//===-- strtofloat_fuzz.cpp -----------------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// /// /// Fuzzing test for llvm-libc atof implementation. /// //===----------------------------------------------------------------------===// #include "src/stdlib/atof.h" #include "src/stdlib/strtod.h" #include "src/stdlib/strtof.h" #include "src/stdlib/strtold.h" #include "src/__support/FPUtil/FPBits.h" #include #include #include #include "utils/MPFRWrapper/mpfr_inc.h" using LIBC_NAMESPACE::fputil::FPBits; // This function calculates the effective precision for a given float type and // exponent. Subnormals have a lower effective precision since they don't // necessarily use all of the bits of the mantissa. template inline constexpr int effective_precision(int exponent) { const int full_precision = FPBits::FRACTION_LEN + 1; // This is intended to be 0 when the exponent is the lowest normal and // increase as the exponent's magnitude increases. const int bits_below_normal = (-exponent) - (FPBits::EXP_BIAS - 1); // The precision should be the normal, full precision, minus the bits lost // by this being a subnormal, minus one for the implicit leading one. const int bits_if_subnormal = full_precision - bits_below_normal - 1; if (bits_below_normal >= 0) { return bits_if_subnormal; } return full_precision; } extern "C" int LLVMFuzzerTestOneInput(const uint8_t *data, size_t size) { // const char newstr[] = "123"; // data = reinterpret_cast(newstr); // size = sizeof(newstr); uint8_t *container = new uint8_t[size + 1]; if (!container) __builtin_trap(); size_t i; for (i = 0; i < size; ++i) { // MPFR's strtofr uses "@" as a base-independent exponent symbol if (data[i] != '@') container[i] = data[i]; else { container[i] = '#'; } } container[size] = '\0'; // Add null terminator to container. const char *str_ptr = reinterpret_cast(container); char *out_ptr = nullptr; size_t base = 0; // This is just used to determine the base and precision. mpfr_t result; mpfr_init2(result, 256); mpfr_t bin_result; mpfr_init2(bin_result, 256); mpfr_strtofr(result, str_ptr, &out_ptr, 0 /* base */, MPFR_RNDN); ptrdiff_t result_strlen = out_ptr - str_ptr; mpfr_strtofr(bin_result, str_ptr, &out_ptr, 2 /* base */, MPFR_RNDN); ptrdiff_t bin_result_strlen = out_ptr - str_ptr; long double bin_result_ld = mpfr_get_ld(bin_result, MPFR_RNDN); long double result_ld = mpfr_get_ld(result, MPFR_RNDN); // This detects if mpfr's strtofr selected a base of 2, which libc does not // support. If a base 2 decoding is detected, it is replaced by a base 10 // decoding. if ((bin_result_ld != 0.0 || bin_result_strlen == result_strlen) && bin_result_ld == result_ld) { mpfr_strtofr(result, str_ptr, &out_ptr, 10 /* base */, MPFR_RNDN); result_strlen = out_ptr - str_ptr; base = 10; } auto result_exp = mpfr_get_exp(result); mpfr_clear(result); mpfr_clear(bin_result); // These must be calculated with the correct precision, and not any more, to // prevent numbers like 66336650.00...01 (many zeroes) from causing an issue. // 66336650 is exactly between two float values (66336652 and 66336648) so the // correct float result for 66336650.00...01 is rounding up to 66336652. The // correct double is instead 66336650, which when converted to float is // rounded down to 66336648. This means we have to compare against the correct // precision to get the correct result. // TODO: Add support for other rounding modes. int float_precision = effective_precision(result_exp); if (float_precision >= 2) { mpfr_t mpfr_float; mpfr_init2(mpfr_float, float_precision); mpfr_strtofr(mpfr_float, str_ptr, &out_ptr, base, MPFR_RNDN); float volatile float_result = mpfr_get_flt(mpfr_float, MPFR_RNDN); auto volatile strtof_result = LIBC_NAMESPACE::strtof(str_ptr, &out_ptr); ptrdiff_t strtof_strlen = out_ptr - str_ptr; if (result_strlen != strtof_strlen) __builtin_trap(); // If any result is NaN, all of them should be NaN. We can't use the usual // comparisons because NaN != NaN. if (isnan(float_result) ^ isnan(strtof_result)) __builtin_trap(); if (!isnan(float_result) && float_result != strtof_result) __builtin_trap(); mpfr_clear(mpfr_float); } int double_precision = effective_precision(result_exp); if (double_precision >= 2) { mpfr_t mpfr_double; mpfr_init2(mpfr_double, double_precision); mpfr_strtofr(mpfr_double, str_ptr, &out_ptr, base, MPFR_RNDN); double volatile double_result = mpfr_get_d(mpfr_double, MPFR_RNDN); auto volatile strtod_result = LIBC_NAMESPACE::strtod(str_ptr, &out_ptr); auto volatile atof_result = LIBC_NAMESPACE::atof(str_ptr); ptrdiff_t strtod_strlen = out_ptr - str_ptr; if (result_strlen != strtod_strlen) __builtin_trap(); if (isnan(double_result) ^ isnan(strtod_result) || isnan(double_result) ^ isnan(atof_result)) __builtin_trap(); if (!isnan(double_result) && (double_result != strtod_result || double_result != atof_result)) __builtin_trap(); mpfr_clear(mpfr_double); } int long_double_precision = effective_precision(result_exp); if (long_double_precision >= 2) { mpfr_t mpfr_long_double; mpfr_init2(mpfr_long_double, long_double_precision); mpfr_strtofr(mpfr_long_double, str_ptr, &out_ptr, base, MPFR_RNDN); long double volatile long_double_result = mpfr_get_ld(mpfr_long_double, MPFR_RNDN); auto volatile strtold_result = LIBC_NAMESPACE::strtold(str_ptr, &out_ptr); ptrdiff_t strtold_strlen = out_ptr - str_ptr; if (result_strlen != strtold_strlen) __builtin_trap(); if (isnan(long_double_result) ^ isnan(strtold_result)) __builtin_trap(); if (!isnan(long_double_result) && long_double_result != strtold_result) __builtin_trap(); mpfr_clear(mpfr_long_double); } delete[] container; return 0; }