[RDF] Use trailing return type syntax, NFC

The name rdf::Use conflicts with llvm::Use when both namespaces are
used via `using namespace`. Specifically this happened in the declaration
of DataFlowGraph::newUse (in RDFGraph.cpp):
```
using namespace rdf;

Use newUse(...);  <-- Lookup conflict for "Use"
```
Since the TRT lookup starts in a different namespace than that of the
leading type, this serves as a workaround. In general the rdf namespace
will not likely be introduced via `using namespace`, so this shouldn't
be a problem elsewhere.
This commit is contained in:
Krzysztof Parzyszek 2023-06-02 10:47:36 -07:00
parent f8ed60b56d
commit d3b34b7f3a
2 changed files with 293 additions and 261 deletions

View File

@ -293,29 +293,29 @@ struct NodeAttrs {
};
// clang-format on
static uint16_t type(uint16_t T) { //
static auto type(uint16_t T) -> uint16_t { //
return T & TypeMask;
}
static uint16_t kind(uint16_t T) { //
static auto kind(uint16_t T) -> uint16_t { //
return T & KindMask;
}
static uint16_t flags(uint16_t T) { //
static auto flags(uint16_t T) -> uint16_t { //
return T & FlagMask;
}
static uint16_t set_type(uint16_t A, uint16_t T) {
static auto set_type(uint16_t A, uint16_t T) -> uint16_t {
return (A & ~TypeMask) | T;
}
static uint16_t set_kind(uint16_t A, uint16_t K) {
static auto set_kind(uint16_t A, uint16_t K) -> uint16_t {
return (A & ~KindMask) | K;
}
static uint16_t set_flags(uint16_t A, uint16_t F) {
static auto set_flags(uint16_t A, uint16_t F) -> uint16_t {
return (A & ~FlagMask) | F;
}
// Test if A contains B.
static bool contains(uint16_t A, uint16_t B) {
static auto contains(uint16_t A, uint16_t B) -> bool {
if (type(A) != Code)
return false;
uint16_t KB = kind(B);
@ -348,11 +348,11 @@ template <typename T> struct NodeAddr {
template <typename S>
NodeAddr(const NodeAddr<S> &NA) : Addr(static_cast<T>(NA.Addr)), Id(NA.Id) {}
bool operator==(const NodeAddr<T> &NA) const {
auto operator==(const NodeAddr<T> &NA) const -> bool {
assert((Addr == NA.Addr) == (Id == NA.Id));
return Addr == NA.Addr;
}
bool operator!=(const NodeAddr<T> &NA) const { //
auto operator!=(const NodeAddr<T> &NA) const -> bool {
return !operator==(NA);
}
@ -414,22 +414,22 @@ struct NodeAllocator {
assert(isPowerOf2_32(NPB));
}
NodeBase *ptr(NodeId N) const {
auto ptr(NodeId N) const -> NodeBase * {
uint32_t N1 = N - 1;
uint32_t BlockN = N1 >> BitsPerIndex;
uint32_t Offset = (N1 & IndexMask) * NodeMemSize;
return reinterpret_cast<NodeBase *>(Blocks[BlockN] + Offset);
}
NodeId id(const NodeBase *P) const;
Node New();
void clear();
auto id(const NodeBase *P) const -> NodeId;
auto New() -> Node;
auto clear() -> void;
private:
void startNewBlock();
bool needNewBlock();
auto startNewBlock() -> void;
auto needNewBlock() -> bool;
uint32_t makeId(uint32_t Block, uint32_t Index) const {
auto makeId(uint32_t Block, uint32_t Index) const -> uint32_t {
// Add 1 to the id, to avoid the id of 0, which is treated as "null".
return ((Block << BitsPerIndex) | Index) + 1;
}
@ -449,9 +449,11 @@ struct TargetOperandInfo {
TargetOperandInfo(const TargetInstrInfo &tii) : TII(tii) {}
virtual ~TargetOperandInfo() = default;
virtual bool isPreserving(const MachineInstr &In, unsigned OpNum) const;
virtual bool isClobbering(const MachineInstr &In, unsigned OpNum) const;
virtual bool isFixedReg(const MachineInstr &In, unsigned OpNum) const;
virtual auto isPreserving(const MachineInstr &In, unsigned OpNum) const
-> bool;
virtual auto isClobbering(const MachineInstr &In, unsigned OpNum) const
-> bool;
virtual auto isFixedReg(const MachineInstr &In, unsigned OpNum) const -> bool;
const TargetInstrInfo &TII;
};
@ -465,16 +467,16 @@ struct PackedRegisterRef {
struct LaneMaskIndex : private IndexedSet<LaneBitmask> {
LaneMaskIndex() = default;
LaneBitmask getLaneMaskForIndex(uint32_t K) const {
auto getLaneMaskForIndex(uint32_t K) const -> LaneBitmask {
return K == 0 ? LaneBitmask::getAll() : get(K);
}
uint32_t getIndexForLaneMask(LaneBitmask LM) {
auto getIndexForLaneMask(LaneBitmask LM) -> uint32_t {
assert(LM.any());
return LM.all() ? 0 : insert(LM);
}
uint32_t getIndexForLaneMask(LaneBitmask LM) const {
auto getIndexForLaneMask(LaneBitmask LM) const -> uint32_t {
assert(LM.any());
return LM.all() ? 0 : find(LM);
}
@ -485,22 +487,24 @@ public:
// Make sure this is a POD.
NodeBase() = default;
uint16_t getType() const { return NodeAttrs::type(Attrs); }
uint16_t getKind() const { return NodeAttrs::kind(Attrs); }
uint16_t getFlags() const { return NodeAttrs::flags(Attrs); }
NodeId getNext() const { return Next; }
auto getType() const -> uint16_t { return NodeAttrs::type(Attrs); }
auto getKind() const -> uint16_t { return NodeAttrs::kind(Attrs); }
auto getFlags() const -> uint16_t { return NodeAttrs::flags(Attrs); }
auto getNext() const -> NodeId { return Next; }
uint16_t getAttrs() const { return Attrs; }
void setAttrs(uint16_t A) { Attrs = A; }
void setFlags(uint16_t F) { setAttrs(NodeAttrs::set_flags(getAttrs(), F)); }
auto getAttrs() const -> uint16_t { return Attrs; }
auto setAttrs(uint16_t A) -> void { Attrs = A; }
auto setFlags(uint16_t F) -> void {
setAttrs(NodeAttrs::set_flags(getAttrs(), F));
}
// Insert node NA after "this" in the circular chain.
void append(Node NA);
auto append(Node NA) -> void;
// Initialize all members to 0.
void init() { memset(this, 0, sizeof *this); }
auto init() -> void { memset(this, 0, sizeof *this); }
void setNext(NodeId N) { Next = N; }
auto setNext(NodeId N) -> void { Next = N; }
protected:
uint16_t Attrs;
@ -549,108 +553,117 @@ using NodeSet = std::set<NodeId>;
struct RefNode : public NodeBase {
RefNode() = default;
RegisterRef getRegRef(const DataFlowGraph &G) const;
auto getRegRef(const DataFlowGraph &G) const -> RegisterRef;
MachineOperand &getOp() {
auto getOp() -> MachineOperand & {
assert(!(getFlags() & NodeAttrs::PhiRef));
return *RefData.Op;
}
void setRegRef(RegisterRef RR, DataFlowGraph &G);
void setRegRef(MachineOperand *Op, DataFlowGraph &G);
auto setRegRef(RegisterRef RR, DataFlowGraph &G) -> void;
auto setRegRef(MachineOperand *Op, DataFlowGraph &G) -> void;
NodeId getReachingDef() const { return RefData.RD; }
void setReachingDef(NodeId RD) { RefData.RD = RD; }
auto getReachingDef() const -> NodeId { return RefData.RD; }
auto setReachingDef(NodeId RD) -> void { RefData.RD = RD; }
NodeId getSibling() const { return RefData.Sib; }
void setSibling(NodeId Sib) { RefData.Sib = Sib; }
auto getSibling() const -> NodeId { return RefData.Sib; }
auto setSibling(NodeId Sib) -> void { RefData.Sib = Sib; }
bool isUse() const {
auto isUse() const -> bool {
assert(getType() == NodeAttrs::Ref);
return getKind() == NodeAttrs::Use;
}
bool isDef() const {
auto isDef() const -> bool {
assert(getType() == NodeAttrs::Ref);
return getKind() == NodeAttrs::Def;
}
template <typename Predicate>
Ref getNextRef(RegisterRef RR, Predicate P, bool NextOnly,
const DataFlowGraph &G);
Node getOwner(const DataFlowGraph &G);
auto getNextRef(RegisterRef RR, Predicate P, bool NextOnly,
const DataFlowGraph &G) -> Ref;
auto getOwner(const DataFlowGraph &G) -> Node;
};
struct DefNode : public RefNode {
NodeId getReachedDef() const { return RefData.Def.DD; }
void setReachedDef(NodeId D) { RefData.Def.DD = D; }
NodeId getReachedUse() const { return RefData.Def.DU; }
void setReachedUse(NodeId U) { RefData.Def.DU = U; }
auto getReachedDef() const -> NodeId { //
return RefData.Def.DD;
}
auto setReachedDef(NodeId D) -> void { //
RefData.Def.DD = D;
}
auto getReachedUse() const -> NodeId { //
return RefData.Def.DU;
}
auto setReachedUse(NodeId U) -> void { //
RefData.Def.DU = U;
}
void linkToDef(NodeId Self, Def DA);
auto linkToDef(NodeId Self, Def DA) -> void;
};
struct UseNode : public RefNode {
void linkToDef(NodeId Self, Def DA);
auto linkToDef(NodeId Self, Def DA) -> void;
};
struct PhiUseNode : public UseNode {
NodeId getPredecessor() const {
auto getPredecessor() const -> NodeId {
assert(getFlags() & NodeAttrs::PhiRef);
return RefData.PhiU.PredB;
}
void setPredecessor(NodeId B) {
auto setPredecessor(NodeId B) -> void {
assert(getFlags() & NodeAttrs::PhiRef);
RefData.PhiU.PredB = B;
}
};
struct CodeNode : public NodeBase {
template <typename T> T getCode() const { //
template <typename T> auto getCode() const -> T {
return static_cast<T>(CodeData.CP);
}
void setCode(void *C) { CodeData.CP = C; }
auto setCode(void *C) -> void { CodeData.CP = C; }
Node getFirstMember(const DataFlowGraph &G) const;
Node getLastMember(const DataFlowGraph &G) const;
void addMember(Node NA, const DataFlowGraph &G);
void addMemberAfter(Node MA, Node NA, const DataFlowGraph &G);
void removeMember(Node NA, const DataFlowGraph &G);
auto getFirstMember(const DataFlowGraph &G) const -> Node;
auto getLastMember(const DataFlowGraph &G) const -> Node;
auto addMember(Node NA, const DataFlowGraph &G) -> void;
auto addMemberAfter(Node MA, Node NA, const DataFlowGraph &G) -> void;
auto removeMember(Node NA, const DataFlowGraph &G) -> void;
NodeList members(const DataFlowGraph &G) const;
auto members(const DataFlowGraph &G) const -> NodeList;
template <typename Predicate>
NodeList members_if(Predicate P, const DataFlowGraph &G) const;
auto members_if(Predicate P, const DataFlowGraph &G) const -> NodeList;
};
struct InstrNode : public CodeNode {
Node getOwner(const DataFlowGraph &G);
auto getOwner(const DataFlowGraph &G) -> Node;
};
struct PhiNode : public InstrNode {
MachineInstr *getCode() const { return nullptr; }
auto getCode() const -> MachineInstr * { return nullptr; }
};
struct StmtNode : public InstrNode {
MachineInstr *getCode() const { //
auto getCode() const -> MachineInstr * {
return CodeNode::getCode<MachineInstr *>();
}
};
struct BlockNode : public CodeNode {
MachineBasicBlock *getCode() const {
auto getCode() const -> MachineBasicBlock * {
return CodeNode::getCode<MachineBasicBlock *>();
}
void addPhi(Phi PA, const DataFlowGraph &G);
auto addPhi(Phi PA, const DataFlowGraph &G) -> void;
};
struct FuncNode : public CodeNode {
MachineFunction *getCode() const {
auto getCode() const -> MachineFunction * {
return CodeNode::getCode<MachineFunction *>();
}
Block findBlock(const MachineBasicBlock *BB, const DataFlowGraph &G) const;
Block getEntryBlock(const DataFlowGraph &G);
auto findBlock(const MachineBasicBlock *BB, const DataFlowGraph &G) const
-> Block;
auto getEntryBlock(const DataFlowGraph &G) -> Block;
};
struct DataFlowGraph {
@ -662,55 +675,59 @@ struct DataFlowGraph {
const MachineDominanceFrontier &mdf,
const TargetOperandInfo &toi);
NodeBase *ptr(NodeId N) const;
template <typename T> T ptr(NodeId N) const { //
auto ptr(NodeId N) const -> NodeBase *;
template <typename T> auto ptr(NodeId N) const -> T {
return static_cast<T>(ptr(N));
}
NodeId id(const NodeBase *P) const;
auto id(const NodeBase *P) const -> NodeId;
template <typename T> NodeAddr<T> addr(NodeId N) const {
template <typename T> auto addr(NodeId N) const -> NodeAddr<T> {
return {ptr<T>(N), N};
}
Func getFunc() const { return TheFunc; }
MachineFunction &getMF() const { return MF; }
const TargetInstrInfo &getTII() const { return TII; }
const TargetRegisterInfo &getTRI() const { return TRI; }
const PhysicalRegisterInfo &getPRI() const { return PRI; }
const MachineDominatorTree &getDT() const { return MDT; }
const MachineDominanceFrontier &getDF() const { return MDF; }
const RegisterAggr &getLiveIns() const { return LiveIns; }
auto getFunc() const -> Func { return TheFunc; }
auto getMF() const -> MachineFunction & { return MF; }
auto getTII() const -> const TargetInstrInfo & { return TII; }
auto getTRI() const -> const TargetRegisterInfo & { return TRI; }
auto getPRI() const -> const PhysicalRegisterInfo & { return PRI; }
auto getDT() const -> const MachineDominatorTree & { return MDT; }
auto getDF() const -> const MachineDominanceFrontier & { return MDF; }
auto getLiveIns() const -> const RegisterAggr & { return LiveIns; }
struct DefStack {
DefStack() = default;
bool empty() const { return Stack.empty() || top() == bottom(); }
auto empty() const -> bool { return Stack.empty() || top() == bottom(); }
private:
using value_type = Def;
struct Iterator {
using value_type = DefStack::value_type;
Iterator &up() {
auto up() -> Iterator & {
Pos = DS.nextUp(Pos);
return *this;
}
Iterator &down() {
auto down() -> Iterator & {
Pos = DS.nextDown(Pos);
return *this;
}
value_type operator*() const {
auto operator*() const -> value_type {
assert(Pos >= 1);
return DS.Stack[Pos - 1];
}
const value_type *operator->() const {
auto operator->() const -> const value_type * {
assert(Pos >= 1);
return &DS.Stack[Pos - 1];
}
bool operator==(const Iterator &It) const { return Pos == It.Pos; }
bool operator!=(const Iterator &It) const { return Pos != It.Pos; }
auto operator==(const Iterator &It) const -> bool {
return Pos == It.Pos;
}
auto operator!=(const Iterator &It) const -> bool {
return Pos != It.Pos;
}
private:
friend struct DefStack;
@ -726,26 +743,27 @@ struct DataFlowGraph {
public:
using iterator = Iterator;
iterator top() const { return Iterator(*this, true); }
iterator bottom() const { return Iterator(*this, false); }
unsigned size() const;
auto top() const -> iterator { return Iterator(*this, true); }
auto bottom() const -> iterator { return Iterator(*this, false); }
auto size() const -> unsigned;
void push(Def DA) { Stack.push_back(DA); }
void pop();
void start_block(NodeId N);
void clear_block(NodeId N);
auto push(Def DA) -> void { Stack.push_back(DA); }
auto pop() -> void;
auto start_block(NodeId N) -> void;
auto clear_block(NodeId N) -> void;
private:
friend struct Iterator;
using StorageType = std::vector<value_type>;
bool isDelimiter(const StorageType::value_type &P, NodeId N = 0) const {
auto isDelimiter(const StorageType::value_type &P, NodeId N = 0) const
-> bool {
return (P.Addr == nullptr) && (N == 0 || P.Id == N);
}
unsigned nextUp(unsigned P) const;
unsigned nextDown(unsigned P) const;
auto nextUp(unsigned P) const -> unsigned;
auto nextDown(unsigned P) const -> unsigned;
StorageType Stack;
};
@ -754,111 +772,118 @@ struct DataFlowGraph {
// Map: Register (physical or virtual) -> DefStack
using DefStackMap = std::unordered_map<RegisterId, DefStack>;
void build(unsigned Options = BuildOptions::None);
void pushAllDefs(Instr IA, DefStackMap &DM);
void markBlock(NodeId B, DefStackMap &DefM);
void releaseBlock(NodeId B, DefStackMap &DefM);
auto build(unsigned Options = BuildOptions::None) -> void;
auto pushAllDefs(Instr IA, DefStackMap &DM) -> void;
auto markBlock(NodeId B, DefStackMap &DefM) -> void;
auto releaseBlock(NodeId B, DefStackMap &DefM) -> void;
PackedRegisterRef pack(RegisterRef RR) {
auto pack(RegisterRef RR) -> PackedRegisterRef {
return {RR.Reg, LMI.getIndexForLaneMask(RR.Mask)};
}
PackedRegisterRef pack(RegisterRef RR) const {
auto pack(RegisterRef RR) const -> PackedRegisterRef {
return {RR.Reg, LMI.getIndexForLaneMask(RR.Mask)};
}
RegisterRef unpack(PackedRegisterRef PR) const {
auto unpack(PackedRegisterRef PR) const -> RegisterRef {
return RegisterRef(PR.Reg, LMI.getLaneMaskForIndex(PR.MaskId));
}
RegisterRef makeRegRef(unsigned Reg, unsigned Sub) const;
RegisterRef makeRegRef(const MachineOperand &Op) const;
auto makeRegRef(unsigned Reg, unsigned Sub) const -> RegisterRef;
auto makeRegRef(const MachineOperand &Op) const -> RegisterRef;
Ref getNextRelated(Instr IA, Ref RA) const;
Ref getNextShadow(Instr IA, Ref RA, bool Create);
Ref getNextShadow(Instr IA, Ref RA) const;
auto getNextRelated(Instr IA, Ref RA) const -> Ref;
auto getNextShadow(Instr IA, Ref RA, bool Create) -> Ref;
auto getNextShadow(Instr IA, Ref RA) const -> Ref;
NodeList getRelatedRefs(Instr IA, Ref RA) const;
auto getRelatedRefs(Instr IA, Ref RA) const -> NodeList;
Block findBlock(MachineBasicBlock *BB) const { return BlockNodes.at(BB); }
auto findBlock(MachineBasicBlock *BB) const -> Block {
return BlockNodes.at(BB);
}
void unlinkUse(Use UA, bool RemoveFromOwner) {
auto unlinkUse(Use UA, bool RemoveFromOwner) -> void {
unlinkUseDF(UA);
if (RemoveFromOwner)
removeFromOwner(UA);
}
void unlinkDef(Def DA, bool RemoveFromOwner) {
auto unlinkDef(Def DA, bool RemoveFromOwner) -> void {
unlinkDefDF(DA);
if (RemoveFromOwner)
removeFromOwner(DA);
}
// Some useful filters.
template <uint16_t Kind> static bool IsRef(const Node BA) {
template <uint16_t Kind> static auto IsRef(const Node BA) -> bool {
return BA.Addr->getType() == NodeAttrs::Ref && BA.Addr->getKind() == Kind;
}
template <uint16_t Kind> static bool IsCode(const Node BA) {
template <uint16_t Kind> static auto IsCode(const Node BA) -> bool {
return BA.Addr->getType() == NodeAttrs::Code && BA.Addr->getKind() == Kind;
}
static bool IsDef(const Node BA) {
static auto IsDef(const Node BA) -> bool {
return BA.Addr->getType() == NodeAttrs::Ref &&
BA.Addr->getKind() == NodeAttrs::Def;
}
static bool IsUse(const Node BA) {
static auto IsUse(const Node BA) -> bool {
return BA.Addr->getType() == NodeAttrs::Ref &&
BA.Addr->getKind() == NodeAttrs::Use;
}
static bool IsPhi(const Node BA) {
static auto IsPhi(const Node BA) -> bool {
return BA.Addr->getType() == NodeAttrs::Code &&
BA.Addr->getKind() == NodeAttrs::Phi;
}
static bool IsPreservingDef(const Def DA) {
static auto IsPreservingDef(const Def DA) -> bool {
uint16_t Flags = DA.Addr->getFlags();
return (Flags & NodeAttrs::Preserving) && !(Flags & NodeAttrs::Undef);
}
private:
void reset();
auto reset() -> void;
RegisterAggr getLandingPadLiveIns() const;
auto getLandingPadLiveIns() const -> RegisterAggr;
Node newNode(uint16_t Attrs);
Node cloneNode(const Node B);
Use newUse(Instr Owner, MachineOperand &Op, uint16_t Flags = NodeAttrs::None);
PhiUse newPhiUse(Phi Owner, RegisterRef RR, Block PredB,
uint16_t Flags = NodeAttrs::PhiRef);
Def newDef(Instr Owner, MachineOperand &Op, uint16_t Flags = NodeAttrs::None);
Def newDef(Instr Owner, RegisterRef RR, uint16_t Flags = NodeAttrs::PhiRef);
Phi newPhi(Block Owner);
Stmt newStmt(Block Owner, MachineInstr *MI);
Block newBlock(Func Owner, MachineBasicBlock *BB);
Func newFunc(MachineFunction *MF);
auto newNode(uint16_t Attrs) -> Node;
auto cloneNode(const Node B) -> Node;
auto newUse(Instr Owner, MachineOperand &Op, uint16_t Flags = NodeAttrs::None)
-> Use;
auto newPhiUse(Phi Owner, RegisterRef RR, Block PredB,
uint16_t Flags = NodeAttrs::PhiRef) -> PhiUse;
auto newDef(Instr Owner, MachineOperand &Op, uint16_t Flags = NodeAttrs::None)
-> Def;
auto newDef(Instr Owner, RegisterRef RR, uint16_t Flags = NodeAttrs::PhiRef)
-> Def;
auto newPhi(Block Owner) -> Phi;
auto newStmt(Block Owner, MachineInstr *MI) -> Stmt;
auto newBlock(Func Owner, MachineBasicBlock *BB) -> Block;
auto newFunc(MachineFunction *MF) -> Func;
template <typename Predicate>
std::pair<Ref, Ref> locateNextRef(Instr IA, Ref RA, Predicate P) const;
auto locateNextRef(Instr IA, Ref RA, Predicate P) const
-> std::pair<Ref, Ref>;
using BlockRefsMap = RegisterAggrMap<NodeId>;
void buildStmt(Block BA, MachineInstr &In);
void recordDefsForDF(BlockRefsMap &PhiM, Block BA);
void buildPhis(BlockRefsMap &PhiM, RegisterSet &AllRefs, Block BA);
void removeUnusedPhis();
auto buildStmt(Block BA, MachineInstr &In) -> void;
auto recordDefsForDF(BlockRefsMap &PhiM, Block BA) -> void;
auto buildPhis(BlockRefsMap &PhiM, RegisterSet &AllRefs, Block BA) -> void;
auto removeUnusedPhis() -> void;
void pushClobbers(Instr IA, DefStackMap &DM);
void pushDefs(Instr IA, DefStackMap &DM);
template <typename T> void linkRefUp(Instr IA, NodeAddr<T> TA, DefStack &DS);
auto pushClobbers(Instr IA, DefStackMap &DM) -> void;
auto pushDefs(Instr IA, DefStackMap &DM) -> void;
template <typename T>
auto linkRefUp(Instr IA, NodeAddr<T> TA, DefStack &DS) -> void;
template <typename Predicate>
void linkStmtRefs(DefStackMap &DefM, Stmt SA, Predicate P);
void linkBlockRefs(DefStackMap &DefM, Block BA);
auto linkStmtRefs(DefStackMap &DefM, Stmt SA, Predicate P) -> void;
auto linkBlockRefs(DefStackMap &DefM, Block BA) -> void;
void unlinkUseDF(Use UA);
void unlinkDefDF(Def DA);
auto unlinkUseDF(Use UA) -> void;
auto unlinkDefDF(Def DA) -> void;
void removeFromOwner(Ref RA) {
auto removeFromOwner(Ref RA) -> void {
Instr IA = RA.Addr->getOwner(*this);
IA.Addr->removeMember(RA, *this);
}
@ -884,8 +909,8 @@ private:
}; // struct DataFlowGraph
template <typename Predicate>
Ref RefNode::getNextRef(RegisterRef RR, Predicate P, bool NextOnly,
const DataFlowGraph &G) {
auto RefNode::getNextRef(RegisterRef RR, Predicate P, bool NextOnly,
const DataFlowGraph &G) -> Ref {
// Get the "Next" reference in the circular list that references RR and
// satisfies predicate "Pred".
auto NA = G.addr<NodeBase *>(getNext());
@ -910,7 +935,8 @@ Ref RefNode::getNextRef(RegisterRef RR, Predicate P, bool NextOnly,
}
template <typename Predicate>
NodeList CodeNode::members_if(Predicate P, const DataFlowGraph &G) const {
auto CodeNode::members_if(Predicate P, const DataFlowGraph &G) const
-> NodeList {
NodeList MM;
auto M = getFirstMember(G);
if (M.Id == 0)
@ -938,23 +964,23 @@ template <typename T> struct PrintNode : Print<NodeAddr<T>> {
: Print<NodeAddr<T>>(x, g) {}
};
raw_ostream &operator<<(raw_ostream &OS, const Print<RegisterRef> &P);
raw_ostream &operator<<(raw_ostream &OS, const Print<NodeId> &P);
raw_ostream &operator<<(raw_ostream &OS, const Print<Def> &P);
raw_ostream &operator<<(raw_ostream &OS, const Print<Use> &P);
raw_ostream &operator<<(raw_ostream &OS, const Print<PhiUse> &P);
raw_ostream &operator<<(raw_ostream &OS, const Print<Ref> &P);
raw_ostream &operator<<(raw_ostream &OS, const Print<NodeList> &P);
raw_ostream &operator<<(raw_ostream &OS, const Print<NodeSet> &P);
raw_ostream &operator<<(raw_ostream &OS, const Print<Phi> &P);
raw_ostream &operator<<(raw_ostream &OS, const Print<Stmt> &P);
raw_ostream &operator<<(raw_ostream &OS, const Print<Instr> &P);
raw_ostream &operator<<(raw_ostream &OS, const Print<Block> &P);
raw_ostream &operator<<(raw_ostream &OS, const Print<Func> &P);
raw_ostream &operator<<(raw_ostream &OS, const Print<RegisterSet> &P);
raw_ostream &operator<<(raw_ostream &OS, const Print<RegisterAggr> &P);
raw_ostream &operator<<(raw_ostream &OS,
const Print<DataFlowGraph::DefStack> &P);
auto operator<<(raw_ostream &OS, const Print<RegisterRef> &P) -> raw_ostream &;
auto operator<<(raw_ostream &OS, const Print<NodeId> &P) -> raw_ostream &;
auto operator<<(raw_ostream &OS, const Print<Def> &P) -> raw_ostream &;
auto operator<<(raw_ostream &OS, const Print<Use> &P) -> raw_ostream &;
auto operator<<(raw_ostream &OS, const Print<PhiUse> &P) -> raw_ostream &;
auto operator<<(raw_ostream &OS, const Print<Ref> &P) -> raw_ostream &;
auto operator<<(raw_ostream &OS, const Print<NodeList> &P) -> raw_ostream &;
auto operator<<(raw_ostream &OS, const Print<NodeSet> &P) -> raw_ostream &;
auto operator<<(raw_ostream &OS, const Print<Phi> &P) -> raw_ostream &;
auto operator<<(raw_ostream &OS, const Print<Stmt> &P) -> raw_ostream &;
auto operator<<(raw_ostream &OS, const Print<Instr> &P) -> raw_ostream &;
auto operator<<(raw_ostream &OS, const Print<Block> &P) -> raw_ostream &;
auto operator<<(raw_ostream &OS, const Print<Func> &P) -> raw_ostream &;
auto operator<<(raw_ostream &OS, const Print<RegisterSet> &P) -> raw_ostream &;
auto operator<<(raw_ostream &OS, const Print<RegisterAggr> &P) -> raw_ostream &;
auto operator<<(raw_ostream &OS, const Print<DataFlowGraph::DefStack> &P)
-> raw_ostream &;
} // end namespace rdf

View File

@ -46,12 +46,12 @@ using namespace rdf;
namespace llvm {
namespace rdf {
raw_ostream &operator<<(raw_ostream &OS, const Print<RegisterRef> &P) {
auto operator<<(raw_ostream &OS, const Print<RegisterRef> &P) -> raw_ostream & {
P.G.getPRI().print(OS, P.Obj);
return OS;
}
raw_ostream &operator<<(raw_ostream &OS, const Print<NodeId> &P) {
auto operator<<(raw_ostream &OS, const Print<NodeId> &P) -> raw_ostream & {
auto NA = P.G.addr<NodeBase *>(P.Obj);
uint16_t Attrs = NA.Addr->getAttrs();
uint16_t Kind = NodeAttrs::kind(Attrs);
@ -110,14 +110,14 @@ raw_ostream &operator<<(raw_ostream &OS, const Print<NodeId> &P) {
return OS;
}
static void printRefHeader(raw_ostream &OS, const Ref RA,
const DataFlowGraph &G) {
static auto printRefHeader(raw_ostream &OS, const Ref RA,
const DataFlowGraph &G) -> void {
OS << Print(RA.Id, G) << '<' << Print(RA.Addr->getRegRef(G), G) << '>';
if (RA.Addr->getFlags() & NodeAttrs::Fixed)
OS << '!';
}
raw_ostream &operator<<(raw_ostream &OS, const Print<Def> &P) {
auto operator<<(raw_ostream &OS, const Print<Def> &P) -> raw_ostream & {
printRefHeader(OS, P.Obj, P.G);
OS << '(';
if (NodeId N = P.Obj.Addr->getReachingDef())
@ -134,7 +134,7 @@ raw_ostream &operator<<(raw_ostream &OS, const Print<Def> &P) {
return OS;
}
raw_ostream &operator<<(raw_ostream &OS, const Print<Use> &P) {
auto operator<<(raw_ostream &OS, const Print<Use> &P) -> raw_ostream & {
printRefHeader(OS, P.Obj, P.G);
OS << '(';
if (NodeId N = P.Obj.Addr->getReachingDef())
@ -145,7 +145,7 @@ raw_ostream &operator<<(raw_ostream &OS, const Print<Use> &P) {
return OS;
}
raw_ostream &operator<<(raw_ostream &OS, const Print<PhiUse> &P) {
auto operator<<(raw_ostream &OS, const Print<PhiUse> &P) -> raw_ostream & {
printRefHeader(OS, P.Obj, P.G);
OS << '(';
if (NodeId N = P.Obj.Addr->getReachingDef())
@ -159,7 +159,7 @@ raw_ostream &operator<<(raw_ostream &OS, const Print<PhiUse> &P) {
return OS;
}
raw_ostream &operator<<(raw_ostream &OS, const Print<Ref> &P) {
auto operator<<(raw_ostream &OS, const Print<Ref> &P) -> raw_ostream & {
switch (P.Obj.Addr->getKind()) {
case NodeAttrs::Def:
OS << PrintNode<DefNode *>(P.Obj, P.G);
@ -174,7 +174,7 @@ raw_ostream &operator<<(raw_ostream &OS, const Print<Ref> &P) {
return OS;
}
raw_ostream &operator<<(raw_ostream &OS, const Print<NodeList> &P) {
auto operator<<(raw_ostream &OS, const Print<NodeList> &P) -> raw_ostream & {
unsigned N = P.Obj.size();
for (auto I : P.Obj) {
OS << Print(I.Id, P.G);
@ -184,7 +184,7 @@ raw_ostream &operator<<(raw_ostream &OS, const Print<NodeList> &P) {
return OS;
}
raw_ostream &operator<<(raw_ostream &OS, const Print<NodeSet> &P) {
auto operator<<(raw_ostream &OS, const Print<NodeSet> &P) -> raw_ostream & {
unsigned N = P.Obj.size();
for (auto I : P.Obj) {
OS << Print(I, P.G);
@ -205,7 +205,7 @@ template <typename T> struct PrintListV {
};
template <typename T>
raw_ostream &operator<<(raw_ostream &OS, const PrintListV<T> &P) {
auto operator<<(raw_ostream &OS, const PrintListV<T> &P) -> raw_ostream & {
unsigned N = P.List.size();
for (NodeAddr<T> A : P.List) {
OS << PrintNode<T>(A, P.G);
@ -217,13 +217,13 @@ raw_ostream &operator<<(raw_ostream &OS, const PrintListV<T> &P) {
} // end anonymous namespace
raw_ostream &operator<<(raw_ostream &OS, const Print<Phi> &P) {
auto operator<<(raw_ostream &OS, const Print<Phi> &P) -> raw_ostream & {
OS << Print(P.Obj.Id, P.G) << ": phi ["
<< PrintListV<RefNode *>(P.Obj.Addr->members(P.G), P.G) << ']';
return OS;
}
raw_ostream &operator<<(raw_ostream &OS, const Print<Stmt> &P) {
auto operator<<(raw_ostream &OS, const Print<Stmt> &P) -> raw_ostream & {
const MachineInstr &MI = *P.Obj.Addr->getCode();
unsigned Opc = MI.getOpcode();
OS << Print(P.Obj.Id, P.G) << ": " << P.G.getTII().getName(Opc);
@ -247,7 +247,7 @@ raw_ostream &operator<<(raw_ostream &OS, const Print<Stmt> &P) {
return OS;
}
raw_ostream &operator<<(raw_ostream &OS, const Print<Instr> &P) {
auto operator<<(raw_ostream &OS, const Print<Instr> &P) -> raw_ostream & {
switch (P.Obj.Addr->getKind()) {
case NodeAttrs::Phi:
OS << PrintNode<PhiNode *>(P.Obj, P.G);
@ -262,7 +262,7 @@ raw_ostream &operator<<(raw_ostream &OS, const Print<Instr> &P) {
return OS;
}
raw_ostream &operator<<(raw_ostream &OS, const Print<Block> &P) {
auto operator<<(raw_ostream &OS, const Print<Block> &P) -> raw_ostream & {
MachineBasicBlock *BB = P.Obj.Addr->getCode();
unsigned NP = BB->pred_size();
std::vector<int> Ns;
@ -294,7 +294,7 @@ raw_ostream &operator<<(raw_ostream &OS, const Print<Block> &P) {
return OS;
}
raw_ostream &operator<<(raw_ostream &OS, const Print<Func> &P) {
auto operator<<(raw_ostream &OS, const Print<Func> &P) -> raw_ostream & {
OS << "DFG dump:[\n"
<< Print(P.Obj.Id, P.G)
<< ": Function: " << P.Obj.Addr->getCode()->getName() << '\n';
@ -304,7 +304,7 @@ raw_ostream &operator<<(raw_ostream &OS, const Print<Func> &P) {
return OS;
}
raw_ostream &operator<<(raw_ostream &OS, const Print<RegisterSet> &P) {
auto operator<<(raw_ostream &OS, const Print<RegisterSet> &P) -> raw_ostream & {
OS << '{';
for (auto I : P.Obj)
OS << ' ' << Print(I, P.G);
@ -312,13 +312,14 @@ raw_ostream &operator<<(raw_ostream &OS, const Print<RegisterSet> &P) {
return OS;
}
raw_ostream &operator<<(raw_ostream &OS, const Print<RegisterAggr> &P) {
auto operator<<(raw_ostream &OS, const Print<RegisterAggr> &P)
-> raw_ostream & {
OS << P.Obj;
return OS;
}
raw_ostream &operator<<(raw_ostream &OS,
const Print<DataFlowGraph::DefStack> &P) {
auto operator<<(raw_ostream &OS, const Print<DataFlowGraph::DefStack> &P)
-> raw_ostream & {
for (auto I = P.Obj.top(), E = P.Obj.bottom(); I != E;) {
OS << Print(I->Id, P.G) << '<' << Print(I->Addr->getRegRef(P.G), P.G)
<< '>';
@ -341,7 +342,7 @@ raw_ostream &operator<<(raw_ostream &OS,
// There is a mapping scheme between node id and its location in a block,
// and within that block is described in the header file.
//
void NodeAllocator::startNewBlock() {
auto NodeAllocator::startNewBlock() -> void {
void *T = MemPool.Allocate(NodesPerBlock * NodeMemSize, NodeMemSize);
char *P = static_cast<char *>(T);
Blocks.push_back(P);
@ -353,7 +354,7 @@ void NodeAllocator::startNewBlock() {
ActiveEnd = P;
}
bool NodeAllocator::needNewBlock() {
auto NodeAllocator::needNewBlock() -> bool {
if (Blocks.empty())
return true;
@ -362,7 +363,7 @@ bool NodeAllocator::needNewBlock() {
return Index >= NodesPerBlock;
}
Node NodeAllocator::New() {
auto NodeAllocator::New() -> Node {
if (needNewBlock())
startNewBlock();
@ -373,7 +374,7 @@ Node NodeAllocator::New() {
return NA;
}
NodeId NodeAllocator::id(const NodeBase *P) const {
auto NodeAllocator::id(const NodeBase *P) const -> NodeId {
uintptr_t A = reinterpret_cast<uintptr_t>(P);
for (unsigned i = 0, n = Blocks.size(); i != n; ++i) {
uintptr_t B = reinterpret_cast<uintptr_t>(Blocks[i]);
@ -385,14 +386,14 @@ NodeId NodeAllocator::id(const NodeBase *P) const {
llvm_unreachable("Invalid node address");
}
void NodeAllocator::clear() {
auto NodeAllocator::clear() -> void {
MemPool.Reset();
Blocks.clear();
ActiveEnd = nullptr;
}
// Insert node NA after "this" in the circular chain.
void NodeBase::append(Node NA) {
auto NodeBase::append(Node NA) -> void {
NodeId Nx = Next;
// If NA is already "next", do nothing.
if (Next != NA.Id) {
@ -404,7 +405,7 @@ void NodeBase::append(Node NA) {
// Fundamental node manipulator functions.
// Obtain the register reference from a reference node.
RegisterRef RefNode::getRegRef(const DataFlowGraph &G) const {
auto RefNode::getRegRef(const DataFlowGraph &G) const -> RegisterRef {
assert(NodeAttrs::type(Attrs) == NodeAttrs::Ref);
if (NodeAttrs::flags(Attrs) & NodeAttrs::PhiRef)
return G.unpack(RefData.PR);
@ -414,7 +415,7 @@ RegisterRef RefNode::getRegRef(const DataFlowGraph &G) const {
// Set the register reference in the reference node directly (for references
// in phi nodes).
void RefNode::setRegRef(RegisterRef RR, DataFlowGraph &G) {
auto RefNode::setRegRef(RegisterRef RR, DataFlowGraph &G) -> void {
assert(NodeAttrs::type(Attrs) == NodeAttrs::Ref);
assert(NodeAttrs::flags(Attrs) & NodeAttrs::PhiRef);
RefData.PR = G.pack(RR);
@ -422,7 +423,7 @@ void RefNode::setRegRef(RegisterRef RR, DataFlowGraph &G) {
// Set the register reference in the reference node based on a machine
// operand (for references in statement nodes).
void RefNode::setRegRef(MachineOperand *Op, DataFlowGraph &G) {
auto RefNode::setRegRef(MachineOperand *Op, DataFlowGraph &G) -> void {
assert(NodeAttrs::type(Attrs) == NodeAttrs::Ref);
assert(!(NodeAttrs::flags(Attrs) & NodeAttrs::PhiRef));
(void)G;
@ -430,7 +431,7 @@ void RefNode::setRegRef(MachineOperand *Op, DataFlowGraph &G) {
}
// Get the owner of a given reference node.
Node RefNode::getOwner(const DataFlowGraph &G) {
auto RefNode::getOwner(const DataFlowGraph &G) -> Node {
Node NA = G.addr<NodeBase *>(getNext());
while (NA.Addr != this) {
@ -442,35 +443,35 @@ Node RefNode::getOwner(const DataFlowGraph &G) {
}
// Connect the def node to the reaching def node.
void DefNode::linkToDef(NodeId Self, Def DA) {
auto DefNode::linkToDef(NodeId Self, Def DA) -> void {
RefData.RD = DA.Id;
RefData.Sib = DA.Addr->getReachedDef();
DA.Addr->setReachedDef(Self);
}
// Connect the use node to the reaching def node.
void UseNode::linkToDef(NodeId Self, Def DA) {
auto UseNode::linkToDef(NodeId Self, Def DA) -> void {
RefData.RD = DA.Id;
RefData.Sib = DA.Addr->getReachedUse();
DA.Addr->setReachedUse(Self);
}
// Get the first member of the code node.
Node CodeNode::getFirstMember(const DataFlowGraph &G) const {
auto CodeNode::getFirstMember(const DataFlowGraph &G) const -> Node {
if (CodeData.FirstM == 0)
return Node();
return G.addr<NodeBase *>(CodeData.FirstM);
}
// Get the last member of the code node.
Node CodeNode::getLastMember(const DataFlowGraph &G) const {
auto CodeNode::getLastMember(const DataFlowGraph &G) const -> Node {
if (CodeData.LastM == 0)
return Node();
return G.addr<NodeBase *>(CodeData.LastM);
}
// Add node NA at the end of the member list of the given code node.
void CodeNode::addMember(Node NA, const DataFlowGraph &G) {
auto CodeNode::addMember(Node NA, const DataFlowGraph &G) -> void {
Node ML = getLastMember(G);
if (ML.Id != 0) {
ML.Addr->append(NA);
@ -483,14 +484,15 @@ void CodeNode::addMember(Node NA, const DataFlowGraph &G) {
}
// Add node NA after member node MA in the given code node.
void CodeNode::addMemberAfter(Node MA, Node NA, const DataFlowGraph &G) {
auto CodeNode::addMemberAfter(Node MA, Node NA, const DataFlowGraph &G)
-> void {
MA.Addr->append(NA);
if (CodeData.LastM == MA.Id)
CodeData.LastM = NA.Id;
}
// Remove member node NA from the given code node.
void CodeNode::removeMember(Node NA, const DataFlowGraph &G) {
auto CodeNode::removeMember(Node NA, const DataFlowGraph &G) -> void {
Node MA = getFirstMember(G);
assert(MA.Id != 0);
@ -522,13 +524,13 @@ void CodeNode::removeMember(Node NA, const DataFlowGraph &G) {
}
// Return the list of all members of the code node.
NodeList CodeNode::members(const DataFlowGraph &G) const {
auto CodeNode::members(const DataFlowGraph &G) const -> NodeList {
static auto True = [](Node) -> bool { return true; };
return members_if(True, G);
}
// Return the owner of the given instr node.
Node InstrNode::getOwner(const DataFlowGraph &G) {
auto InstrNode::getOwner(const DataFlowGraph &G) -> Node {
Node NA = G.addr<NodeBase *>(getNext());
while (NA.Addr != this) {
@ -541,7 +543,7 @@ Node InstrNode::getOwner(const DataFlowGraph &G) {
}
// Add the phi node PA to the given block node.
void BlockNode::addPhi(Phi PA, const DataFlowGraph &G) {
auto BlockNode::addPhi(Phi PA, const DataFlowGraph &G) -> void {
Node M = getFirstMember(G);
if (M.Id == 0) {
addMember(PA, G);
@ -571,8 +573,8 @@ void BlockNode::addPhi(Phi PA, const DataFlowGraph &G) {
// Find the block node corresponding to the machine basic block BB in the
// given func node.
Block FuncNode::findBlock(const MachineBasicBlock *BB,
const DataFlowGraph &G) const {
auto FuncNode::findBlock(const MachineBasicBlock *BB,
const DataFlowGraph &G) const -> Block {
auto EqBB = [BB](Node NA) -> bool { return Block(NA).Addr->getCode() == BB; };
NodeList Ms = members_if(EqBB, G);
if (!Ms.empty())
@ -581,7 +583,7 @@ Block FuncNode::findBlock(const MachineBasicBlock *BB,
}
// Get the block node for the entry block in the given function.
Block FuncNode::getEntryBlock(const DataFlowGraph &G) {
auto FuncNode::getEntryBlock(const DataFlowGraph &G) -> Block {
MachineBasicBlock *EntryB = &getCode()->front();
return findBlock(EntryB, G);
}
@ -591,14 +593,14 @@ Block FuncNode::getEntryBlock(const DataFlowGraph &G) {
// For a given instruction, check if there are any bits of RR that can remain
// unchanged across this def.
bool TargetOperandInfo::isPreserving(const MachineInstr &In,
unsigned OpNum) const {
auto TargetOperandInfo::isPreserving(const MachineInstr &In,
unsigned OpNum) const -> bool {
return TII.isPredicated(In);
}
// Check if the definition of RR produces an unspecified value.
bool TargetOperandInfo::isClobbering(const MachineInstr &In,
unsigned OpNum) const {
auto TargetOperandInfo::isClobbering(const MachineInstr &In,
unsigned OpNum) const -> bool {
const MachineOperand &Op = In.getOperand(OpNum);
if (Op.isRegMask())
return true;
@ -610,8 +612,8 @@ bool TargetOperandInfo::isClobbering(const MachineInstr &In,
}
// Check if the given instruction specifically requires
bool TargetOperandInfo::isFixedReg(const MachineInstr &In,
unsigned OpNum) const {
auto TargetOperandInfo::isFixedReg(const MachineInstr &In, unsigned OpNum) const
-> bool {
if (In.isCall() || In.isReturn() || In.isInlineAsm())
return true;
// Check for a tail call.
@ -676,7 +678,7 @@ DataFlowGraph::DefStack::Iterator::Iterator(const DataFlowGraph::DefStack &S,
}
// Return the size of the stack, including block delimiters.
unsigned DataFlowGraph::DefStack::size() const {
auto DataFlowGraph::DefStack::size() const -> unsigned {
unsigned S = 0;
for (auto I = top(), E = bottom(); I != E; I.down())
S++;
@ -686,14 +688,14 @@ unsigned DataFlowGraph::DefStack::size() const {
// Remove the top entry from the stack. Remove all intervening delimiters
// so that after this, the stack is either empty, or the top of the stack
// is a non-delimiter.
void DataFlowGraph::DefStack::pop() {
auto DataFlowGraph::DefStack::pop() -> void {
assert(!empty());
unsigned P = nextDown(Stack.size());
Stack.resize(P);
}
// Push a delimiter for block node N on the stack.
void DataFlowGraph::DefStack::start_block(NodeId N) {
auto DataFlowGraph::DefStack::start_block(NodeId N) -> void {
assert(N != 0);
Stack.push_back(Def(nullptr, N));
}
@ -701,7 +703,7 @@ void DataFlowGraph::DefStack::start_block(NodeId N) {
// Remove all nodes from the top of the stack, until the delimited for
// block node N is encountered. Remove the delimiter as well. In effect,
// this will remove from the stack all definitions from block N.
void DataFlowGraph::DefStack::clear_block(NodeId N) {
auto DataFlowGraph::DefStack::clear_block(NodeId N) -> void {
assert(N != 0);
unsigned P = Stack.size();
while (P > 0) {
@ -715,7 +717,7 @@ void DataFlowGraph::DefStack::clear_block(NodeId N) {
}
// Move the stack iterator up by one.
unsigned DataFlowGraph::DefStack::nextUp(unsigned P) const {
auto DataFlowGraph::DefStack::nextUp(unsigned P) const -> unsigned {
// Get the next valid position after P (skipping all delimiters).
// The input position P does not have to point to a non-delimiter.
unsigned SS = Stack.size();
@ -730,7 +732,7 @@ unsigned DataFlowGraph::DefStack::nextUp(unsigned P) const {
}
// Move the stack iterator down by one.
unsigned DataFlowGraph::DefStack::nextDown(unsigned P) const {
auto DataFlowGraph::DefStack::nextDown(unsigned P) const -> unsigned {
// Get the preceding valid position before P (skipping all delimiters).
// The input position P does not have to point to a non-delimiter.
assert(P > 0 && P <= Stack.size());
@ -746,7 +748,7 @@ unsigned DataFlowGraph::DefStack::nextDown(unsigned P) const {
// Register information.
RegisterAggr DataFlowGraph::getLandingPadLiveIns() const {
auto DataFlowGraph::getLandingPadLiveIns() const -> RegisterAggr {
RegisterAggr LR(getPRI());
const Function &F = MF.getFunction();
const Constant *PF = F.hasPersonalityFn() ? F.getPersonalityFn() : nullptr;
@ -763,21 +765,21 @@ RegisterAggr DataFlowGraph::getLandingPadLiveIns() const {
// Node management functions.
// Get the pointer to the node with the id N.
NodeBase *DataFlowGraph::ptr(NodeId N) const {
auto DataFlowGraph::ptr(NodeId N) const -> NodeBase * {
if (N == 0)
return nullptr;
return Memory.ptr(N);
}
// Get the id of the node at the address P.
NodeId DataFlowGraph::id(const NodeBase *P) const {
auto DataFlowGraph::id(const NodeBase *P) const -> NodeId {
if (P == nullptr)
return 0;
return Memory.id(P);
}
// Allocate a new node and set the attributes to Attrs.
Node DataFlowGraph::newNode(uint16_t Attrs) {
auto DataFlowGraph::newNode(uint16_t Attrs) -> Node {
Node P = Memory.New();
P.Addr->init();
P.Addr->setAttrs(Attrs);
@ -786,7 +788,7 @@ Node DataFlowGraph::newNode(uint16_t Attrs) {
// Make a copy of the given node B, except for the data-flow links, which
// are set to 0.
Node DataFlowGraph::cloneNode(const Node B) {
auto DataFlowGraph::cloneNode(const Node B) -> Node {
Node NA = newNode(0);
memcpy(NA.Addr, B.Addr, sizeof(NodeBase));
// Ref nodes need to have the data-flow links reset.
@ -805,14 +807,15 @@ Node DataFlowGraph::cloneNode(const Node B) {
// Allocation routines for specific node types/kinds.
Use DataFlowGraph::newUse(Instr Owner, MachineOperand &Op, uint16_t Flags) {
auto DataFlowGraph::newUse(Instr Owner, MachineOperand &Op, uint16_t Flags)
-> Use {
Use UA = newNode(NodeAttrs::Ref | NodeAttrs::Use | Flags);
UA.Addr->setRegRef(&Op, *this);
return UA;
}
PhiUse DataFlowGraph::newPhiUse(Phi Owner, RegisterRef RR, Block PredB,
uint16_t Flags) {
auto DataFlowGraph::newPhiUse(Phi Owner, RegisterRef RR, Block PredB,
uint16_t Flags) -> PhiUse {
PhiUse PUA = newNode(NodeAttrs::Ref | NodeAttrs::Use | Flags);
assert(Flags & NodeAttrs::PhiRef);
PUA.Addr->setRegRef(RR, *this);
@ -820,47 +823,48 @@ PhiUse DataFlowGraph::newPhiUse(Phi Owner, RegisterRef RR, Block PredB,
return PUA;
}
Def DataFlowGraph::newDef(Instr Owner, MachineOperand &Op, uint16_t Flags) {
auto DataFlowGraph::newDef(Instr Owner, MachineOperand &Op, uint16_t Flags)
-> Def {
Def DA = newNode(NodeAttrs::Ref | NodeAttrs::Def | Flags);
DA.Addr->setRegRef(&Op, *this);
return DA;
}
Def DataFlowGraph::newDef(Instr Owner, RegisterRef RR, uint16_t Flags) {
auto DataFlowGraph::newDef(Instr Owner, RegisterRef RR, uint16_t Flags) -> Def {
Def DA = newNode(NodeAttrs::Ref | NodeAttrs::Def | Flags);
assert(Flags & NodeAttrs::PhiRef);
DA.Addr->setRegRef(RR, *this);
return DA;
}
Phi DataFlowGraph::newPhi(Block Owner) {
auto DataFlowGraph::newPhi(Block Owner) -> Phi {
Phi PA = newNode(NodeAttrs::Code | NodeAttrs::Phi);
Owner.Addr->addPhi(PA, *this);
return PA;
}
Stmt DataFlowGraph::newStmt(Block Owner, MachineInstr *MI) {
auto DataFlowGraph::newStmt(Block Owner, MachineInstr *MI) -> Stmt {
Stmt SA = newNode(NodeAttrs::Code | NodeAttrs::Stmt);
SA.Addr->setCode(MI);
Owner.Addr->addMember(SA, *this);
return SA;
}
Block DataFlowGraph::newBlock(Func Owner, MachineBasicBlock *BB) {
auto DataFlowGraph::newBlock(Func Owner, MachineBasicBlock *BB) -> Block {
Block BA = newNode(NodeAttrs::Code | NodeAttrs::Block);
BA.Addr->setCode(BB);
Owner.Addr->addMember(BA, *this);
return BA;
}
Func DataFlowGraph::newFunc(MachineFunction *MF) {
auto DataFlowGraph::newFunc(MachineFunction *MF) -> Func {
Func FA = newNode(NodeAttrs::Code | NodeAttrs::Func);
FA.Addr->setCode(MF);
return FA;
}
// Build the data flow graph.
void DataFlowGraph::build(unsigned Options) {
auto DataFlowGraph::build(unsigned Options) -> void {
reset();
TheFunc = newFunc(&MF);
@ -956,7 +960,8 @@ void DataFlowGraph::build(unsigned Options) {
removeUnusedPhis();
}
RegisterRef DataFlowGraph::makeRegRef(unsigned Reg, unsigned Sub) const {
auto DataFlowGraph::makeRegRef(unsigned Reg, unsigned Sub) const
-> RegisterRef {
assert(RegisterRef::isRegId(Reg) || RegisterRef::isMaskId(Reg));
assert(Reg != 0);
if (Sub != 0)
@ -964,7 +969,7 @@ RegisterRef DataFlowGraph::makeRegRef(unsigned Reg, unsigned Sub) const {
return RegisterRef(Reg);
}
RegisterRef DataFlowGraph::makeRegRef(const MachineOperand &Op) const {
auto DataFlowGraph::makeRegRef(const MachineOperand &Op) const -> RegisterRef {
assert(Op.isReg() || Op.isRegMask());
if (Op.isReg())
return makeRegRef(Op.getReg(), Op.getSubReg());
@ -973,14 +978,14 @@ RegisterRef DataFlowGraph::makeRegRef(const MachineOperand &Op) const {
}
// For each stack in the map DefM, push the delimiter for block B on it.
void DataFlowGraph::markBlock(NodeId B, DefStackMap &DefM) {
auto DataFlowGraph::markBlock(NodeId B, DefStackMap &DefM) -> void {
// Push block delimiters.
for (auto &P : DefM)
P.second.start_block(B);
}
// Remove all definitions coming from block B from each stack in DefM.
void DataFlowGraph::releaseBlock(NodeId B, DefStackMap &DefM) {
auto DataFlowGraph::releaseBlock(NodeId B, DefStackMap &DefM) -> void {
// Pop all defs from this block from the definition stack. Defs that were
// added to the map during the traversal of instructions will not have a
// delimiter, but for those, the whole stack will be emptied.
@ -998,14 +1003,14 @@ void DataFlowGraph::releaseBlock(NodeId B, DefStackMap &DefM) {
// Push all definitions from the instruction node IA to an appropriate
// stack in DefM.
void DataFlowGraph::pushAllDefs(Instr IA, DefStackMap &DefM) {
auto DataFlowGraph::pushAllDefs(Instr IA, DefStackMap &DefM) -> void {
pushClobbers(IA, DefM);
pushDefs(IA, DefM);
}
// Push all definitions from the instruction node IA to an appropriate
// stack in DefM.
void DataFlowGraph::pushClobbers(Instr IA, DefStackMap &DefM) {
auto DataFlowGraph::pushClobbers(Instr IA, DefStackMap &DefM) -> void {
NodeSet Visited;
std::set<RegisterId> Defined;
@ -1049,7 +1054,7 @@ void DataFlowGraph::pushClobbers(Instr IA, DefStackMap &DefM) {
// Push all definitions from the instruction node IA to an appropriate
// stack in DefM.
void DataFlowGraph::pushDefs(Instr IA, DefStackMap &DefM) {
auto DataFlowGraph::pushDefs(Instr IA, DefStackMap &DefM) -> void {
NodeSet Visited;
#ifndef NDEBUG
std::set<RegisterId> Defined;
@ -1103,7 +1108,7 @@ void DataFlowGraph::pushDefs(Instr IA, DefStackMap &DefM) {
// Return the list of all reference nodes related to RA, including RA itself.
// See "getNextRelated" for the meaning of a "related reference".
NodeList DataFlowGraph::getRelatedRefs(Instr IA, Ref RA) const {
auto DataFlowGraph::getRelatedRefs(Instr IA, Ref RA) const -> NodeList {
assert(IA.Id != 0 && RA.Id != 0);
NodeList Refs;
@ -1116,7 +1121,7 @@ NodeList DataFlowGraph::getRelatedRefs(Instr IA, Ref RA) const {
}
// Clear all information in the graph.
void DataFlowGraph::reset() {
auto DataFlowGraph::reset() -> void {
Memory.clear();
BlockNodes.clear();
TheFunc = Func();
@ -1128,7 +1133,7 @@ void DataFlowGraph::reset() {
// characteristics. Specific examples of related nodes are shadow reference
// nodes.
// Return the equivalent of nullptr if there are no more related references.
Ref DataFlowGraph::getNextRelated(Instr IA, Ref RA) const {
auto DataFlowGraph::getNextRelated(Instr IA, Ref RA) const -> Ref {
assert(IA.Id != 0 && RA.Id != 0);
auto Related = [this, RA](Ref TA) -> bool {
@ -1166,8 +1171,8 @@ Ref DataFlowGraph::getNextRelated(Instr IA, Ref RA) const {
// first element is the element after which such a node should be inserted,
// and the second element is a null-address.
template <typename Predicate>
std::pair<Ref, Ref> DataFlowGraph::locateNextRef(Instr IA, Ref RA,
Predicate P) const {
auto DataFlowGraph::locateNextRef(Instr IA, Ref RA, Predicate P) const
-> std::pair<Ref, Ref> {
assert(IA.Id != 0 && RA.Id != 0);
Ref NA;
@ -1188,7 +1193,7 @@ std::pair<Ref, Ref> DataFlowGraph::locateNextRef(Instr IA, Ref RA,
// Get the next shadow node in IA corresponding to RA, and optionally create
// such a node if it does not exist.
Ref DataFlowGraph::getNextShadow(Instr IA, Ref RA, bool Create) {
auto DataFlowGraph::getNextShadow(Instr IA, Ref RA, bool Create) -> Ref {
assert(IA.Id != 0 && RA.Id != 0);
uint16_t Flags = RA.Addr->getFlags() | NodeAttrs::Shadow;
@ -1208,7 +1213,7 @@ Ref DataFlowGraph::getNextShadow(Instr IA, Ref RA, bool Create) {
// Get the next shadow node in IA corresponding to RA. Return null-address
// if such a node does not exist.
Ref DataFlowGraph::getNextShadow(Instr IA, Ref RA) const {
auto DataFlowGraph::getNextShadow(Instr IA, Ref RA) const -> Ref {
assert(IA.Id != 0 && RA.Id != 0);
uint16_t Flags = RA.Addr->getFlags() | NodeAttrs::Shadow;
auto IsShadow = [Flags](Ref TA) -> bool {
@ -1219,7 +1224,7 @@ Ref DataFlowGraph::getNextShadow(Instr IA, Ref RA) const {
// Create a new statement node in the block node BA that corresponds to
// the machine instruction MI.
void DataFlowGraph::buildStmt(Block BA, MachineInstr &In) {
auto DataFlowGraph::buildStmt(Block BA, MachineInstr &In) -> void {
Stmt SA = newStmt(BA, &In);
auto isCall = [](const MachineInstr &In) -> bool {
@ -1353,7 +1358,7 @@ void DataFlowGraph::buildStmt(Block BA, MachineInstr &In) {
// Scan all defs in the block node BA and record in PhiM the locations of
// phi nodes corresponding to these defs.
void DataFlowGraph::recordDefsForDF(BlockRefsMap &PhiM, Block BA) {
auto DataFlowGraph::recordDefsForDF(BlockRefsMap &PhiM, Block BA) -> void {
// Check all defs from block BA and record them in each block in BA's
// iterated dominance frontier. This information will later be used to
// create phi nodes.
@ -1392,8 +1397,8 @@ void DataFlowGraph::recordDefsForDF(BlockRefsMap &PhiM, Block BA) {
// Given the locations of phi nodes in the map PhiM, create the phi nodes
// that are located in the block node BA.
void DataFlowGraph::buildPhis(BlockRefsMap &PhiM, RegisterSet &AllRefs,
Block BA) {
auto DataFlowGraph::buildPhis(BlockRefsMap &PhiM, RegisterSet &AllRefs,
Block BA) -> void {
// Check if this blocks has any DF defs, i.e. if there are any defs
// that this block is in the iterated dominance frontier of.
auto HasDF = PhiM.find(BA.Id);
@ -1421,7 +1426,7 @@ void DataFlowGraph::buildPhis(BlockRefsMap &PhiM, RegisterSet &AllRefs,
}
// Remove any unneeded phi nodes that were created during the build process.
void DataFlowGraph::removeUnusedPhis() {
auto DataFlowGraph::removeUnusedPhis() -> void {
// This will remove unused phis, i.e. phis where each def does not reach
// any uses or other defs. This will not detect or remove circular phi
// chains that are otherwise dead. Unused/dead phis are created during
@ -1475,7 +1480,7 @@ void DataFlowGraph::removeUnusedPhis() {
// reaching def of TA to the appropriate def node. Create any shadow nodes
// as appropriate.
template <typename T>
void DataFlowGraph::linkRefUp(Instr IA, NodeAddr<T> TA, DefStack &DS) {
auto DataFlowGraph::linkRefUp(Instr IA, NodeAddr<T> TA, DefStack &DS) -> void {
if (DS.empty())
return;
RegisterRef RR = TA.Addr->getRegRef(*this);
@ -1519,7 +1524,8 @@ void DataFlowGraph::linkRefUp(Instr IA, NodeAddr<T> TA, DefStack &DS) {
// Create data-flow links for all reference nodes in the statement node SA.
template <typename Predicate>
void DataFlowGraph::linkStmtRefs(DefStackMap &DefM, Stmt SA, Predicate P) {
auto DataFlowGraph::linkStmtRefs(DefStackMap &DefM, Stmt SA, Predicate P)
-> void {
#ifndef NDEBUG
RegisterSet Defs(getPRI());
#endif
@ -1550,7 +1556,7 @@ void DataFlowGraph::linkStmtRefs(DefStackMap &DefM, Stmt SA, Predicate P) {
// Create data-flow links for all instructions in the block node BA. This
// will include updating any phi nodes in BA.
void DataFlowGraph::linkBlockRefs(DefStackMap &DefM, Block BA) {
auto DataFlowGraph::linkBlockRefs(DefStackMap &DefM, Block BA) -> void {
// Push block delimiters.
markBlock(BA.Id, DefM);
@ -1628,7 +1634,7 @@ void DataFlowGraph::linkBlockRefs(DefStackMap &DefM, Block BA) {
}
// Remove the use node UA from any data-flow and structural links.
void DataFlowGraph::unlinkUseDF(Use UA) {
auto DataFlowGraph::unlinkUseDF(Use UA) -> void {
NodeId RD = UA.Addr->getReachingDef();
NodeId Sib = UA.Addr->getSibling();
@ -1655,7 +1661,7 @@ void DataFlowGraph::unlinkUseDF(Use UA) {
}
// Remove the def node DA from any data-flow and structural links.
void DataFlowGraph::unlinkDefDF(Def DA) {
auto DataFlowGraph::unlinkDefDF(Def DA) -> void {
//
// RD
// | reached