AMDGPU/GlobalISel: Introduce post-legalize combiner

The current set of custom combines are only really useful after
legalization, so move them there. There is a lot of overlap in the
boilerplate here, but I think we do want a pretty different set of
combines before and after legalize. I think we will want a lot of
overlap between the post-legalize and a post-regbankselect combiner.
This commit is contained in:
Matt Arsenault 2020-02-17 11:47:45 -05:00 committed by Matt Arsenault
parent 4fdd2edbdb
commit fee41517fe
14 changed files with 378 additions and 163 deletions

View File

@ -30,6 +30,8 @@ class Module;
// GlobalISel passes
void initializeAMDGPUPreLegalizerCombinerPass(PassRegistry &);
FunctionPass *createAMDGPUPreLegalizeCombiner(bool IsOptNone);
void initializeAMDGPUPostLegalizerCombinerPass(PassRegistry &);
FunctionPass *createAMDGPUPostLegalizeCombiner(bool IsOptNone);
// R600 Passes
FunctionPass *createR600VectorRegMerger();

View File

@ -26,7 +26,12 @@ def gfx6gfx7_combines : GICombineGroup<[fcmp_select_to_fmin_fmax_legacy]>;
def AMDGPUPreLegalizerCombinerHelper: GICombinerHelper<
"AMDGPUGenPreLegalizerCombinerHelper", [all_combines,
elide_br_by_inverting_cond,
gfx6gfx7_combines]> {
elide_br_by_inverting_cond]> {
let DisableRuleOption = "amdgpuprelegalizercombiner-disable-rule";
}
def AMDGPUPostLegalizerCombinerHelper: GICombinerHelper<
"AMDGPUGenPostLegalizerCombinerHelper", [all_combines,
gfx6gfx7_combines]> {
let DisableRuleOption = "amdgpupostlegalizercombiner-disable-rule";
}

View File

@ -0,0 +1,261 @@
//=== lib/CodeGen/GlobalISel/AMDGPUPostLegalizerCombiner.cpp ---------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This pass does combining of machine instructions at the generic MI level,
// after the legalizer.
//
//===----------------------------------------------------------------------===//
#include "AMDGPUTargetMachine.h"
#include "AMDGPULegalizerInfo.h"
#include "llvm/CodeGen/GlobalISel/Combiner.h"
#include "llvm/CodeGen/GlobalISel/CombinerHelper.h"
#include "llvm/CodeGen/GlobalISel/CombinerInfo.h"
#include "llvm/CodeGen/GlobalISel/GISelKnownBits.h"
#include "llvm/CodeGen/GlobalISel/MIPatternMatch.h"
#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/TargetPassConfig.h"
#include "llvm/Support/Debug.h"
#include "MCTargetDesc/AMDGPUMCTargetDesc.h"
#define DEBUG_TYPE "amdgpu-postlegalizer-combiner"
using namespace llvm;
using namespace MIPatternMatch;
struct FMinFMaxLegacyInfo {
Register LHS;
Register RHS;
Register True;
Register False;
CmpInst::Predicate Pred;
};
// TODO: Make sure fmin_legacy/fmax_legacy don't canonicalize
static bool matchFMinFMaxLegacy(MachineInstr &MI, MachineRegisterInfo &MRI,
MachineFunction &MF, FMinFMaxLegacyInfo &Info) {
// FIXME: Combines should have subtarget predicates, and we shouldn't need
// this here.
if (!MF.getSubtarget<GCNSubtarget>().hasFminFmaxLegacy())
return false;
// FIXME: Type predicate on pattern
if (MRI.getType(MI.getOperand(0).getReg()) != LLT::scalar(32))
return false;
Register Cond = MI.getOperand(1).getReg();
if (!MRI.hasOneNonDBGUse(Cond) ||
!mi_match(Cond, MRI,
m_GFCmp(m_Pred(Info.Pred), m_Reg(Info.LHS), m_Reg(Info.RHS))))
return false;
Info.True = MI.getOperand(2).getReg();
Info.False = MI.getOperand(3).getReg();
if (!(Info.LHS == Info.True && Info.RHS == Info.False) &&
!(Info.LHS == Info.False && Info.RHS == Info.True))
return false;
switch (Info.Pred) {
case CmpInst::FCMP_FALSE:
case CmpInst::FCMP_OEQ:
case CmpInst::FCMP_ONE:
case CmpInst::FCMP_ORD:
case CmpInst::FCMP_UNO:
case CmpInst::FCMP_UEQ:
case CmpInst::FCMP_UNE:
case CmpInst::FCMP_TRUE:
return false;
default:
return true;
}
}
static void applySelectFCmpToFMinToFMaxLegacy(MachineInstr &MI,
const FMinFMaxLegacyInfo &Info) {
auto buildNewInst = [&MI](unsigned Opc, Register X, Register Y) {
MachineIRBuilder MIB(MI);
MIB.buildInstr(Opc, {MI.getOperand(0)}, {X, Y}, MI.getFlags());
};
switch (Info.Pred) {
case CmpInst::FCMP_ULT:
case CmpInst::FCMP_ULE:
if (Info.LHS == Info.True)
buildNewInst(AMDGPU::G_AMDGPU_FMIN_LEGACY, Info.RHS, Info.LHS);
else
buildNewInst(AMDGPU::G_AMDGPU_FMAX_LEGACY, Info.LHS, Info.RHS);
break;
case CmpInst::FCMP_OLE:
case CmpInst::FCMP_OLT: {
// We need to permute the operands to get the correct NaN behavior. The
// selected operand is the second one based on the failing compare with NaN,
// so permute it based on the compare type the hardware uses.
if (Info.LHS == Info.True)
buildNewInst(AMDGPU::G_AMDGPU_FMIN_LEGACY, Info.LHS, Info.RHS);
else
buildNewInst(AMDGPU::G_AMDGPU_FMAX_LEGACY, Info.RHS, Info.LHS);
break;
}
case CmpInst::FCMP_UGE:
case CmpInst::FCMP_UGT: {
if (Info.LHS == Info.True)
buildNewInst(AMDGPU::G_AMDGPU_FMAX_LEGACY, Info.RHS, Info.LHS);
else
buildNewInst(AMDGPU::G_AMDGPU_FMIN_LEGACY, Info.LHS, Info.RHS);
break;
}
case CmpInst::FCMP_OGT:
case CmpInst::FCMP_OGE: {
if (Info.LHS == Info.True)
buildNewInst(AMDGPU::G_AMDGPU_FMAX_LEGACY, Info.LHS, Info.RHS);
else
buildNewInst(AMDGPU::G_AMDGPU_FMIN_LEGACY, Info.RHS, Info.LHS);
break;
}
default:
llvm_unreachable("predicate should not have matched");
}
MI.eraseFromParent();
}
#define AMDGPUPOSTLEGALIZERCOMBINERHELPER_GENCOMBINERHELPER_DEPS
#include "AMDGPUGenPostLegalizeGICombiner.inc"
#undef AMDGPUPOSTLEGALIZERCOMBINERHELPER_GENCOMBINERHELPER_DEPS
namespace {
#define AMDGPUPOSTLEGALIZERCOMBINERHELPER_GENCOMBINERHELPER_H
#include "AMDGPUGenPostLegalizeGICombiner.inc"
#undef AMDGPUPOSTLEGALIZERCOMBINERHELPER_GENCOMBINERHELPER_H
class AMDGPUPostLegalizerCombinerInfo : public CombinerInfo {
GISelKnownBits *KB;
MachineDominatorTree *MDT;
public:
AMDGPUGenPostLegalizerCombinerHelper Generated;
AMDGPUPostLegalizerCombinerInfo(bool EnableOpt, bool OptSize, bool MinSize,
const AMDGPULegalizerInfo *LI,
GISelKnownBits *KB, MachineDominatorTree *MDT)
: CombinerInfo(/*AllowIllegalOps*/ false, /*ShouldLegalizeIllegal*/ true,
/*LegalizerInfo*/ LI, EnableOpt, OptSize, MinSize),
KB(KB), MDT(MDT) {
if (!Generated.parseCommandLineOption())
report_fatal_error("Invalid rule identifier");
}
virtual bool combine(GISelChangeObserver &Observer, MachineInstr &MI,
MachineIRBuilder &B) const override;
};
bool AMDGPUPostLegalizerCombinerInfo::combine(GISelChangeObserver &Observer,
MachineInstr &MI,
MachineIRBuilder &B) const {
CombinerHelper Helper(Observer, B, KB, MDT);
if (Generated.tryCombineAll(Observer, MI, B, Helper))
return true;
switch (MI.getOpcode()) {
case TargetOpcode::G_SHL:
case TargetOpcode::G_LSHR:
case TargetOpcode::G_ASHR:
// On some subtargets, 64-bit shift is a quarter rate instruction. In the
// common case, splitting this into a move and a 32-bit shift is faster and
// the same code size.
return Helper.tryCombineShiftToUnmerge(MI, 32);
}
return false;
}
#define AMDGPUPOSTLEGALIZERCOMBINERHELPER_GENCOMBINERHELPER_CPP
#include "AMDGPUGenPostLegalizeGICombiner.inc"
#undef AMDGPUPOSTLEGALIZERCOMBINERHELPER_GENCOMBINERHELPER_CPP
// Pass boilerplate
// ================
class AMDGPUPostLegalizerCombiner : public MachineFunctionPass {
public:
static char ID;
AMDGPUPostLegalizerCombiner(bool IsOptNone = false);
StringRef getPassName() const override {
return "AMDGPUPostLegalizerCombiner";
}
bool runOnMachineFunction(MachineFunction &MF) override;
void getAnalysisUsage(AnalysisUsage &AU) const override;
private:
bool IsOptNone;
};
} // end anonymous namespace
void AMDGPUPostLegalizerCombiner::getAnalysisUsage(AnalysisUsage &AU) const {
AU.addRequired<TargetPassConfig>();
AU.setPreservesCFG();
getSelectionDAGFallbackAnalysisUsage(AU);
AU.addRequired<GISelKnownBitsAnalysis>();
AU.addPreserved<GISelKnownBitsAnalysis>();
if (!IsOptNone) {
AU.addRequired<MachineDominatorTree>();
AU.addPreserved<MachineDominatorTree>();
}
MachineFunctionPass::getAnalysisUsage(AU);
}
AMDGPUPostLegalizerCombiner::AMDGPUPostLegalizerCombiner(bool IsOptNone)
: MachineFunctionPass(ID), IsOptNone(IsOptNone) {
initializeAMDGPUPostLegalizerCombinerPass(*PassRegistry::getPassRegistry());
}
bool AMDGPUPostLegalizerCombiner::runOnMachineFunction(MachineFunction &MF) {
if (MF.getProperties().hasProperty(
MachineFunctionProperties::Property::FailedISel))
return false;
auto *TPC = &getAnalysis<TargetPassConfig>();
const Function &F = MF.getFunction();
bool EnableOpt =
MF.getTarget().getOptLevel() != CodeGenOpt::None && !skipFunction(F);
const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
const AMDGPULegalizerInfo *LI
= static_cast<const AMDGPULegalizerInfo *>(ST.getLegalizerInfo());
GISelKnownBits *KB = &getAnalysis<GISelKnownBitsAnalysis>().get(MF);
MachineDominatorTree *MDT =
IsOptNone ? nullptr : &getAnalysis<MachineDominatorTree>();
AMDGPUPostLegalizerCombinerInfo PCInfo(EnableOpt, F.hasOptSize(),
F.hasMinSize(), LI, KB, MDT);
Combiner C(PCInfo, TPC);
return C.combineMachineInstrs(MF, /*CSEInfo*/ nullptr);
}
char AMDGPUPostLegalizerCombiner::ID = 0;
INITIALIZE_PASS_BEGIN(AMDGPUPostLegalizerCombiner, DEBUG_TYPE,
"Combine AMDGPU machine instrs after legalization",
false, false)
INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
INITIALIZE_PASS_DEPENDENCY(GISelKnownBitsAnalysis)
INITIALIZE_PASS_END(AMDGPUPostLegalizerCombiner, DEBUG_TYPE,
"Combine AMDGPU machine instrs after legalization", false,
false)
namespace llvm {
FunctionPass *createAMDGPUPostLegalizeCombiner(bool IsOptNone) {
return new AMDGPUPostLegalizerCombiner(IsOptNone);
}
} // end namespace llvm

View File

@ -28,112 +28,13 @@
using namespace llvm;
using namespace MIPatternMatch;
struct FMinFMaxLegacyInfo {
Register LHS;
Register RHS;
Register True;
Register False;
CmpInst::Predicate Pred;
};
// TODO: Make sure fmin_legacy/fmax_legacy don't canonicalize
static bool matchFMinFMaxLegacy(MachineInstr &MI, MachineRegisterInfo &MRI,
MachineFunction &MF, FMinFMaxLegacyInfo &Info) {
// FIXME: Combines should have subtarget predicates, and we shouldn't need
// this here.
if (!MF.getSubtarget<GCNSubtarget>().hasFminFmaxLegacy())
return false;
// FIXME: Type predicate on pattern
if (MRI.getType(MI.getOperand(0).getReg()) != LLT::scalar(32))
return false;
Register Cond = MI.getOperand(1).getReg();
if (!MRI.hasOneNonDBGUse(Cond) ||
!mi_match(Cond, MRI,
m_GFCmp(m_Pred(Info.Pred), m_Reg(Info.LHS), m_Reg(Info.RHS))))
return false;
Info.True = MI.getOperand(2).getReg();
Info.False = MI.getOperand(3).getReg();
if (!(Info.LHS == Info.True && Info.RHS == Info.False) &&
!(Info.LHS == Info.False && Info.RHS == Info.True))
return false;
switch (Info.Pred) {
case CmpInst::FCMP_FALSE:
case CmpInst::FCMP_OEQ:
case CmpInst::FCMP_ONE:
case CmpInst::FCMP_ORD:
case CmpInst::FCMP_UNO:
case CmpInst::FCMP_UEQ:
case CmpInst::FCMP_UNE:
case CmpInst::FCMP_TRUE:
return false;
default:
return true;
}
}
static void applySelectFCmpToFMinToFMaxLegacy(MachineInstr &MI,
const FMinFMaxLegacyInfo &Info) {
auto buildNewInst = [&MI](unsigned Opc, Register X, Register Y) {
MachineIRBuilder MIB(MI);
MIB.buildInstr(Opc, {MI.getOperand(0)}, {X, Y}, MI.getFlags());
};
switch (Info.Pred) {
case CmpInst::FCMP_ULT:
case CmpInst::FCMP_ULE:
if (Info.LHS == Info.True)
buildNewInst(AMDGPU::G_AMDGPU_FMIN_LEGACY, Info.RHS, Info.LHS);
else
buildNewInst(AMDGPU::G_AMDGPU_FMAX_LEGACY, Info.LHS, Info.RHS);
break;
case CmpInst::FCMP_OLE:
case CmpInst::FCMP_OLT: {
// We need to permute the operands to get the correct NaN behavior. The
// selected operand is the second one based on the failing compare with NaN,
// so permute it based on the compare type the hardware uses.
if (Info.LHS == Info.True)
buildNewInst(AMDGPU::G_AMDGPU_FMIN_LEGACY, Info.LHS, Info.RHS);
else
buildNewInst(AMDGPU::G_AMDGPU_FMAX_LEGACY, Info.RHS, Info.LHS);
break;
}
case CmpInst::FCMP_UGE:
case CmpInst::FCMP_UGT: {
if (Info.LHS == Info.True)
buildNewInst(AMDGPU::G_AMDGPU_FMAX_LEGACY, Info.RHS, Info.LHS);
else
buildNewInst(AMDGPU::G_AMDGPU_FMIN_LEGACY, Info.LHS, Info.RHS);
break;
}
case CmpInst::FCMP_OGT:
case CmpInst::FCMP_OGE: {
if (Info.LHS == Info.True)
buildNewInst(AMDGPU::G_AMDGPU_FMAX_LEGACY, Info.LHS, Info.RHS);
else
buildNewInst(AMDGPU::G_AMDGPU_FMIN_LEGACY, Info.RHS, Info.LHS);
break;
}
default:
llvm_unreachable("predicate should not have matched");
}
MI.eraseFromParent();
}
#define AMDGPUPRELEGALIZERCOMBINERHELPER_GENCOMBINERHELPER_DEPS
#include "AMDGPUGenGICombiner.inc"
#include "AMDGPUGenPreLegalizeGICombiner.inc"
#undef AMDGPUPRELEGALIZERCOMBINERHELPER_GENCOMBINERHELPER_DEPS
namespace {
#define AMDGPUPRELEGALIZERCOMBINERHELPER_GENCOMBINERHELPER_H
#include "AMDGPUGenGICombiner.inc"
#include "AMDGPUGenPreLegalizeGICombiner.inc"
#undef AMDGPUPRELEGALIZERCOMBINERHELPER_GENCOMBINERHELPER_H
class AMDGPUPreLegalizerCombinerInfo : public CombinerInfo {
@ -165,13 +66,6 @@ bool AMDGPUPreLegalizerCombinerInfo::combine(GISelChangeObserver &Observer,
return true;
switch (MI.getOpcode()) {
case TargetOpcode::G_SHL:
case TargetOpcode::G_LSHR:
case TargetOpcode::G_ASHR:
// On some subtargets, 64-bit shift is a quarter rate instruction. In the
// common case, splitting this into a move and a 32-bit shift is faster and
// the same code size.
return Helper.tryCombineShiftToUnmerge(MI, 32);
case TargetOpcode::G_CONCAT_VECTORS:
return Helper.tryCombineConcatVectors(MI);
case TargetOpcode::G_SHUFFLE_VECTOR:
@ -182,7 +76,7 @@ bool AMDGPUPreLegalizerCombinerInfo::combine(GISelChangeObserver &Observer,
}
#define AMDGPUPRELEGALIZERCOMBINERHELPER_GENCOMBINERHELPER_CPP
#include "AMDGPUGenGICombiner.inc"
#include "AMDGPUGenPreLegalizeGICombiner.inc"
#undef AMDGPUPRELEGALIZERCOMBINERHELPER_GENCOMBINERHELPER_CPP
// Pass boilerplate
@ -194,7 +88,9 @@ public:
AMDGPUPreLegalizerCombiner(bool IsOptNone = false);
StringRef getPassName() const override { return "AMDGPUPreLegalizerCombiner"; }
StringRef getPassName() const override {
return "AMDGPUPreLegalizerCombiner";
}
bool runOnMachineFunction(MachineFunction &MF) override;

View File

@ -218,6 +218,7 @@ extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeAMDGPUTarget() {
initializeAMDGPULowerKernelAttributesPass(*PR);
initializeAMDGPULowerIntrinsicsPass(*PR);
initializeAMDGPUOpenCLEnqueuedBlockLoweringPass(*PR);
initializeAMDGPUPostLegalizerCombinerPass(*PR);
initializeAMDGPUPreLegalizerCombinerPass(*PR);
initializeAMDGPUPromoteAllocaPass(*PR);
initializeAMDGPUCodeGenPreparePass(*PR);
@ -623,6 +624,7 @@ public:
bool addIRTranslator() override;
void addPreLegalizeMachineIR() override;
bool addLegalizeMachineIR() override;
void addPreRegBankSelect() override;
bool addRegBankSelect() override;
bool addGlobalInstructionSelect() override;
void addFastRegAlloc() override;
@ -911,6 +913,11 @@ bool GCNPassConfig::addLegalizeMachineIR() {
return false;
}
void GCNPassConfig::addPreRegBankSelect() {
bool IsOptNone = getOptLevel() == CodeGenOpt::None;
addPass(createAMDGPUPostLegalizeCombiner(IsOptNone));
}
bool GCNPassConfig::addRegBankSelect() {
addPass(new RegBankSelect());
return false;

View File

@ -15,8 +15,10 @@ tablegen(LLVM AMDGPUGenSubtargetInfo.inc -gen-subtarget)
set(LLVM_TARGET_DEFINITIONS AMDGPUGISel.td)
tablegen(LLVM AMDGPUGenGlobalISel.inc -gen-global-isel)
tablegen(LLVM AMDGPUGenGICombiner.inc -gen-global-isel-combiner
tablegen(LLVM AMDGPUGenPreLegalizeGICombiner.inc -gen-global-isel-combiner
-combiners="AMDGPUPreLegalizerCombinerHelper")
tablegen(LLVM AMDGPUGenPostLegalizeGICombiner.inc -gen-global-isel-combiner
-combiners="AMDGPUPostLegalizerCombinerHelper")
set(LLVM_TARGET_DEFINITIONS R600.td)
tablegen(LLVM R600GenAsmWriter.inc -gen-asm-writer)
@ -60,6 +62,7 @@ add_llvm_target(AMDGPUCodeGen
AMDGPUMacroFusion.cpp
AMDGPUMCInstLower.cpp
AMDGPUOpenCLEnqueuedBlockLowering.cpp
AMDGPUPostLegalizerCombiner.cpp
AMDGPUPreLegalizerCombiner.cpp
AMDGPUPromoteAlloca.cpp
AMDGPUPropagateAttributes.cpp

View File

@ -1,5 +1,5 @@
# NOTE: Assertions have been autogenerated by utils/update_mir_test_checks.py
# RUN: llc -mtriple=amdgcn-amd-amdhsa -run-pass=amdgpu-prelegalizer-combiner -verify-machineinstrs %s -o - | FileCheck %s
# RUN: llc -mtriple=amdgcn-amd-amdhsa -run-pass=amdgpu-postlegalizer-combiner -verify-machineinstrs %s -o - | FileCheck %s
---
name: narrow_ashr_s64_32_s64amt

View File

@ -1,5 +1,5 @@
# NOTE: Assertions have been autogenerated by utils/update_mir_test_checks.py
# RUN: llc -mtriple=amdgcn-amd-amdhsa -run-pass=amdgpu-prelegalizer-combiner -verify-machineinstrs %s -o - | FileCheck %s
# RUN: llc -mtriple=amdgcn-amd-amdhsa -run-pass=amdgpu-postlegalizer-combiner -verify-machineinstrs %s -o - | FileCheck %s
---
name: narrow_lshr_s64_32_s64amt

View File

@ -1,5 +1,5 @@
# NOTE: Assertions have been autogenerated by utils/update_mir_test_checks.py
# RUN: llc -mtriple=amdgcn-amd-amdhsa -run-pass=amdgpu-prelegalizer-combiner -verify-machineinstrs %s -o - | FileCheck %s
# RUN: llc -mtriple=amdgcn-amd-amdhsa -run-pass=amdgpu-postlegalizer-combiner -verify-machineinstrs %s -o - | FileCheck %s
---

View File

@ -253,3 +253,24 @@ define double @v_test_fmax_legacy_ult_f64(double %a, double %b) {
%val = select i1 %cmp, double %b, double %a
ret double %val
}
define <2 x float> @v_test_fmax_legacy_ogt_v2f32(<2 x float> %a, <2 x float> %b) {
; GFX6-LABEL: v_test_fmax_legacy_ogt_v2f32:
; GFX6: ; %bb.0:
; GFX6-NEXT: s_waitcnt vmcnt(0) expcnt(0) lgkmcnt(0)
; GFX6-NEXT: v_max_legacy_f32_e32 v0, v0, v2
; GFX6-NEXT: v_max_legacy_f32_e32 v1, v1, v3
; GFX6-NEXT: s_setpc_b64 s[30:31]
;
; GFX8-LABEL: v_test_fmax_legacy_ogt_v2f32:
; GFX8: ; %bb.0:
; GFX8-NEXT: s_waitcnt vmcnt(0) expcnt(0) lgkmcnt(0)
; GFX8-NEXT: v_cmp_gt_f32_e32 vcc, v0, v2
; GFX8-NEXT: v_cndmask_b32_e32 v0, v2, v0, vcc
; GFX8-NEXT: v_cmp_gt_f32_e32 vcc, v1, v3
; GFX8-NEXT: v_cndmask_b32_e32 v1, v3, v1, vcc
; GFX8-NEXT: s_setpc_b64 s[30:31]
%cmp = fcmp ogt <2 x float> %a, %b
%val = select <2 x i1> %cmp, <2 x float> %a, <2 x float> %b
ret <2 x float> %val
}

View File

@ -382,3 +382,24 @@ define float @v_test_fcmp_select_false(float %a, float %b) {
%val = select i1 %cmp, float %a, float %b
ret float %val
}
define <2 x float> @v_test_fmin_legacy_ole_v2f32(<2 x float> %a, <2 x float> %b) {
; GFX6-LABEL: v_test_fmin_legacy_ole_v2f32:
; GFX6: ; %bb.0:
; GFX6-NEXT: s_waitcnt vmcnt(0) expcnt(0) lgkmcnt(0)
; GFX6-NEXT: v_min_legacy_f32_e32 v0, v0, v2
; GFX6-NEXT: v_min_legacy_f32_e32 v1, v1, v3
; GFX6-NEXT: s_setpc_b64 s[30:31]
;
; GFX8-LABEL: v_test_fmin_legacy_ole_v2f32:
; GFX8: ; %bb.0:
; GFX8-NEXT: s_waitcnt vmcnt(0) expcnt(0) lgkmcnt(0)
; GFX8-NEXT: v_cmp_le_f32_e32 vcc, v0, v2
; GFX8-NEXT: v_cndmask_b32_e32 v0, v2, v0, vcc
; GFX8-NEXT: v_cmp_le_f32_e32 vcc, v1, v3
; GFX8-NEXT: v_cndmask_b32_e32 v1, v3, v1, vcc
; GFX8-NEXT: s_setpc_b64 s[30:31]
%cmp = fcmp ole <2 x float> %a, %b
%val = select <2 x i1> %cmp, <2 x float> %a, <2 x float> %b
ret <2 x float> %val
}

View File

@ -26,9 +26,7 @@ define amdgpu_kernel void @test(i32 addrspace(1)* %out) #1 {
; 10 + 9 (36 prepended implicit bytes) + 2(out pointer) = 21 = 0x15
; OS-UNKNOWN: s_add_u32 s[[LO:[0-9]+]], s0, 44
; OS-UNKNOWN-NEXT: s_addc_u32 s[[HI:[0-9]+]], s1, 0
; OS-UNKNOWN-DAG: s_load_dword s{{[0-9]+}}, s{{\[}}[[LO]]:[[HI]]{{\]}}, 0xa
; OS-UNKNOWN: s_load_dword s{{[0-9]+}}, s{{\[[0-9]+:[0-9]+\]}}, 0x15
define amdgpu_kernel void @test_implicit(i32 addrspace(1)* %out) #1 {
%implicitarg.ptr = call noalias i8 addrspace(4)* @llvm.amdgcn.implicitarg.ptr()
%header.ptr = bitcast i8 addrspace(4)* %implicitarg.ptr to i32 addrspace(4)*

View File

@ -286,30 +286,31 @@ define i32 @v_udiv_i32_pow2k_denom(i32 %num) {
; CHECK-LABEL: v_udiv_i32_pow2k_denom:
; CHECK: ; %bb.0:
; CHECK-NEXT: s_waitcnt vmcnt(0) expcnt(0) lgkmcnt(0)
; CHECK-NEXT: s_movk_i32 s6, 0x1000
; CHECK-NEXT: v_cvt_f32_u32_e32 v1, s6
; CHECK-NEXT: v_rcp_iflag_f32_e32 v1, v1
; CHECK-NEXT: v_mul_f32_e32 v1, 0x4f800000, v1
; CHECK-NEXT: v_cvt_u32_f32_e32 v1, v1
; CHECK-NEXT: v_mul_lo_u32 v2, v1, s6
; CHECK-NEXT: v_mul_hi_u32 v3, v1, s6
; CHECK-NEXT: v_sub_i32_e32 v4, vcc, 0, v2
; CHECK-NEXT: v_cmp_eq_u32_e32 vcc, 0, v3
; CHECK-NEXT: s_movk_i32 s4, 0x1000
; CHECK-NEXT: v_mov_b32_e32 v1, 0x1000
; CHECK-NEXT: v_cvt_f32_u32_e32 v2, s4
; CHECK-NEXT: v_rcp_iflag_f32_e32 v2, v2
; CHECK-NEXT: v_mul_f32_e32 v2, 0x4f800000, v2
; CHECK-NEXT: v_cvt_u32_f32_e32 v2, v2
; CHECK-NEXT: v_lshlrev_b32_e32 v3, 12, v2
; CHECK-NEXT: v_mul_hi_u32 v4, v2, s4
; CHECK-NEXT: v_sub_i32_e32 v5, vcc, 0, v3
; CHECK-NEXT: v_cmp_eq_u32_e32 vcc, 0, v4
; CHECK-NEXT: v_cndmask_b32_e32 v3, v3, v5, vcc
; CHECK-NEXT: v_mul_hi_u32 v3, v3, v2
; CHECK-NEXT: v_add_i32_e64 v4, s[4:5], v2, v3
; CHECK-NEXT: v_sub_i32_e64 v2, s[4:5], v2, v3
; CHECK-NEXT: v_cndmask_b32_e32 v2, v2, v4, vcc
; CHECK-NEXT: v_mul_hi_u32 v2, v2, v1
; CHECK-NEXT: v_add_i32_e64 v3, s[4:5], v1, v2
; CHECK-NEXT: v_sub_i32_e64 v1, s[4:5], v1, v2
; CHECK-NEXT: v_cndmask_b32_e32 v1, v1, v3, vcc
; CHECK-NEXT: v_mul_hi_u32 v1, v1, v0
; CHECK-NEXT: v_mul_lo_u32 v2, v1, s6
; CHECK-NEXT: v_add_i32_e32 v3, vcc, 1, v1
; CHECK-NEXT: v_subrev_i32_e32 v4, vcc, 1, v1
; CHECK-NEXT: v_sub_i32_e32 v5, vcc, v0, v2
; CHECK-NEXT: v_cmp_ge_u32_e32 vcc, v0, v2
; CHECK-NEXT: v_cmp_le_u32_e64 s[4:5], s6, v5
; CHECK-NEXT: v_mul_hi_u32 v2, v2, v0
; CHECK-NEXT: v_lshlrev_b32_e32 v3, 12, v2
; CHECK-NEXT: v_add_i32_e32 v4, vcc, 1, v2
; CHECK-NEXT: v_subrev_i32_e32 v5, vcc, 1, v2
; CHECK-NEXT: v_sub_i32_e32 v6, vcc, v0, v3
; CHECK-NEXT: v_cmp_ge_u32_e32 vcc, v0, v3
; CHECK-NEXT: v_cmp_ge_u32_e64 s[4:5], v6, v1
; CHECK-NEXT: s_and_b64 s[4:5], s[4:5], vcc
; CHECK-NEXT: v_cndmask_b32_e64 v0, v3, v1, s[4:5]
; CHECK-NEXT: v_cndmask_b32_e32 v0, v4, v0, vcc
; CHECK-NEXT: v_cndmask_b32_e64 v0, v4, v2, s[4:5]
; CHECK-NEXT: v_cndmask_b32_e32 v0, v5, v0, vcc
; CHECK-NEXT: s_setpc_b64 s[30:31]
%result = udiv i32 %num, 4096
ret i32 %result
@ -319,9 +320,9 @@ define <2 x i32> @v_udiv_v2i32_pow2k_denom(<2 x i32> %num) {
; CHECK-LABEL: v_udiv_v2i32_pow2k_denom:
; CHECK: ; %bb.0:
; CHECK-NEXT: s_waitcnt vmcnt(0) expcnt(0) lgkmcnt(0)
; CHECK-NEXT: s_movk_i32 s8, 0x1000
; CHECK-NEXT: s_movk_i32 s4, 0x1000
; CHECK-NEXT: v_mov_b32_e32 v2, 0x1000
; CHECK-NEXT: v_cvt_f32_u32_e32 v3, s8
; CHECK-NEXT: v_cvt_f32_u32_e32 v3, s4
; CHECK-NEXT: v_cvt_f32_u32_e32 v4, v2
; CHECK-NEXT: v_rcp_iflag_f32_e32 v3, v3
; CHECK-NEXT: v_rcp_iflag_f32_e32 v4, v4
@ -329,9 +330,9 @@ define <2 x i32> @v_udiv_v2i32_pow2k_denom(<2 x i32> %num) {
; CHECK-NEXT: v_mul_f32_e32 v4, 0x4f800000, v4
; CHECK-NEXT: v_cvt_u32_f32_e32 v3, v3
; CHECK-NEXT: v_cvt_u32_f32_e32 v4, v4
; CHECK-NEXT: v_mul_lo_u32 v5, v3, s8
; CHECK-NEXT: v_mul_hi_u32 v6, v3, s8
; CHECK-NEXT: v_mul_lo_u32 v7, v4, v2
; CHECK-NEXT: v_lshlrev_b32_e32 v5, 12, v3
; CHECK-NEXT: v_mul_hi_u32 v6, v3, s4
; CHECK-NEXT: v_lshlrev_b32_e32 v7, 12, v4
; CHECK-NEXT: v_mul_hi_u32 v8, v4, v2
; CHECK-NEXT: v_sub_i32_e32 v9, vcc, 0, v5
; CHECK-NEXT: v_sub_i32_e32 v10, vcc, 0, v7
@ -349,17 +350,17 @@ define <2 x i32> @v_udiv_v2i32_pow2k_denom(<2 x i32> %num) {
; CHECK-NEXT: v_cndmask_b32_e64 v4, v4, v5, s[4:5]
; CHECK-NEXT: v_mul_hi_u32 v3, v3, v0
; CHECK-NEXT: v_mul_hi_u32 v4, v4, v1
; CHECK-NEXT: v_mul_lo_u32 v5, v3, s8
; CHECK-NEXT: v_lshlrev_b32_e32 v5, 12, v3
; CHECK-NEXT: v_add_i32_e32 v6, vcc, 1, v3
; CHECK-NEXT: v_subrev_i32_e32 v7, vcc, 1, v3
; CHECK-NEXT: v_mul_lo_u32 v8, v4, v2
; CHECK-NEXT: v_lshlrev_b32_e32 v8, 12, v4
; CHECK-NEXT: v_add_i32_e32 v9, vcc, 1, v4
; CHECK-NEXT: v_subrev_i32_e32 v10, vcc, 1, v4
; CHECK-NEXT: v_sub_i32_e32 v11, vcc, v0, v5
; CHECK-NEXT: v_cmp_ge_u32_e32 vcc, v0, v5
; CHECK-NEXT: v_sub_i32_e64 v0, s[4:5], v1, v8
; CHECK-NEXT: v_cmp_ge_u32_e64 s[4:5], v1, v8
; CHECK-NEXT: v_cmp_le_u32_e64 s[6:7], s8, v11
; CHECK-NEXT: v_cmp_ge_u32_e64 s[6:7], v11, v2
; CHECK-NEXT: v_cmp_ge_u32_e64 s[8:9], v0, v2
; CHECK-NEXT: s_and_b64 s[6:7], s[6:7], vcc
; CHECK-NEXT: v_cndmask_b32_e64 v0, v6, v3, s[6:7]

View File

@ -286,14 +286,14 @@ define i32 @v_urem_i32_pow2k_denom(i32 %num) {
; CHECK-LABEL: v_urem_i32_pow2k_denom:
; CHECK: ; %bb.0:
; CHECK-NEXT: s_waitcnt vmcnt(0) expcnt(0) lgkmcnt(0)
; CHECK-NEXT: s_movk_i32 s6, 0x1000
; CHECK-NEXT: s_movk_i32 s4, 0x1000
; CHECK-NEXT: v_mov_b32_e32 v1, 0x1000
; CHECK-NEXT: v_cvt_f32_u32_e32 v2, s6
; CHECK-NEXT: v_cvt_f32_u32_e32 v2, s4
; CHECK-NEXT: v_rcp_iflag_f32_e32 v2, v2
; CHECK-NEXT: v_mul_f32_e32 v2, 0x4f800000, v2
; CHECK-NEXT: v_cvt_u32_f32_e32 v2, v2
; CHECK-NEXT: v_mul_lo_u32 v3, v2, s6
; CHECK-NEXT: v_mul_hi_u32 v4, v2, s6
; CHECK-NEXT: v_lshlrev_b32_e32 v3, 12, v2
; CHECK-NEXT: v_mul_hi_u32 v4, v2, s4
; CHECK-NEXT: v_sub_i32_e32 v5, vcc, 0, v3
; CHECK-NEXT: v_cmp_eq_u32_e32 vcc, 0, v4
; CHECK-NEXT: v_cndmask_b32_e32 v3, v3, v5, vcc
@ -302,9 +302,9 @@ define i32 @v_urem_i32_pow2k_denom(i32 %num) {
; CHECK-NEXT: v_sub_i32_e64 v2, s[4:5], v2, v3
; CHECK-NEXT: v_cndmask_b32_e32 v2, v2, v4, vcc
; CHECK-NEXT: v_mul_hi_u32 v2, v2, v0
; CHECK-NEXT: v_mul_lo_u32 v2, v2, s6
; CHECK-NEXT: v_lshlrev_b32_e32 v2, 12, v2
; CHECK-NEXT: v_sub_i32_e32 v3, vcc, v0, v2
; CHECK-NEXT: v_cmp_le_u32_e32 vcc, s6, v3
; CHECK-NEXT: v_cmp_ge_u32_e32 vcc, v3, v1
; CHECK-NEXT: v_add_i32_e64 v4, s[4:5], v3, v1
; CHECK-NEXT: v_cmp_ge_u32_e64 s[4:5], v0, v2
; CHECK-NEXT: v_sub_i32_e64 v0, s[6:7], v3, v1
@ -320,9 +320,9 @@ define <2 x i32> @v_urem_v2i32_pow2k_denom(<2 x i32> %num) {
; CHECK-LABEL: v_urem_v2i32_pow2k_denom:
; CHECK: ; %bb.0:
; CHECK-NEXT: s_waitcnt vmcnt(0) expcnt(0) lgkmcnt(0)
; CHECK-NEXT: s_movk_i32 s8, 0x1000
; CHECK-NEXT: s_movk_i32 s4, 0x1000
; CHECK-NEXT: v_mov_b32_e32 v2, 0x1000
; CHECK-NEXT: v_cvt_f32_u32_e32 v3, s8
; CHECK-NEXT: v_cvt_f32_u32_e32 v3, s4
; CHECK-NEXT: v_cvt_f32_u32_e32 v4, v2
; CHECK-NEXT: v_rcp_iflag_f32_e32 v3, v3
; CHECK-NEXT: v_rcp_iflag_f32_e32 v4, v4
@ -330,9 +330,9 @@ define <2 x i32> @v_urem_v2i32_pow2k_denom(<2 x i32> %num) {
; CHECK-NEXT: v_mul_f32_e32 v4, 0x4f800000, v4
; CHECK-NEXT: v_cvt_u32_f32_e32 v3, v3
; CHECK-NEXT: v_cvt_u32_f32_e32 v4, v4
; CHECK-NEXT: v_mul_lo_u32 v5, v3, s8
; CHECK-NEXT: v_mul_hi_u32 v6, v3, s8
; CHECK-NEXT: v_mul_lo_u32 v7, v4, v2
; CHECK-NEXT: v_lshlrev_b32_e32 v5, 12, v3
; CHECK-NEXT: v_mul_hi_u32 v6, v3, s4
; CHECK-NEXT: v_lshlrev_b32_e32 v7, 12, v4
; CHECK-NEXT: v_mul_hi_u32 v8, v4, v2
; CHECK-NEXT: v_sub_i32_e32 v9, vcc, 0, v5
; CHECK-NEXT: v_sub_i32_e32 v10, vcc, 0, v7
@ -350,11 +350,11 @@ define <2 x i32> @v_urem_v2i32_pow2k_denom(<2 x i32> %num) {
; CHECK-NEXT: v_cndmask_b32_e64 v4, v4, v5, s[4:5]
; CHECK-NEXT: v_mul_hi_u32 v3, v3, v0
; CHECK-NEXT: v_mul_hi_u32 v4, v4, v1
; CHECK-NEXT: v_mul_lo_u32 v3, v3, s8
; CHECK-NEXT: v_mul_lo_u32 v4, v4, v2
; CHECK-NEXT: v_lshlrev_b32_e32 v3, 12, v3
; CHECK-NEXT: v_lshlrev_b32_e32 v4, 12, v4
; CHECK-NEXT: v_sub_i32_e32 v5, vcc, v0, v3
; CHECK-NEXT: v_sub_i32_e32 v6, vcc, v1, v4
; CHECK-NEXT: v_cmp_le_u32_e32 vcc, s8, v5
; CHECK-NEXT: v_cmp_ge_u32_e32 vcc, v5, v2
; CHECK-NEXT: v_add_i32_e64 v7, s[4:5], v5, v2
; CHECK-NEXT: v_cmp_ge_u32_e64 s[4:5], v0, v3
; CHECK-NEXT: v_sub_i32_e64 v0, s[6:7], v5, v2