I had a giant misunderstanding of what 'synchronizes with' meant in [futures.async]/p5. This invalidated the current design of async in <future>. This is a new design, based on my new understanding, which has been confirmed on the lwg mailing list. The summary is that ~future() (and ~shared_future()) will block when they are created from within async, and the thread hasn't finished yet. As part of this work I created two new type traits: __invokable<F, Args...>::value and __invoke_of<F, Args...>::type. These are what result_of<F(Args...)> wanted to be when it grew up, but never will be. __invoke_of is carefully crafted so that it can serve as its own enable_if (type doesn't exist if the signature isn't invokable). All of this work is C++11 only.

llvm-svn: 131639
This commit is contained in:
Howard Hinnant 2011-05-19 15:05:04 +00:00
parent b8f65e25d8
commit ec0810e1c8
5 changed files with 316 additions and 23 deletions

View File

@ -440,7 +440,7 @@ __invoke(_R (*__f)(_Param...), _Args&& ...__args)
template <class _F, class ..._T>
inline _LIBCPP_INLINE_VISIBILITY
typename result_of<_F(_T...)>::type
typename __invoke_of<_F, _T...>::type
__invoke(_F&& __f, _T&& ...__t)
{
return _STD::forward<_F>(__f)(_STD::forward<_T>(__t)...);
@ -476,7 +476,7 @@ public:
// invoke
template <class... _ArgTypes>
_LIBCPP_INLINE_VISIBILITY
typename __invoke_return<type&, _ArgTypes...>::type
typename __invoke_of<type&, _ArgTypes...>::type
operator() (_ArgTypes&&... __args) const
{
return __invoke(get(), _STD::forward<_ArgTypes>(__args)...);

View File

@ -858,6 +858,115 @@ __deferred_assoc_state<void, _F>::__execute()
#endif // _LIBCPP_NO_EXCEPTIONS
}
template <class _R, class _F>
class __async_assoc_state
: public __assoc_state<_R>
{
typedef __assoc_state<_R> base;
_F __func_;
virtual void __on_zero_shared();
public:
#ifndef _LIBCPP_HAS_NO_RVALUE_REFERENCES
explicit __async_assoc_state(_F&& __f);
#endif
virtual void __execute();
};
#ifndef _LIBCPP_HAS_NO_RVALUE_REFERENCES
template <class _R, class _F>
inline _LIBCPP_INLINE_VISIBILITY
__async_assoc_state<_R, _F>::__async_assoc_state(_F&& __f)
: __func_(_STD::forward<_F>(__f))
{
}
#endif // _LIBCPP_HAS_NO_RVALUE_REFERENCES
template <class _R, class _F>
void
__async_assoc_state<_R, _F>::__execute()
{
#ifndef _LIBCPP_NO_EXCEPTIONS
try
{
#endif // _LIBCPP_NO_EXCEPTIONS
this->set_value(__func_());
#ifndef _LIBCPP_NO_EXCEPTIONS
}
catch (...)
{
this->set_exception(current_exception());
}
#endif // _LIBCPP_NO_EXCEPTIONS
}
template <class _R, class _F>
void
__async_assoc_state<_R, _F>::__on_zero_shared()
{
this->wait();
base::__on_zero_shared();
}
template <class _F>
class __async_assoc_state<void, _F>
: public __assoc_sub_state
{
typedef __assoc_sub_state base;
_F __func_;
virtual void __on_zero_shared();
public:
#ifndef _LIBCPP_HAS_NO_RVALUE_REFERENCES
explicit __async_assoc_state(_F&& __f);
#endif
virtual void __execute();
};
#ifndef _LIBCPP_HAS_NO_RVALUE_REFERENCES
template <class _F>
inline _LIBCPP_INLINE_VISIBILITY
__async_assoc_state<void, _F>::__async_assoc_state(_F&& __f)
: __func_(_STD::forward<_F>(__f))
{
}
#endif // _LIBCPP_HAS_NO_RVALUE_REFERENCES
template <class _F>
void
__async_assoc_state<void, _F>::__execute()
{
#ifndef _LIBCPP_NO_EXCEPTIONS
try
{
#endif // _LIBCPP_NO_EXCEPTIONS
__func_();
this->set_value();
#ifndef _LIBCPP_NO_EXCEPTIONS
}
catch (...)
{
this->set_exception(current_exception());
}
#endif // _LIBCPP_NO_EXCEPTIONS
}
template <class _F>
void
__async_assoc_state<void, _F>::__on_zero_shared()
{
this->wait();
base::__on_zero_shared();
}
template <class> class promise;
template <class> class shared_future;
template <class> class atomic_future;
@ -874,6 +983,14 @@ __make_deferred_assoc_state(_F&& __f);
__make_deferred_assoc_state(_F __f);
#endif
template <class _R, class _F>
future<_R>
#ifndef _LIBCPP_HAS_NO_RVALUE_REFERENCES
__make_async_assoc_state(_F&& __f);
#else
__make_async_assoc_state(_F __f);
#endif
template <class _R>
class _LIBCPP_VISIBLE future
{
@ -885,11 +1002,16 @@ class _LIBCPP_VISIBLE future
template <class> friend class shared_future;
template <class> friend class atomic_future;
template <class _R1, class _F>
#ifndef _LIBCPP_HAS_NO_RVALUE_REFERENCES
template <class _R1, class _F>
friend future<_R1> __make_deferred_assoc_state(_F&& __f);
template <class _R1, class _F>
friend future<_R1> __make_async_assoc_state(_F&& __f);
#else
template <class _R1, class _F>
friend future<_R1> __make_deferred_assoc_state(_F __f);
template <class _R1, class _F>
friend future<_R1> __make_async_assoc_state(_F __f);
#endif
public:
@ -983,11 +1105,16 @@ class _LIBCPP_VISIBLE future<_R&>
template <class> friend class shared_future;
template <class> friend class atomic_future;
template <class _R1, class _F>
#ifndef _LIBCPP_HAS_NO_RVALUE_REFERENCES
template <class _R1, class _F>
friend future<_R1> __make_deferred_assoc_state(_F&& __f);
template <class _R1, class _F>
friend future<_R1> __make_async_assoc_state(_F&& __f);
#else
template <class _R1, class _F>
friend future<_R1> __make_deferred_assoc_state(_F __f);
template <class _R1, class _F>
friend future<_R1> __make_async_assoc_state(_F __f);
#endif
public:
@ -1076,11 +1203,16 @@ class _LIBCPP_VISIBLE future<void>
template <class> friend class shared_future;
template <class> friend class atomic_future;
template <class _R1, class _F>
#ifndef _LIBCPP_HAS_NO_RVALUE_REFERENCES
template <class _R1, class _F>
friend future<_R1> __make_deferred_assoc_state(_F&& __f);
template <class _R1, class _F>
friend future<_R1> __make_async_assoc_state(_F&& __f);
#else
template <class _R1, class _F>
friend future<_R1> __make_deferred_assoc_state(_F __f);
template <class _R1, class _F>
friend future<_R1> __make_async_assoc_state(_F __f);
#endif
public:
@ -2034,32 +2166,68 @@ __make_deferred_assoc_state(_F __f)
return future<_R>(__h.get());
}
template <class _R, class _F>
future<_R>
#ifndef _LIBCPP_HAS_NO_RVALUE_REFERENCES
__make_async_assoc_state(_F&& __f)
#else
__make_async_assoc_state(_F __f)
#endif
{
unique_ptr<__async_assoc_state<_R, _F>, __release_shared_count>
__h(new __async_assoc_state<_R, _F>(_STD::forward<_F>(__f)));
_STD::thread(&__async_assoc_state<_R, _F>::__execute, __h.get()).detach();
return future<_R>(__h.get());
}
template <class _F, class... _Args>
future<typename result_of<_F(_Args...)>::type>
class __async_func
{
tuple<_F, _Args...> __f_;
public:
typedef typename __invoke_of<_F, _Args...>::type _R;
_LIBCPP_INLINE_VISIBILITY
explicit __async_func(_F&& __f, _Args&&... __args)
: __f_(_STD::move(__f), _STD::move(__args)...) {}
_LIBCPP_INLINE_VISIBILITY
__async_func(__async_func&& __f) : __f_(_STD::move(__f.__f_)) {}
_R operator()()
{
typedef typename __make_tuple_indices<1+sizeof...(_Args), 1>::type _Index;
return __execute(_Index());
}
private:
template <size_t ..._Indices>
_R
__execute(__tuple_indices<_Indices...>)
{
return __invoke(_STD::move(_STD::get<0>(__f_)), _STD::move(_STD::get<_Indices>(__f_))...);
}
};
template <class _F, class... _Args>
future<typename __invoke_of<typename decay<_F>::type, typename decay<_Args>::type...>::type>
async(launch __policy, _F&& __f, _Args&&... __args)
{
typedef typename result_of<_F(_Args...)>::type _R;
typedef __async_func<typename decay<_F>::type, typename decay<_Args>::type...> _BF;
typedef typename _BF::_R _R;
future<_R> __r;
if (__policy & launch::async)
{
packaged_task<_R()> __pk(bind(_STD::forward<_F>(__f),
_STD::forward<_Args>(__args)...));
__r = __pk.get_future();
thread(_STD::move(__pk)).detach();
}
__r = _STD::__make_async_assoc_state<_R>(_BF(__decay_copy(_STD::forward<_F>(__f)),
__decay_copy(_STD::forward<_Args>(__args))...));
else if (__policy & launch::deferred)
__r = _STD::__make_deferred_assoc_state<_R>(bind(_STD::forward<_F>(__f),
_STD::forward<_Args>(__args)...));
__r = _STD::__make_deferred_assoc_state<_R>(_BF(__decay_copy(_STD::forward<_F>(__f)),
__decay_copy(_STD::forward<_Args>(__args))...));
return __r;
}
template <class _F, class... _Args>
inline _LIBCPP_INLINE_VISIBILITY
typename enable_if
<
!is_same<typename decay<_F>::type, launch>::value,
future<typename result_of<_F(_Args...)>::type>
>::type
future<typename __invoke_of<typename decay<_F>::type, typename decay<_Args>::type...>::type>
async(_F&& __f, _Args&&... __args)
{
return _STD::async(launch::any, _STD::forward<_F>(__f),

View File

@ -485,7 +485,7 @@ private:
_LIBCPP_INLINE_VISIBILITY
void __execute(__tuple_indices<_Indices...>)
{
_STD::move(_STD::get<0>(__f_))(_STD::move(_STD::get<_Indices>(__f_))...);
__invoke(_STD::move(_STD::get<0>(__f_)), _STD::move(_STD::get<_Indices>(__f_))...);
}
};

View File

@ -325,7 +325,7 @@ inline _LIBCPP_INLINE_VISIBILITY
void
__threaad_execute(tuple<_F, _Args...>& __t, __tuple_indices<_Indices...>)
{
_STD::move(_STD::get<0>(__t))(_STD::move(_STD::get<_Indices>(__t))...);
__invoke(_STD::move(_STD::get<0>(__t)), _STD::move(_STD::get<_Indices>(__t))...);
}
template <class _F>

View File

@ -2772,7 +2772,132 @@ template <class _Tp> struct _LIBCPP_VISIBLE is_trivial
is_trivially_default_constructible<_Tp>::value>
#endif
{};
#ifndef _LIBCPP_HAS_NO_VARIADICS
// __invokable
template <unsigned, class _F, class ..._Args>
struct __invokable_imp
: false_type
{
};
// __invokable member function pointer
template <class _A0, class _F, class ..._Args>
auto
__invokable_mfp_test(_A0&& __a0, _F __f, _Args&& ...__args)
-> decltype((_STD::forward<_A0>(__a0).*__f)(_STD::forward<_Args>(__args)...));
template <class _A0, class _F, class ..._Args>
auto
__invokable_mfp_test(_A0&& __a0, _F __f, _Args&& ...__args)
-> decltype(((*_STD::forward<_A0>(__a0)).*__f)(_STD::forward<_Args>(__args)...));
template <class _F, class ..._Args>
auto
__invokable_mfp_test(__any, _F __f, _Args&& ...__args)
-> __nat;
template <class _F, class _A0, class ..._Args>
struct __invokable_imp<2, _F, _A0, _Args...>
{
typedef decltype(
__invokable_mfp_test(_STD::declval<_A0>(), _STD::declval<_F>(),
_STD::declval<_Args>()...)
) type;
static const bool value = !is_same<type, __nat>::value;
};
// __invokable member object pointer
template <class _A0, class _F>
auto
__invokable_mop_test(_A0&& __a0, _F __f)
-> decltype(_STD::forward<_A0>(__a0).*__f);
template <class _A0, class _F>
auto
__invokable_mop_test(_A0&& __a0, _F __f)
-> decltype((*_STD::forward<_A0>(__a0)).*__f);
template <class _F>
auto
__invokable_mop_test(__any, _F __f)
-> __nat;
template <class _F, class _A0>
struct __invokable_imp<1, _F, _A0>
{
typedef decltype(
__invokable_mop_test(_STD::declval<_A0>(), _STD::declval<_F>())
) type;
static const bool value = !is_same<type, __nat>::value;
};
// __invokable other
template <class _F, class ..._Args>
auto
__invokable_other_test(_F&& __f, _Args&& ...__args)
-> decltype(_STD::forward<_F>(__f)(_STD::forward<_Args>(__args)...));
template <class ..._Args>
auto
__invokable_other_test(__any, _Args&& ...__args)
-> __nat;
template <class _F, class ..._Args>
struct __invokable_imp<0, _F, _Args...>
{
typedef decltype(
__invokable_other_test(_STD::declval<_F>(), _STD::declval<_Args>()...)
) type;
static const bool value = !is_same<type, __nat>::value;
};
// __invokable_classify
template <class _F>
struct __invokable_classify
{
typedef typename remove_reference<_F>::type _FR;
static const unsigned value = is_member_function_pointer<_FR>::value ?
2 :
is_member_object_pointer<_FR>::value ?
1 :
0;
};
template <class _F, class ..._Args>
struct __invokable
: public integral_constant<bool,
__invokable_imp<__invokable_classify<_F>::value, _F, _Args...>::value>
{
};
// __invoke_of
template <bool _Invokable, class _F, class ..._Args>
struct __invoke_of_imp // false
{
};
template <class _F, class ..._Args>
struct __invoke_of_imp<true, _F, _Args...>
{
typedef typename __invokable_imp<__invokable_classify<_F>::value, _F, _Args...>::type type;
};
template <class _F, class ..._Args>
struct __invoke_of
: public __invoke_of_imp<__invokable<_F, _Args...>::value, _F, _Args...>
{
};
#endif // _LIBCPP_HAS_NO_VARIADICS
template <class _Tp>
inline _LIBCPP_INLINE_VISIBILITY
void