName(Graph.get(), (OutputNames[I]).c_str()), 0};
|
||||
if (!checkReportAndReset(OutputFeed[I], OutputNames[I]))
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
TFModelEvaluator::~TFModelEvaluator() {
|
||||
for (auto *T : Input) {
|
||||
TF_DeleteTensor(T);
|
||||
}
|
||||
deleteSession();
|
||||
}
|
||||
|
||||
bool TFModelEvaluator::checkReportAndReset(const TF_Output &Output,
|
||||
StringRef Name) {
|
||||
if (Output.oper)
|
||||
return true;
|
||||
errs() << "Could not find TF_Output named: " + Name;
|
||||
deleteSession();
|
||||
return false;
|
||||
}
|
||||
|
||||
void TFModelEvaluator::deleteSession() {
|
||||
if (Session == nullptr)
|
||||
return;
|
||||
auto Status = createTFStatus();
|
||||
TF_DeleteSession(Session, Status.get());
|
||||
Session = nullptr;
|
||||
if (TF_GetCode(Status.get()) != TF_Code::TF_OK)
|
||||
errs() << "Could not delete TF session";
|
||||
}
|
||||
|
||||
Optional<TFModelEvaluator::EvaluationResult> TFModelEvaluator::evaluate() {
|
||||
if (!isValid())
|
||||
return None;
|
||||
EvaluationResult Ret(OutputFeed.size());
|
||||
auto Status = createTFStatus();
|
||||
TF_SessionRun(Session, nullptr, InputFeed.data(), Input.data(), Input.size(),
|
||||
OutputFeed.data(), Ret.Output.data(), Ret.Output.size(),
|
||||
nullptr, 0, nullptr, Status.get());
|
||||
if (TF_GetCode(Status.get()) != TF_Code::TF_OK) {
|
||||
errs() << TF_Message(Status.get());
|
||||
deleteSession();
|
||||
return None;
|
||||
}
|
||||
return Ret;
|
||||
}
|
||||
|
||||
void TFModelEvaluator::initInput(int Index, TF_DataType Type,
|
||||
const std::vector<int64_t> &Dimensions) {
|
||||
int64_t TotalSize = TF_DataTypeSize(Type);
|
||||
for (auto &D : Dimensions)
|
||||
TotalSize *= D;
|
||||
|
||||
Input[Index] =
|
||||
TF_AllocateTensor(Type, Dimensions.data(), Dimensions.size(), TotalSize);
|
||||
std::memset(TF_TensorData(Input[Index]), 0, TotalSize);
|
||||
}
|
@ -35,6 +35,7 @@
|
||||
#include "llvm/Analysis/IVUsers.h"
|
||||
#include "llvm/Analysis/InlineAdvisor.h"
|
||||
#include "llvm/Analysis/InlineFeaturesAnalysis.h"
|
||||
#include "llvm/Analysis/InlineSizeEstimatorAnalysis.h"
|
||||
#include "llvm/Analysis/LazyCallGraph.h"
|
||||
#include "llvm/Analysis/LazyValueInfo.h"
|
||||
#include "llvm/Analysis/LoopAccessAnalysis.h"
|
||||
|
@ -133,6 +133,7 @@ FUNCTION_ANALYSIS("loops", LoopAnalysis())
|
||||
FUNCTION_ANALYSIS("lazy-value-info", LazyValueAnalysis())
|
||||
FUNCTION_ANALYSIS("da", DependenceAnalysis())
|
||||
FUNCTION_ANALYSIS("inliner-features", InlineFeaturesAnalysis())
|
||||
FUNCTION_ANALYSIS("inliner-size-estimator", InlineSizeEstimatorAnalysis())
|
||||
FUNCTION_ANALYSIS("memdep", MemoryDependenceAnalysis())
|
||||
FUNCTION_ANALYSIS("memoryssa", MemorySSAAnalysis())
|
||||
FUNCTION_ANALYSIS("phi-values", PhiValuesAnalysis())
|
||||
|
@ -6,7 +6,13 @@ set(LLVM_LINK_COMPONENTS
|
||||
TransformUtils
|
||||
)
|
||||
|
||||
add_llvm_unittest(AnalysisTests
|
||||
if (DEFINED LLVM_HAVE_TF_API)
|
||||
LIST(APPEND EXTRA_TESTS TFUtilsTest.cpp)
|
||||
else()
|
||||
LIST(APPEND LLVM_OPTIONAL_SOURCES TFUtilsTest.cpp)
|
||||
endif()
|
||||
|
||||
add_llvm_unittest_with_input_files(AnalysisTests
|
||||
AliasAnalysisTest.cpp
|
||||
AliasSetTrackerTest.cpp
|
||||
AssumeBundleQueriesTest.cpp
|
||||
@ -22,6 +28,7 @@ add_llvm_unittest(AnalysisTests
|
||||
DomTreeUpdaterTest.cpp
|
||||
GlobalsModRefTest.cpp
|
||||
InlineFeaturesAnalysisTest.cpp
|
||||
InlineSizeEstimatorAnalysisTest.cpp
|
||||
IVDescriptorsTest.cpp
|
||||
LazyCallGraphTest.cpp
|
||||
LoadsTest.cpp
|
||||
@ -40,4 +47,7 @@ add_llvm_unittest(AnalysisTests
|
||||
ValueLatticeTest.cpp
|
||||
ValueTrackingTest.cpp
|
||||
VectorUtilsTest.cpp
|
||||
${EXTRA_TESTS}
|
||||
)
|
||||
|
||||
target_link_libraries(AnalysisTests PRIVATE LLVMTestingSupport)
|
||||
|
101
llvm/unittests/Analysis/InlineSizeEstimatorAnalysisTest.cpp
Normal file
101
llvm/unittests/Analysis/InlineSizeEstimatorAnalysisTest.cpp
Normal file
@ -0,0 +1,101 @@
|
||||
//===- InlineSizeEstimatorAnalysisTest.cpp - test for ir2native -----------===//
|
||||
//
|
||||
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
||||
// See https://llvm.org/LICENSE.txt for license information.
|
||||
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#include "llvm/Analysis/InlineSizeEstimatorAnalysis.h"
|
||||
#include "llvm/Analysis/LoopInfo.h"
|
||||
#include "llvm/Analysis/TargetLibraryInfo.h"
|
||||
#include "llvm/Analysis/TargetTransformInfo.h"
|
||||
#include "llvm/AsmParser/Parser.h"
|
||||
#include "llvm/IR/Dominators.h"
|
||||
#include "llvm/IR/Instructions.h"
|
||||
#include "llvm/IR/LLVMContext.h"
|
||||
#include "llvm/IR/Module.h"
|
||||
#include "llvm/Support/CommandLine.h"
|
||||
#include "llvm/Support/Path.h"
|
||||
#include "llvm/Support/SourceMgr.h"
|
||||
#include "llvm/Testing/Support/SupportHelpers.h"
|
||||
#include "gtest/gtest.h"
|
||||
|
||||
using namespace llvm;
|
||||
|
||||
extern const char *TestMainArgv0;
|
||||
extern cl::opt<std::string> TFIR2NativeModelPath;
|
||||
|
||||
#if LLVM_HAVE_TF_API
|
||||
static std::string getModelPath() {
|
||||
SmallString<128> InputsDir = unittest::getInputFileDirectory(TestMainArgv0);
|
||||
llvm::sys::path::append(InputsDir, "ir2native_x86_64_model");
|
||||
return std::string(InputsDir);
|
||||
}
|
||||
#endif
|
||||
|
||||
static std::unique_ptr<Module> parseIR(LLVMContext &C, const char *IR) {
|
||||
SMDiagnostic Err;
|
||||
std::unique_ptr<Module> Mod = parseAssemblyString(IR, Err, C);
|
||||
if (!Mod)
|
||||
Err.print("MLAnalysisTests", errs());
|
||||
return Mod;
|
||||
}
|
||||
|
||||
static FunctionAnalysisManager buildFAM() {
|
||||
FunctionAnalysisManager FAM;
|
||||
FAM.registerPass([&] { return DominatorTreeAnalysis(); });
|
||||
FAM.registerPass([&] { return PassInstrumentationAnalysis(); });
|
||||
FAM.registerPass([&] { return TargetIRAnalysis(); });
|
||||
FAM.registerPass([&] { return LoopAnalysis(); });
|
||||
return FAM;
|
||||
}
|
||||
|
||||
// Test model loading and evaluation.
|
||||
TEST(InlineSizeEstimatorAnalysis, SizeIsValidTest) {
|
||||
LLVMContext C;
|
||||
std::unique_ptr<Module> M = parseIR(C,
|
||||
R"IR(
|
||||
target datalayout = "e-m:e-i64:64-f80:128-n8:16:32:64-S128"
|
||||
target triple = "x86_64-pc-linux-gnu"
|
||||
|
||||
declare i32 @f1(i32)
|
||||
declare i32 @f2(i32)
|
||||
|
||||
define i32 @branches(i32) {
|
||||
%cond = icmp slt i32 %0, 3
|
||||
br i1 %cond, label %then, label %else
|
||||
|
||||
then:
|
||||
%ret.1 = call i32 @f1(i32 %0)
|
||||
br label %last.block
|
||||
|
||||
else:
|
||||
%ret.2 = call i32 @f2(i32 %0)
|
||||
br label %last.block
|
||||
|
||||
last.block:
|
||||
%ret = phi i32 [%ret.1, %then], [%ret.2, %else]
|
||||
ret i32 %ret
|
||||
}
|
||||
|
||||
define internal i32 @top() {
|
||||
%1 = call i32 @branches(i32 2)
|
||||
%2 = call i32 @f1(i32 %1)
|
||||
ret i32 %2
|
||||
}
|
||||
)IR");
|
||||
|
||||
FunctionAnalysisManager FAM = buildFAM();
|
||||
#if LLVM_HAVE_TF_API
|
||||
TFIR2NativeModelPath = getModelPath();
|
||||
#endif
|
||||
|
||||
InlineSizeEstimatorAnalysis FA;
|
||||
auto SizeEstimate = FA.run(*M->getFunction("branches"), FAM);
|
||||
#if LLVM_HAVE_TF_API
|
||||
EXPECT_GT(*SizeEstimate, 0);
|
||||
#else
|
||||
EXPECT_FALSE(SizeEstimate.hasValue());
|
||||
#endif
|
||||
}
|
10596
llvm/unittests/Analysis/Inputs/ir2native_x86_64_model/saved_model.pbtxt
Normal file
10596
llvm/unittests/Analysis/Inputs/ir2native_x86_64_model/saved_model.pbtxt
Normal file
File diff suppressed because it is too large
Load Diff
Binary file not shown.
Binary file not shown.
98
llvm/unittests/Analysis/TFUtilsTest.cpp
Normal file
98
llvm/unittests/Analysis/TFUtilsTest.cpp
Normal file
@ -0,0 +1,98 @@
|
||||
//===- TFUtilsTest.cpp - test for TFUtils ---------------------------------===//
|
||||
//
|
||||
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
||||
// See https://llvm.org/LICENSE.txt for license information.
|
||||
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#include "llvm/Analysis/Utils/TFUtils.h"
|
||||
#include "llvm/AsmParser/Parser.h"
|
||||
#include "llvm/IR/Dominators.h"
|
||||
#include "llvm/IR/Instructions.h"
|
||||
#include "llvm/IR/LLVMContext.h"
|
||||
#include "llvm/IR/Module.h"
|
||||
#include "llvm/Support/Path.h"
|
||||
#include "llvm/Support/SourceMgr.h"
|
||||
#include "llvm/Testing/Support/SupportHelpers.h"
|
||||
#include "gtest/gtest.h"
|
||||
|
||||
using namespace llvm;
|
||||
|
||||
extern const char *TestMainArgv0;
|
||||
|
||||
static std::string getModelPath() {
|
||||
SmallString<128> InputsDir = unittest::getInputFileDirectory(TestMainArgv0);
|
||||
llvm::sys::path::append(InputsDir, "ir2native_x86_64_model");
|
||||
return std::string(InputsDir);
|
||||
}
|
||||
|
||||
// Test observable behavior when no model is provided.
|
||||
TEST(TFUtilsTest, NoModel) {
|
||||
TFModelEvaluator Evaluator("", {}, {});
|
||||
EXPECT_FALSE(Evaluator.isValid());
|
||||
}
|
||||
|
||||
// Test we can correctly load a savedmodel and evaluate it.
|
||||
TEST(TFUtilsTest, LoadAndExecuteTest) {
|
||||
// We use the ir2native model for test. We know it has one feature of
|
||||
// dimension (1, 214)
|
||||
std::vector<std::string> InputNames{"serving_default_input_1"};
|
||||
std::vector<std::string> OutputName{"StatefulPartitionedCall"};
|
||||
const static int64_t KnownSize = 214;
|
||||
|
||||
TFModelEvaluator Evaluator(getModelPath(), InputNames, OutputName);
|
||||
static const std::vector<int64_t> Dim{1, KnownSize};
|
||||
|
||||
EXPECT_TRUE(Evaluator.isValid());
|
||||
Evaluator.initInput(0, TF_INT32, Dim);
|
||||
|
||||
int32_t *V = static_cast<int32_t *>(TF_TensorData(Evaluator.getInput()[0]));
|
||||
// Fill it up with 1's, we know the output.
|
||||
for (auto I = 0; I < KnownSize; ++I) {
|
||||
V[I] = 1;
|
||||
}
|
||||
{
|
||||
auto ER = Evaluator.evaluate();
|
||||
EXPECT_TRUE(ER.hasValue());
|
||||
float Ret = *ER->getTensorValue<float>(0);
|
||||
EXPECT_EQ(static_cast<size_t>(Ret), 80);
|
||||
}
|
||||
// The input vector should be unchanged
|
||||
for (auto I = 0; I < KnownSize; ++I) {
|
||||
EXPECT_EQ(V[I], 1);
|
||||
}
|
||||
// Zero-out the unused position '0' of the instruction histogram, which is
|
||||
// after the first 9 calculated values. Should the the same result.
|
||||
V[9] = 0;
|
||||
{
|
||||
auto ER = Evaluator.evaluate();
|
||||
EXPECT_TRUE(ER.hasValue());
|
||||
float Ret = *ER->getTensorValue<float>(0);
|
||||
EXPECT_EQ(static_cast<size_t>(Ret), 80);
|
||||
}
|
||||
}
|
||||
|
||||
// Test incorrect input setup
|
||||
TEST(TFUtilsTest, EvalError) {
|
||||
// We use the ir2native model for test. We know it has one feature of
|
||||
// dimension (1, 214)
|
||||
std::vector<std::string> InputNames{"serving_default_input_1"};
|
||||
std::vector<std::string> OutputName{"StatefulPartitionedCall"};
|
||||
const static int64_t KnownSize = 213;
|
||||
|
||||
TFModelEvaluator Evaluator(getModelPath(), InputNames, OutputName);
|
||||
static const std::vector<int64_t> Dim{1, KnownSize};
|
||||
|
||||
EXPECT_TRUE(Evaluator.isValid());
|
||||
Evaluator.initInput(0, TF_INT32, Dim);
|
||||
|
||||
int32_t *V = static_cast<int32_t *>(TF_TensorData(Evaluator.getInput()[0]));
|
||||
// Fill it up with 1's, we know the output.
|
||||
for (auto I = 0; I < KnownSize; ++I) {
|
||||
V[I] = 1;
|
||||
}
|
||||
auto ER = Evaluator.evaluate();
|
||||
EXPECT_FALSE(ER.hasValue());
|
||||
EXPECT_FALSE(Evaluator.isValid());
|
||||
}
|
Loading…
Reference in New Issue
Block a user