Essentially the same as the GEP change in r230786.
A similar migration script can be used to update test cases, though a few more
test case improvements/changes were required this time around: (r229269-r229278)
import fileinput
import sys
import re
pat = re.compile(r"((?:=|:|^)\s*load (?:atomic )?(?:volatile )?(.*?))(| addrspace\(\d+\) *)\*($| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$)")
for line in sys.stdin:
sys.stdout.write(re.sub(pat, r"\1, \2\3*\4", line))
Reviewers: rafael, dexonsmith, grosser
Differential Revision: http://reviews.llvm.org/D7649
llvm-svn: 230794
One of several parallel first steps to remove the target type of pointers,
replacing them with a single opaque pointer type.
This adds an explicit type parameter to the gep instruction so that when the
first parameter becomes an opaque pointer type, the type to gep through is
still available to the instructions.
* This doesn't modify gep operators, only instructions (operators will be
handled separately)
* Textual IR changes only. Bitcode (including upgrade) and changing the
in-memory representation will be in separate changes.
* geps of vectors are transformed as:
getelementptr <4 x float*> %x, ...
->getelementptr float, <4 x float*> %x, ...
Then, once the opaque pointer type is introduced, this will ultimately look
like:
getelementptr float, <4 x ptr> %x
with the unambiguous interpretation that it is a vector of pointers to float.
* address spaces remain on the pointer, not the type:
getelementptr float addrspace(1)* %x
->getelementptr float, float addrspace(1)* %x
Then, eventually:
getelementptr float, ptr addrspace(1) %x
Importantly, the massive amount of test case churn has been automated by
same crappy python code. I had to manually update a few test cases that
wouldn't fit the script's model (r228970,r229196,r229197,r229198). The
python script just massages stdin and writes the result to stdout, I
then wrapped that in a shell script to handle replacing files, then
using the usual find+xargs to migrate all the files.
update.py:
import fileinput
import sys
import re
ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))")
normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))")
def conv(match, line):
if not match:
return line
line = match.groups()[0]
if len(match.groups()[5]) == 0:
line += match.groups()[2]
line += match.groups()[3]
line += ", "
line += match.groups()[1]
line += "\n"
return line
for line in sys.stdin:
if line.find("getelementptr ") == line.find("getelementptr inbounds"):
if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("):
line = conv(re.match(ibrep, line), line)
elif line.find("getelementptr ") != line.find("getelementptr ("):
line = conv(re.match(normrep, line), line)
sys.stdout.write(line)
apply.sh:
for name in "$@"
do
python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name"
rm -f "$name.tmp"
done
The actual commands:
From llvm/src:
find test/ -name *.ll | xargs ./apply.sh
From llvm/src/tools/clang:
find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}"
From llvm/src/tools/polly:
find test/ -name *.ll | xargs ./apply.sh
After that, check-all (with llvm, clang, clang-tools-extra, lld,
compiler-rt, and polly all checked out).
The extra 'rm' in the apply.sh script is due to a few files in clang's test
suite using interesting unicode stuff that my python script was throwing
exceptions on. None of those files needed to be migrated, so it seemed
sufficient to ignore those cases.
Reviewers: rafael, dexonsmith, grosser
Differential Revision: http://reviews.llvm.org/D7636
llvm-svn: 230786
This is equivalent to the AMDGPUTargetMachine now, but it is the
starting point for separating R600 and GCN functionality into separate
targets.
It is recommened that users start using the gcn triple for GCN-based
GPUs, because using the r600 triple for these GPUs will be deprecated in
the future.
llvm-svn: 225277
mubuf instructions now define the soffset field using the SCSrc_32
register class which indicates that only SGPRs and inline constants
are allowed.
llvm-svn: 224622
This matches the format produced by the AMD proprietary driver.
//==================================================================//
// Shell script for converting .ll test cases: (Pass the .ll files
you want to convert to this script as arguments).
//==================================================================//
; This was necessary on my system so that A-Z in sed would match only
; upper case. I'm not sure why.
export LC_ALL='C'
TEST_FILES="$*"
MATCHES=`grep -v Patterns SIInstructions.td | grep -o '"[A-Z0-9_]\+["e]' | grep -o '[A-Z0-9_]\+' | sort -r`
for f in $TEST_FILES; do
# Check that there are SI tests:
grep -q -e 'verde' -e 'bonaire' -e 'SI' -e 'tahiti' $f
if [ $? -eq 0 ]; then
for match in $MATCHES; do
sed -i -e "s/\([ :]$match\)/\L\1/" $f
done
# Try to get check lines with partial instruction names
sed -i 's/\(;[ ]*SI[A-Z\\-]*: \)\([A-Z_0-9]\+\)/\1\L\2/' $f
fi
done
sed -i -e 's/bb0_1/BB0_1/g' ../../../test/CodeGen/R600/infinite-loop.ll
sed -i -e 's/SI-NOT: bfe/SI-NOT: {{[^@]}}bfe/g'../../../test/CodeGen/R600/llvm.AMDGPU.bfe.*32.ll ../../../test/CodeGen/R600/sext-in-reg.ll
sed -i -e 's/exp_IEEE/EXP_IEEE/g' ../../../test/CodeGen/R600/llvm.exp2.ll
sed -i -e 's/numVgprs/NumVgprs/g' ../../../test/CodeGen/R600/register-count-comments.ll
sed -i 's/\(; CHECK[-NOT]*: \)\([A-Z_0-9]\+\)/\1\L\2/' ../../../test/CodeGen/R600/select64.ll ../../../test/CodeGen/R600/sgpr-copy.ll
//==================================================================//
// Shell script for converting .td files (run this last)
//==================================================================//
export LC_ALL='C'
sed -i -e '/Patterns/!s/\("[A-Z0-9_]\+[ "e]\)/\L\1/g' SIInstructions.td
sed -i -e 's/"EXP/"exp/g' SIInstrInfo.td
llvm-svn: 221350
I noticed some odd looking cases where addr64 wasn't set
when storing to a pointer in an SGPR. This seems to be intentional,
and partially tested already.
The documentation seems to describe addr64 in terms of which registers
addressing modifiers come from, but I would expect to always need
addr64 when using 64-bit pointers. If no offset is applied,
it makes sense to not need to worry about doing a 64-bit add
for the final address. A small immediate offset can be applied,
so is it OK to not have addr64 set if a carry is necessary when adding
the base pointer in the resource to the offset?
llvm-svn: 217785
There are no variable values like registers encoded in the low 32 bits of MUBUF
instructions, so it is relatively easy to check these bits, and it will
help prevent us from introducing encoding bugs.
llvm-svn: 215397
This currently has a noticable effect on the kernel argument loads.
LDS and global loads are more problematic, I think because of how copies
are currently inserted to ensure that the address is a VGPR.
llvm-svn: 214942
Print in decimal for inline immediates, and hex otherwise. Use hex
always for offsets in addressing offsets.
This approximately matches what the shader compiler does.
llvm-svn: 206335