mirror of
https://github.com/capstone-engine/llvm-capstone.git
synced 2025-04-03 05:32:24 +00:00
[mlir][LowerToAffineLoops] Handle tensors of rank 0
This will fix the case: $ toyc -emit=jit test.toy $ cat test.toy def main() { var a = 1; print(a); } Without this patch it would trigger an assertion. Differential Revision: https://reviews.llvm.org/D77464
This commit is contained in:
parent
6a800f6f62
commit
da5fe23e84
@ -155,9 +155,15 @@ struct ConstantOpLowering : public OpRewritePattern<toy::ConstantOp> {
|
||||
// operations.
|
||||
auto valueShape = memRefType.getShape();
|
||||
SmallVector<Value, 8> constantIndices;
|
||||
for (auto i : llvm::seq<int64_t>(
|
||||
0, *std::max_element(valueShape.begin(), valueShape.end())))
|
||||
constantIndices.push_back(rewriter.create<ConstantIndexOp>(loc, i));
|
||||
|
||||
if (!valueShape.empty()) {
|
||||
for (auto i : llvm::seq<int64_t>(
|
||||
0, *std::max_element(valueShape.begin(), valueShape.end())))
|
||||
constantIndices.push_back(rewriter.create<ConstantIndexOp>(loc, i));
|
||||
} else {
|
||||
// This is the case of a tensor of rank 0.
|
||||
constantIndices.push_back(rewriter.create<ConstantIndexOp>(loc, 0));
|
||||
}
|
||||
|
||||
// The constant operation represents a multi-dimensional constant, so we
|
||||
// will need to generate a store for each of the elements. The following
|
||||
|
@ -155,10 +155,15 @@ struct ConstantOpLowering : public OpRewritePattern<toy::ConstantOp> {
|
||||
// operations.
|
||||
auto valueShape = memRefType.getShape();
|
||||
SmallVector<Value, 8> constantIndices;
|
||||
for (auto i : llvm::seq<int64_t>(
|
||||
0, *std::max_element(valueShape.begin(), valueShape.end())))
|
||||
constantIndices.push_back(rewriter.create<ConstantIndexOp>(loc, i));
|
||||
|
||||
if (!valueShape.empty()) {
|
||||
for (auto i : llvm::seq<int64_t>(
|
||||
0, *std::max_element(valueShape.begin(), valueShape.end())))
|
||||
constantIndices.push_back(rewriter.create<ConstantIndexOp>(loc, i));
|
||||
} else {
|
||||
// This is the case of a tensor of rank 0.
|
||||
constantIndices.push_back(rewriter.create<ConstantIndexOp>(loc, 0));
|
||||
}
|
||||
// The constant operation represents a multi-dimensional constant, so we
|
||||
// will need to generate a store for each of the elements. The following
|
||||
// functor recursively walks the dimensions of the constant shape,
|
||||
|
@ -155,9 +155,15 @@ struct ConstantOpLowering : public OpRewritePattern<toy::ConstantOp> {
|
||||
// operations.
|
||||
auto valueShape = memRefType.getShape();
|
||||
SmallVector<Value, 8> constantIndices;
|
||||
for (auto i : llvm::seq<int64_t>(
|
||||
0, *std::max_element(valueShape.begin(), valueShape.end())))
|
||||
constantIndices.push_back(rewriter.create<ConstantIndexOp>(loc, i));
|
||||
|
||||
if (!valueShape.empty()) {
|
||||
for (auto i : llvm::seq<int64_t>(
|
||||
0, *std::max_element(valueShape.begin(), valueShape.end())))
|
||||
constantIndices.push_back(rewriter.create<ConstantIndexOp>(loc, i));
|
||||
} else {
|
||||
// This is the case of a tensor of rank 0.
|
||||
constantIndices.push_back(rewriter.create<ConstantIndexOp>(loc, 0));
|
||||
}
|
||||
|
||||
// The constant operation represents a multi-dimensional constant, so we
|
||||
// will need to generate a store for each of the elements. The following
|
||||
|
Loading…
x
Reference in New Issue
Block a user