Fix minor spelling tweaks (NFC)

Closes 

PiperOrigin-RevId: 275726876
This commit is contained in:
Kazuaki Ishizaki 2019-10-20 09:44:06 -07:00 committed by A. Unique TensorFlower
parent 8bfedb3ca5
commit f28c5aca17
40 changed files with 62 additions and 62 deletions

@ -397,7 +397,7 @@ public:
}
// EDSC maintain an implicit stack of builders (mostly for keeping track of
// insretion points); every operation gets inserted using the top-of-the-stack
// insertion points); every operation gets inserted using the top-of-the-stack
// builder. Creating a new EDSC Builder automatically puts it on the stack,
// effectively entering the block for it.
void createBlockBuilder() {
@ -422,7 +422,7 @@ public:
PythonBlockHandle getHandle() { return handle; }
// EDSC maintain an implicit stack of builders (mostly for keeping track of
// insretion points); every operation gets inserted using the top-of-the-stack
// insertion points); every operation gets inserted using the top-of-the-stack
// builder. Calling operator() on a builder pops the builder from the stack,
// effectively resetting the insertion point to its position before we entered
// the block.
@ -523,7 +523,7 @@ struct PythonIndexedValue {
void store(const std::vector<PythonValueHandle> &indices,
PythonValueHandle value) {
// Uses the overloaded `opreator=` to emit a store.
// Uses the overloaded `operator=` to emit a store.
index(indices).indexed = value.value;
}

@ -97,7 +97,7 @@ private:
/// Parse a literal array expression.
/// tensorLiteral ::= [ literalList ] | number
/// literalList ::= tensorLiteral | tensorLiteral, literalList
std::unique_ptr<ExprAST> ParseTensorLitteralExpr() {
std::unique_ptr<ExprAST> ParseTensorLiteralExpr() {
auto loc = lexer.getLastLocation();
lexer.consume(Token('['));
@ -108,7 +108,7 @@ private:
do {
// We can have either another nested array or a number literal.
if (lexer.getCurToken() == '[') {
values.push_back(ParseTensorLitteralExpr());
values.push_back(ParseTensorLiteralExpr());
if (!values.back())
return nullptr; // parse error in the nested array.
} else {
@ -236,7 +236,7 @@ private:
case '(':
return ParseParenExpr();
case '[':
return ParseTensorLitteralExpr();
return ParseTensorLiteralExpr();
case ';':
return nullptr;
case '}':

@ -125,7 +125,7 @@ void ASTDumper::dump(NumberExprAST *num) {
llvm::errs() << num->getValue() << " " << loc(num) << "\n";
}
/// Helper to print recurisvely a literal. This handles nested array like:
/// Helper to print recursively a literal. This handles nested array like:
/// [ [ 1, 2 ], [ 3, 4 ] ]
/// We print out such array with the dimensions spelled out at every level:
/// <2,2>[<2>[ 1, 2 ], <2>[ 3, 4 ] ]

@ -97,7 +97,7 @@ private:
/// Parse a literal array expression.
/// tensorLiteral ::= [ literalList ] | number
/// literalList ::= tensorLiteral | tensorLiteral, literalList
std::unique_ptr<ExprAST> ParseTensorLitteralExpr() {
std::unique_ptr<ExprAST> ParseTensorLiteralExpr() {
auto loc = lexer.getLastLocation();
lexer.consume(Token('['));
@ -108,7 +108,7 @@ private:
do {
// We can have either another nested array or a number literal.
if (lexer.getCurToken() == '[') {
values.push_back(ParseTensorLitteralExpr());
values.push_back(ParseTensorLiteralExpr());
if (!values.back())
return nullptr; // parse error in the nested array.
} else {
@ -236,7 +236,7 @@ private:
case '(':
return ParseParenExpr();
case '[':
return ParseTensorLitteralExpr();
return ParseTensorLiteralExpr();
case ';':
return nullptr;
case '}':

@ -91,7 +91,7 @@ private:
mlir::ModuleOp theModule;
/// The builder is a helper class to create IR inside a function. The builder
/// is stateful, in particular it keeeps an "insertion point": this is where
/// is stateful, in particular it keeps an "insertion point": this is where
/// the next operations will be introduced.
mlir::OpBuilder builder;

@ -125,7 +125,7 @@ void ASTDumper::dump(NumberExprAST *num) {
llvm::errs() << num->getValue() << " " << loc(num) << "\n";
}
/// Helper to print recurisvely a literal. This handles nested array like:
/// Helper to print recursively a literal. This handles nested array like:
/// [ [ 1, 2 ], [ 3, 4 ] ]
/// We print out such array with the dimensions spelled out at every level:
/// <2,2>[<2>[ 1, 2 ], <2>[ 3, 4 ] ]

@ -97,7 +97,7 @@ private:
/// Parse a literal array expression.
/// tensorLiteral ::= [ literalList ] | number
/// literalList ::= tensorLiteral | tensorLiteral, literalList
std::unique_ptr<ExprAST> ParseTensorLitteralExpr() {
std::unique_ptr<ExprAST> ParseTensorLiteralExpr() {
auto loc = lexer.getLastLocation();
lexer.consume(Token('['));
@ -108,7 +108,7 @@ private:
do {
// We can have either another nested array or a number literal.
if (lexer.getCurToken() == '[') {
values.push_back(ParseTensorLitteralExpr());
values.push_back(ParseTensorLiteralExpr());
if (!values.back())
return nullptr; // parse error in the nested array.
} else {
@ -236,7 +236,7 @@ private:
case '(':
return ParseParenExpr();
case '[':
return ParseTensorLitteralExpr();
return ParseTensorLiteralExpr();
case ';':
return nullptr;
case '}':

@ -91,7 +91,7 @@ private:
mlir::ModuleOp theModule;
/// The builder is a helper class to create IR inside a function. The builder
/// is stateful, in particular it keeeps an "insertion point": this is where
/// is stateful, in particular it keeps an "insertion point": this is where
/// the next operations will be introduced.
mlir::OpBuilder builder;

@ -97,7 +97,7 @@ private:
/// Parse a literal array expression.
/// tensorLiteral ::= [ literalList ] | number
/// literalList ::= tensorLiteral | tensorLiteral, literalList
std::unique_ptr<ExprAST> ParseTensorLitteralExpr() {
std::unique_ptr<ExprAST> ParseTensorLiteralExpr() {
auto loc = lexer.getLastLocation();
lexer.consume(Token('['));
@ -108,7 +108,7 @@ private:
do {
// We can have either another nested array or a number literal.
if (lexer.getCurToken() == '[') {
values.push_back(ParseTensorLitteralExpr());
values.push_back(ParseTensorLiteralExpr());
if (!values.back())
return nullptr; // parse error in the nested array.
} else {
@ -236,7 +236,7 @@ private:
case '(':
return ParseParenExpr();
case '[':
return ParseTensorLitteralExpr();
return ParseTensorLiteralExpr();
case ';':
return nullptr;
case '}':

@ -125,7 +125,7 @@ void ASTDumper::dump(NumberExprAST *num) {
llvm::errs() << num->getValue() << " " << loc(num) << "\n";
}
/// Helper to print recurisvely a literal. This handles nested array like:
/// Helper to print recursively a literal. This handles nested array like:
/// [ [ 1, 2 ], [ 3, 4 ] ]
/// We print out such array with the dimensions spelled out at every level:
/// <2,2>[<2>[ 1, 2 ], <2>[ 3, 4 ] ]

@ -97,7 +97,7 @@ private:
/// Parse a literal array expression.
/// tensorLiteral ::= [ literalList ] | number
/// literalList ::= tensorLiteral | tensorLiteral, literalList
std::unique_ptr<ExprAST> ParseTensorLitteralExpr() {
std::unique_ptr<ExprAST> ParseTensorLiteralExpr() {
auto loc = lexer.getLastLocation();
lexer.consume(Token('['));
@ -108,7 +108,7 @@ private:
do {
// We can have either another nested array or a number literal.
if (lexer.getCurToken() == '[') {
values.push_back(ParseTensorLitteralExpr());
values.push_back(ParseTensorLiteralExpr());
if (!values.back())
return nullptr; // parse error in the nested array.
} else {
@ -236,7 +236,7 @@ private:
case '(':
return ParseParenExpr();
case '[':
return ParseTensorLitteralExpr();
return ParseTensorLiteralExpr();
case ';':
return nullptr;
case '}':

@ -91,7 +91,7 @@ private:
mlir::ModuleOp theModule;
/// The builder is a helper class to create IR inside a function. The builder
/// is stateful, in particular it keeeps an "insertion point": this is where
/// is stateful, in particular it keeps an "insertion point": this is where
/// the next operations will be introduced.
mlir::OpBuilder builder;

@ -125,7 +125,7 @@ void ASTDumper::dump(NumberExprAST *num) {
llvm::errs() << num->getValue() << " " << loc(num) << "\n";
}
/// Helper to print recurisvely a literal. This handles nested array like:
/// Helper to print recursively a literal. This handles nested array like:
/// [ [ 1, 2 ], [ 3, 4 ] ]
/// We print out such array with the dimensions spelled out at every level:
/// <2,2>[<2>[ 1, 2 ], <2>[ 3, 4 ] ]

@ -97,7 +97,7 @@ private:
/// Parse a literal array expression.
/// tensorLiteral ::= [ literalList ] | number
/// literalList ::= tensorLiteral | tensorLiteral, literalList
std::unique_ptr<ExprAST> ParseTensorLitteralExpr() {
std::unique_ptr<ExprAST> ParseTensorLiteralExpr() {
auto loc = lexer.getLastLocation();
lexer.consume(Token('['));
@ -108,7 +108,7 @@ private:
do {
// We can have either another nested array or a number literal.
if (lexer.getCurToken() == '[') {
values.push_back(ParseTensorLitteralExpr());
values.push_back(ParseTensorLiteralExpr());
if (!values.back())
return nullptr; // parse error in the nested array.
} else {
@ -236,7 +236,7 @@ private:
case '(':
return ParseParenExpr();
case '[':
return ParseTensorLitteralExpr();
return ParseTensorLiteralExpr();
case ';':
return nullptr;
case '}':

@ -91,7 +91,7 @@ private:
mlir::ModuleOp theModule;
/// The builder is a helper class to create IR inside a function. The builder
/// is stateful, in particular it keeeps an "insertion point": this is where
/// is stateful, in particular it keeps an "insertion point": this is where
/// the next operations will be introduced.
mlir::OpBuilder builder;

@ -125,7 +125,7 @@ void ASTDumper::dump(NumberExprAST *num) {
llvm::errs() << num->getValue() << " " << loc(num) << "\n";
}
/// Helper to print recurisvely a literal. This handles nested array like:
/// Helper to print recursively a literal. This handles nested array like:
/// [ [ 1, 2 ], [ 3, 4 ] ]
/// We print out such array with the dimensions spelled out at every level:
/// <2,2>[<2>[ 1, 2 ], <2>[ 3, 4 ] ]

@ -373,7 +373,7 @@ def : Pat<(OneAttrOp $attr),
(TwoAttrOp (getNthAttr<0>:$attr), (getNthAttr<1>:$attr)>;
```
In the above, `$_self` is substitutated by the attribute bound by `$attr`, which
In the above, `$_self` is substituted by the attribute bound by `$attr`, which
is `OnAttrOp`'s array attribute.
Positional placeholders will be substituted by the `dag` object parameters at

@ -117,7 +117,7 @@ window in `value`.
Confined<I64ArrayAttr, [ArrayMinCount<4>]>:$ksize,
Confined<I64ArrayAttr, [ArrayMinCount<4>]>:$strides,
TF_AnyStrAttrOf<["SAME", "VALID"]>:$padding,
DefaultValuedAttr<TF_ConvnetDataFormatAttr, "NHWC">:$data_format
DefaultValuedAttr<TF_ConvertDataFormatAttr, "NHWC">:$data_format
);
let results = (outs

@ -45,7 +45,7 @@ struct TestRegistration {
} // end namespace test_detail
/// Declares a test function with the given name and adds it to the list of
/// known tets. The body of the function must follow immediately. Example:
/// known tests. The body of the function must follow immediately. Example:
///
/// TEST_FUNC(mytest) {
/// // CHECK: expected-output-here

@ -166,7 +166,7 @@ module attributes {gpu.container_module} {
module @kernels {
}
func @launch_func_missing_module_attirbute(%sz : index) {
func @launch_func_missing_module_attribute(%sz : index) {
// expected-error@+1 {{module 'kernels' is missing the 'gpu.kernel_module' attribute}}
"gpu.launch_func"(%sz, %sz, %sz, %sz, %sz, %sz)
{ kernel = "kernel_1", kernel_module = @kernels }

@ -162,7 +162,7 @@ func @insertvalue_non_array_position() {
// -----
func @insertvlaue_non_integer_position() {
func @insertvalue_non_integer_position() {
// expected-error@+1 {{expected an array of integer literals}}
llvm.insertvalue %a, %b[0.0] : !llvm<"{i32}">
}
@ -206,7 +206,7 @@ func @extractvalue_non_array_position() {
// -----
func @extractvlaue_non_integer_position() {
func @extractvalue_non_integer_position() {
// expected-error@+1 {{expected an array of integer literals}}
llvm.extractvalue %b[0.0] : !llvm<"{i32}">
}

@ -2,7 +2,7 @@
// CHECK-LABEL: func @ops(%arg0: !llvm.i32, %arg1: !llvm.float)
func @ops(%arg0 : !llvm.i32, %arg1 : !llvm.float) {
// Integer artithmetics binary operations.
// Integer arithmetic binary operations.
//
// CHECK-NEXT: %0 = llvm.add %arg0, %arg0 : !llvm.i32
// CHECK-NEXT: %1 = llvm.sub %arg0, %arg0 : !llvm.i32

@ -108,7 +108,7 @@ func @wrong_accessor_count() -> () {
// -----
func @accessor_argment_disallowed() -> () {
func @accessor_argument_disallowed() -> () {
%true = spv.constant true
// expected-error @+1 {{requires a single operand}}
"spv.BranchConditional"(%true)[^one(%true : i1), ^two] : (i1) -> ()

@ -268,7 +268,7 @@ spv.module "Logical" "GLSL450" { } attributes {
extension = ["SPV_KHR_16bit_storage"]
}
// Module with explict spv._module_end
// Module with explicit spv._module_end
// CHECK: spv.module
spv.module "Logical" "GLSL450" {
spv._module_end

@ -189,7 +189,7 @@ func @image_parameters_six_elements(!spv.image<f32, 1D, NoDepth, NonArrayed, Sin
// -----
// expected-error @+1 {{spv.image delimiter <...> mismatch}}
func @image_parameters_delimiter(!spv.image f32, 1D, NoDepth, NonArrayed, SingleSampled, SamplerUnknown, Unkown>) -> ()
func @image_parameters_delimiter(!spv.image f32, 1D, NoDepth, NonArrayed, SingleSampled, SamplerUnknown, Unknown>) -> ()
// -----

@ -167,7 +167,7 @@
// CHECK: #map{{[0-9]+}} = (d0) -> (-2, 1, -1)
#map51 = (i) -> (-5 floordiv 3, -5 mod 3, -5 ceildiv 3)
// Parenthesis ellision.
// Parenthesis elision.
// CHECK: #map{{[0-9]+}} = (d0) -> (d0 * 16 - (d0 + 1) + 15)
#map52 = (d0) -> (16*d0 + ((d0 + 1) * -1) + 15)

@ -965,7 +965,7 @@ func @f16_special_values() {
// F16 positive infinity.
// CHECK: constant 0x7C00 : f16
%3 = constant 0x7C00 : f16
// F16 negative inifinity.
// F16 negative infinity.
// CHECK: constant 0xFC00 : f16
%4 = constant 0xFC00 : f16
@ -1010,7 +1010,7 @@ func @f64_special_values() {
// CHECK: constant 0xFFF0000001000000 : f64
%3 = constant 0xFFF0000001000000 : f64
// F64 positive inifinity.
// F64 positive infinity.
// CHECK: constant 0x7FF0000000000000 : f64
%4 = constant 0x7FF0000000000000 : f64
// F64 negative infinity.

@ -83,7 +83,7 @@ TEST_FUNC(SDBM_TrivialSimplification) {
// d0 - 3 <= 0 <=> d0 <= 3
// d0 - 5 <= 0 <=> d0 <= 5
//
// which should get simplifed on construction to only the former.
// which should get simplified on construction to only the former.
auto sdbm = SDBM::get({dim(0) - 3, dim(0) - 5}, llvm::None);
// CHECK: cst d0

@ -1485,7 +1485,7 @@ func @should_fuse_at_depth_above_loop_carried_dependence(%arg0: memref<64x4xf32>
// depth at which we can insert the src loop nest slice into the dst loop
// lest must be decreased because of a loop carried dependence on loop '%i3'.
// As a result, the source loop nest is inserted at dst loop nest depth 1,
// just above the loop with the carried depenence. In addition, the source
// just above the loop with the carried dependence. In addition, the source
// loop nest iteration bounds on its loop '%i1' are reduced to 1, so the
// memref size can be reduced to 128x1xf32.
@ -2185,7 +2185,7 @@ func @affine_2mm_fused(%arg0: memref<1024x1024xf32>, %arg1: memref<1024x1024xf32
}
}
// Should fuse MM intialization loops into their consumers, then fuse the
// Should fuse MM initialization loops into their consumers, then fuse the
// two matmul loops together for input reuse on '%arg0/%arg1'.
// CHECK: affine.for %{{.*}} = 0 to 1024 {

@ -84,7 +84,7 @@ func @triangular(%arg0: memref<?x?xf32>) {
// New outer step (original is %c1).
// COMMON-NEXT: %[[step:.*]] = muli %c1, %[[size]]
// Constant adjustement for inner loop has been hoisted out.
// Constant adjustment for inner loop has been hoisted out.
// TILE_74: %[[adjustment2:.*]] = subi %c2, %c1_{{.*}}
// New outer loop.

@ -30,7 +30,7 @@
d0 * 7 + d1 * 5 + s0 * 11 + s1 == 0,
d0 - 1 == 0, d0 + 2 == 0)
// This is an artifically created system to exercise the worst case behavior of
// This is an artificially created system to exercise the worst case behavior of
// FM elimination - as a safeguard against improperly constructed constraint
// systems or fuzz input.
#set_fuzz_virus = (d0, d1, d2, d3, d4, d5) : ( 1089234*d0 + 203472*d1 + 82342 >= 0,

@ -442,14 +442,14 @@ def OpNativeCodeCall2 : TEST_Op<"native_code_call2"> {
// Native code call to invoke a C++ function
def CreateOperand: NativeCodeCall<"chooseOperand($0, $1, $2)">;
// Native code call to invoke a C++ expression
def CreateArraryAttr: NativeCodeCall<"$_builder.getArrayAttr({$0, $1})">;
def CreateArrayAttr: NativeCodeCall<"$_builder.getArrayAttr({$0, $1})">;
// Test that we can use NativeCodeCall to create operand and attribute.
// This pattern chooses between $input1 and $input2 according to $choice and
// it combines $attr1 and $attr2 into an array attribute.
def : Pat<(OpNativeCodeCall1 $input1, $input2,
ConstBoolAttrTrue:$choice, $attr1, $attr2),
(OpNativeCodeCall2 (CreateOperand $input1, $input2, $choice),
(CreateArraryAttr $attr1, $attr2))>;
(CreateArrayAttr $attr1, $attr2))>;
// Note: the following is just for testing purpose.
// Should use the replaceWithValue directive instead.
def UseOpResult: NativeCodeCall<"$0">;
@ -719,7 +719,7 @@ def OneVResOneVOperandOp2 : TEST_Op<"one_variadic_out_one_variadic_in2"> {
}
// Rewrite an op with one variadic operand and one variadic result to
// another similiar op.
// another similar op.
def : Pat<(OneVResOneVOperandOp1 $inputs), (OneVResOneVOperandOp2 $inputs)>;
def MixedVOperandOp1 : TEST_Op<"mixed_variadic_in1",

@ -129,7 +129,7 @@ static std::string getSliceStr(const mlir::ComputationSliceState &sliceUnion) {
// Computes fusion slice union on 'loops[i]' and 'loops[j]' at loop depths
// in range ['loopDepth' + 1, 'maxLoopDepth'].
// Emits a string represention of the slice union as a remark on 'loops[j]'.
// Emits a string representation of the slice union as a remark on 'loops[j]'.
static void testSliceComputation(SmallVector<AffineForOp, 2> &loops, unsigned i,
unsigned j, unsigned loopDepth,
unsigned maxLoopDepth) {

@ -97,7 +97,7 @@ def OpI : NS_Op<"mix_variadic_and_normal_results_op", [SameVariadicResultSize]>
// CHECK-NEXT: tblgen_state.addTypes(output2);
// CHECK-NEXT: tblgen_state.addTypes(output3);
// Test that if the only operand is variadic, we acess the first value in the
// Test that if the only operand is variadic, we access the first value in the
// pack to set result type
// ---
def OpK : NS_Op<"only_input_is_variadic_with_same_value_type_op", [SameOperandsAndResultType]> {

@ -168,7 +168,7 @@ func @verifyI64EnumAttr() -> i32 {
}
//===----------------------------------------------------------------------===//
// Test ElelementsAttr
// Test ElementsAttr
//===----------------------------------------------------------------------===//
// CHECK-LABEL: rewrite_i32elementsattr
@ -302,8 +302,8 @@ func @replaceMixedVariadicOutputOp() -> (f32, i32, f32, i32, i32, i32, f32, i32,
return %0, %1#0, %1#1, %1#2, %2#0, %2#1, %2#2, %2#3, %2#4 : f32, i32, f32, i32, i32, i32, f32, i32, i32
}
// CHECK-LABEL: @generateVaridicOutputOpInNestedPattern
func @generateVaridicOutputOpInNestedPattern() -> (i32) {
// CHECK-LABEL: @generateVariadicOutputOpInNestedPattern
func @generateVariadicOutputOpInNestedPattern() -> (i32) {
// CHECK: %[[cnt5:.*]]:5 = "test.mixed_variadic_out3"()
// CHECK: %[[res:.*]] = "test.mixed_variadic_in3"(%[[cnt5]]#0, %[[cnt5]]#1, %[[cnt5]]#2, %[[cnt5]]#3, %[[cnt5]]#4)
// CHECK: return %[[res]]

@ -1,4 +1,4 @@
//===- SerializationTest.cpp - SPIR-V Seserialization Tests -------------===//
//===- SerializationTest.cpp - SPIR-V Serialization Tests -----------------===//
//
// Copyright 2019 The MLIR Authors.
//

@ -219,7 +219,7 @@ TEST(SDBM, RoundTripEqs) {
}
TEST(SDBMExpr, Constant) {
// We can create consants and query them.
// We can create constants and query them.
auto expr = SDBMConstantExpr::get(dialect(), 42);
EXPECT_EQ(expr.getValue(), 42);

@ -1,4 +1,4 @@
//===-- structss.td - StructsGen test definition file ------*- tablegen -*-===//
//===-- structs.td - StructsGen test definition file -------*- tablegen -*-===//
//
// Copyright 2019 The MLIR Authors.
//

@ -51,7 +51,7 @@ class SSAVariableNamer:
self.scopes = []
self.name_counter = 0
# Generate a subsitution name for the given ssa value name.
# Generate a substitution name for the given ssa value name.
def generate_name(self, ssa_name):
variable = 'VAL_' + str(self.name_counter)
self.name_counter += 1

@ -311,7 +311,7 @@ def update_td_enum_attrs(path, operand_kinds, filter_list):
def snake_casify(name):
"""Turns the given name to follow snake_case convension."""
"""Turns the given name to follow snake_case convention."""
name = re.sub('\W+', '', name).split()
name = [s.lower() for s in name]
return '_'.join(name)
@ -343,7 +343,7 @@ def map_spec_operand_to_ods_argument(operand):
arg_type = 'Variadic<SPV_Type>'
elif kind == 'IdMemorySemantics' or kind == 'IdScope':
# TODO(antiagainst): Need to further constrain 'IdMemorySemantics'
# and 'IdScope' given that they should be gernated from OpConstant.
# and 'IdScope' given that they should be generated from OpConstant.
assert quantifier == '', ('unexpected to have optional/variadic memory '
'semantics or scope <id>')
arg_type = 'I32'