It's no longer possible to submit bitcode apps to the Apple App Store.
The tools
used to create xar archived bitcode sections inside MachO files have
been
discontinued. Additionally, the xar APIs have been deprecated since
macOS 12,
so this change removes unnecessary code from objdump and all
dependencies on
libxar.
This fixes rdar://116600767
Pass -D_FILE_OFFSET_BITS=64 to compiler flags on 32bit glibc based
systems. This will make sure that 64bit versions of LFS functions are
used e.g. seek will behave same as lseek64. Also revert [1] partially
because this added a cmake test to detect lseek64 but then forgot to
pass the needed macro to actual compile, this test was incomplete too
since libc implementations like musl has 64bit off_t by default on 32bit
systems and does not bundle[2] -D_LARGEFILE64_SOURCE under -D_GNU_SOURCE
like glibc, which means the compile now fails on musl because the cmake
check passes but we do not have _LARGEFILE64_SOURCE defined. Using the
*64 function was transitional anyways so use -D_FILE_OFFSET_BITS=64
instead
[1] 8db7e5e4ee
[2] https://git.musl-libc.org/cgit/musl/commit/?id=25e6fee27f4a293728dd15b659170e7b9c7db9bc
Reviewed By: MaskRay
Differential Revision: https://reviews.llvm.org/D139752
I've eliminated all uses of LLVM_HAVE_TF_API except a couple of them
being removed in llvm/lib/CodeGen/CMakeLists.txt. This patch removes
remaining definitions and uses of LLVM_HAVE_TF_API.
Differential Revision: https://reviews.llvm.org/D140169
TLite is a lightweight, statically linkable[1], model evaluator, supporting a
subset of what the full tensorflow library does, sufficient for the
types of scenarios we envision having. It is also faster.
We still use saved models as "source of truth" - 'release' mode's AOT
starts from a saved model; and the ML training side operates in terms of
saved models.
Using TFLite solves the following problems compared to using the full TF
C API:
- a compiler-friendly implementation for runtime-loadable (as opposed
to AOT-embedded) models: it's statically linked; it can be built via
cmake;
- solves an issue we had when building the compiler with both AOT and
full TF C API support, whereby, due to a packaging issue on the TF
side, we needed to have the pip package and the TF C API library at
the same version. We have no such constraints now.
The main liability is it supporting a subset of what the full TF
framework does. We do not expect that to cause an issue, but should that
be the case, we can always revert back to using the full framework
(after also figuring out a way to address the problems that motivated
the move to TFLite).
Details:
This change switches the development mode to TFLite. Models are still
expected to be placed in a directory - i.e. the parameters to clang
don't change; what changes is the directory content: we still need
an `output_spec.json` file; but instead of the saved_model protobuf and
the `variables` directory, we now just have one file, `model.tflite`.
The change includes a utility showing how to take a saved model and
convert it to TFLite, which it uses for testing.
The full TF implementation can still be built (not side-by-side). We
intend to remove it shortly, after patching downstream dependencies. The
build behavior, however, prioritizes TFLite - i.e. trying to enable both
full TF C API and TFLite will just pick TFLite.
[1] thanks to @petrhosek's changes to TFLite's cmake support and its deps!
This patch removes llvm::is_trivially_copyable as it seems to be dead.
Once I remove it, HAVE_STD_IS_TRIVIALLY_COPYABLE has no users, so this
patch removes the macro also.
The comment on llvm::is_trivially_copyable mentions GCC 4.9, but note
that we now require GCC 7.1 or higher.
Differential Revision: https://reviews.llvm.org/D132328
- add zstd to `llvm::compression` namespace
- add a CMake option `LLVM_ENABLE_ZSTD` with behavior mirroring that of `LLVM_ENABLE_ZLIB`
- add tests for zstd to `llvm/unittests/Support/CompressionTest.cpp`
- debian users should install libzstd when using `LLVM_ENABLE_ZSTD=FORCE_ON` from source due to this bug https://bugs.launchpad.net/ubuntu/+source/libzstd/+bug/1941956
Reviewed By: leonardchan, MaskRay
Differential Revision: https://reviews.llvm.org/D128465
- add `FindZSTD.cmake`
- add zstd to `llvm::compression` namespace
- add a CMake option `LLVM_ENABLE_ZSTD` with behavior mirroring that of `LLVM_ENABLE_ZLIB`
- add tests for zstd to `llvm/unittests/Support/CompressionTest.cpp`
Reviewed By: leonardchan, MaskRay
Differential Revision: https://reviews.llvm.org/D128465
- add `FindZSTD.cmake`
- add zstd to `llvm::compression` namespace
- add a CMake option `LLVM_ENABLE_ZSTD` with behavior mirroring that of `LLVM_ENABLE_ZLIB`
- add tests for zstd to `llvm/unittests/Support/CompressionTest.cpp`
Reviewed By: leonardchan, MaskRay
Differential Revision: https://reviews.llvm.org/D128465
This has been superseded by the llvm/Support/VCSRevision.h header. So
far as I can tell, nothing in the CMake build sets LLVM_VERSION_INFO. It
was always undefined, and the ifdefs using it were dead. However, CMake
is very flexible, so it's possible that I missed some ways to set this
variable. One could, for example, probably pass -DLLVM_VERSION_INFO=x on
the command line and get that through to configure_file, or set the
variable in an obscure way (`set(${proj}_VERSION_INFO "x")`). I'm
reasonably confident that isn't happening, but I'd like a second
opinion.
Update the Bazel and gn builds accordingly.
Differential Revision: https://reviews.llvm.org/D126977
Or rather, error out if it is set to something other than ON. This
removes the ability to enable the legacy pass manager by default,
but does not remove the ability to explicitly enable it through
various flags like -flegacy-pass-manager or -enable-new-pm=0.
I checked, and our test suite definitely doesn't pass with
LLVM_ENABLE_NEW_PASS_MANAGER=OFF anymore.
Differential Revision: https://reviews.llvm.org/D123126
This reverts 3816c53f04 and removes follow-up
fixups.
The original intention was to show error earlier (posix_fallocate time) than
later for ld.lld but it appears to cause some problems which make it not free.
* FreeBSD ZFS: EINVAL, not too bad.
* FreeBSD UFS: according to khng "devastatingly slow on freebsd because UFS on freebsd does not have preallocation support like illumos. It zero-fills."
* NetBSD: maybe EOPNOTSUPP
* Linux tmpfs: unless tmpfs is set up to use huge pages (requires CONFIG_TRANSPARENT_HUGE_PAGECACHE=y), I can consistently demonstrate ~300ms delay for a 1.4GiB output.
* Linux ext4: I don't measure any benefit, either backed by a hard disk or by a file in tmpfs.
* The current code organization of `defined(HAVE_POSIX_FALLOCATE)` costs us a macro dispatch for AIX.
I think we should just remove it. I think if posix_fallocate ever finds demonstrable benefit,
it is likely Linux specific and will not need HAVE_POSIX_FALLOCATE, and possibly opt-in by some specific programs.
In a filesystem with CoW and compression, the ENOSPC benefit may be lost as well.
Reviewed By: khng300
Differential Revision: https://reviews.llvm.org/D115957
This adds Bazel configuration for the TargetMCA targets, which currently
only includes AMDGPU.
Reviewed By: rnk
Differential Revision: https://reviews.llvm.org/D106996