//===- SymbolTable.cpp - MLIR Symbol Table Class --------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "mlir/IR/SymbolTable.h" #include "mlir/IR/Builders.h" #include "mlir/IR/OpImplementation.h" #include "llvm/ADT/SetVector.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/SmallString.h" #include "llvm/ADT/StringSwitch.h" using namespace mlir; /// Return true if the given operation is unknown and may potentially define a /// symbol table. static bool isPotentiallyUnknownSymbolTable(Operation *op) { return op->getNumRegions() == 1 && !op->getDialect(); } /// Returns the string name of the given symbol, or null if this is not a /// symbol. static StringAttr getNameIfSymbol(Operation *op) { return op->getAttrOfType(SymbolTable::getSymbolAttrName()); } static StringAttr getNameIfSymbol(Operation *op, StringAttr symbolAttrNameId) { return op->getAttrOfType(symbolAttrNameId); } /// Computes the nested symbol reference attribute for the symbol 'symbolName' /// that are usable within the symbol table operations from 'symbol' as far up /// to the given operation 'within', where 'within' is an ancestor of 'symbol'. /// Returns success if all references up to 'within' could be computed. static LogicalResult collectValidReferencesFor(Operation *symbol, StringAttr symbolName, Operation *within, SmallVectorImpl &results) { assert(within->isAncestor(symbol) && "expected 'within' to be an ancestor"); MLIRContext *ctx = symbol->getContext(); auto leafRef = FlatSymbolRefAttr::get(symbolName); results.push_back(leafRef); // Early exit for when 'within' is the parent of 'symbol'. Operation *symbolTableOp = symbol->getParentOp(); if (within == symbolTableOp) return success(); // Collect references until 'symbolTableOp' reaches 'within'. SmallVector nestedRefs(1, leafRef); StringAttr symbolNameId = StringAttr::get(ctx, SymbolTable::getSymbolAttrName()); do { // Each parent of 'symbol' should define a symbol table. if (!symbolTableOp->hasTrait()) return failure(); // Each parent of 'symbol' should also be a symbol. StringAttr symbolTableName = getNameIfSymbol(symbolTableOp, symbolNameId); if (!symbolTableName) return failure(); results.push_back(SymbolRefAttr::get(symbolTableName, nestedRefs)); symbolTableOp = symbolTableOp->getParentOp(); if (symbolTableOp == within) break; nestedRefs.insert(nestedRefs.begin(), FlatSymbolRefAttr::get(symbolTableName)); } while (true); return success(); } /// Walk all of the operations within the given set of regions, without /// traversing into any nested symbol tables. Stops walking if the result of the /// callback is anything other than `WalkResult::advance`. static Optional walkSymbolTable(MutableArrayRef regions, function_ref(Operation *)> callback) { SmallVector worklist(llvm::make_pointer_range(regions)); while (!worklist.empty()) { for (Operation &op : worklist.pop_back_val()->getOps()) { Optional result = callback(&op); if (result != WalkResult::advance()) return result; // If this op defines a new symbol table scope, we can't traverse. Any // symbol references nested within 'op' are different semantically. if (!op.hasTrait()) { for (Region ®ion : op.getRegions()) worklist.push_back(®ion); } } } return WalkResult::advance(); } //===----------------------------------------------------------------------===// // SymbolTable //===----------------------------------------------------------------------===// /// Build a symbol table with the symbols within the given operation. SymbolTable::SymbolTable(Operation *symbolTableOp) : symbolTableOp(symbolTableOp) { assert(symbolTableOp->hasTrait() && "expected operation to have SymbolTable trait"); assert(symbolTableOp->getNumRegions() == 1 && "expected operation to have a single region"); assert(llvm::hasSingleElement(symbolTableOp->getRegion(0)) && "expected operation to have a single block"); StringAttr symbolNameId = StringAttr::get(symbolTableOp->getContext(), SymbolTable::getSymbolAttrName()); for (auto &op : symbolTableOp->getRegion(0).front()) { StringAttr name = getNameIfSymbol(&op, symbolNameId); if (!name) continue; auto inserted = symbolTable.insert({name, &op}); (void)inserted; assert(inserted.second && "expected region to contain uniquely named symbol operations"); } } /// Look up a symbol with the specified name, returning null if no such name /// exists. Names never include the @ on them. Operation *SymbolTable::lookup(StringRef name) const { return lookup(StringAttr::get(symbolTableOp->getContext(), name)); } Operation *SymbolTable::lookup(StringAttr name) const { return symbolTable.lookup(name); } /// Erase the given symbol from the table. void SymbolTable::erase(Operation *symbol) { StringAttr name = getNameIfSymbol(symbol); assert(name && "expected valid 'name' attribute"); assert(symbol->getParentOp() == symbolTableOp && "expected this operation to be inside of the operation with this " "SymbolTable"); auto it = symbolTable.find(name); if (it != symbolTable.end() && it->second == symbol) { symbolTable.erase(it); symbol->erase(); } } // TODO: Consider if this should be renamed to something like insertOrUpdate /// Insert a new symbol into the table and associated operation if not already /// there and rename it as necessary to avoid collisions. Return the name of /// the symbol after insertion as attribute. StringAttr SymbolTable::insert(Operation *symbol, Block::iterator insertPt) { // The symbol cannot be the child of another op and must be the child of the // symbolTableOp after this. // // TODO: consider if SymbolTable's constructor should behave the same. if (!symbol->getParentOp()) { auto &body = symbolTableOp->getRegion(0).front(); if (insertPt == Block::iterator()) { insertPt = Block::iterator(body.end()); } else { assert((insertPt == body.end() || insertPt->getParentOp() == symbolTableOp) && "expected insertPt to be in the associated module operation"); } // Insert before the terminator, if any. if (insertPt == Block::iterator(body.end()) && !body.empty() && std::prev(body.end())->hasTrait()) insertPt = std::prev(body.end()); body.getOperations().insert(insertPt, symbol); } assert(symbol->getParentOp() == symbolTableOp && "symbol is already inserted in another op"); // Add this symbol to the symbol table, uniquing the name if a conflict is // detected. StringAttr name = getSymbolName(symbol); if (symbolTable.insert({name, symbol}).second) return name; // If the symbol was already in the table, also return. if (symbolTable.lookup(name) == symbol) return name; // If a conflict was detected, then the symbol will not have been added to // the symbol table. Try suffixes until we get to a unique name that works. SmallString<128> nameBuffer(name.getValue()); unsigned originalLength = nameBuffer.size(); MLIRContext *context = symbol->getContext(); // Iteratively try suffixes until we find one that isn't used. do { nameBuffer.resize(originalLength); nameBuffer += '_'; nameBuffer += std::to_string(uniquingCounter++); } while (!symbolTable.insert({StringAttr::get(context, nameBuffer), symbol}) .second); setSymbolName(symbol, nameBuffer); return getSymbolName(symbol); } /// Returns the name of the given symbol operation. StringAttr SymbolTable::getSymbolName(Operation *symbol) { StringAttr name = getNameIfSymbol(symbol); assert(name && "expected valid symbol name"); return name; } /// Sets the name of the given symbol operation. void SymbolTable::setSymbolName(Operation *symbol, StringAttr name) { symbol->setAttr(getSymbolAttrName(), name); } /// Returns the visibility of the given symbol operation. SymbolTable::Visibility SymbolTable::getSymbolVisibility(Operation *symbol) { // If the attribute doesn't exist, assume public. StringAttr vis = symbol->getAttrOfType(getVisibilityAttrName()); if (!vis) return Visibility::Public; // Otherwise, switch on the string value. return StringSwitch(vis.getValue()) .Case("private", Visibility::Private) .Case("nested", Visibility::Nested) .Case("public", Visibility::Public); } /// Sets the visibility of the given symbol operation. void SymbolTable::setSymbolVisibility(Operation *symbol, Visibility vis) { MLIRContext *ctx = symbol->getContext(); // If the visibility is public, just drop the attribute as this is the // default. if (vis == Visibility::Public) { symbol->removeAttr(StringAttr::get(ctx, getVisibilityAttrName())); return; } // Otherwise, update the attribute. assert((vis == Visibility::Private || vis == Visibility::Nested) && "unknown symbol visibility kind"); StringRef visName = vis == Visibility::Private ? "private" : "nested"; symbol->setAttr(getVisibilityAttrName(), StringAttr::get(ctx, visName)); } /// Returns the nearest symbol table from a given operation `from`. Returns /// nullptr if no valid parent symbol table could be found. Operation *SymbolTable::getNearestSymbolTable(Operation *from) { assert(from && "expected valid operation"); if (isPotentiallyUnknownSymbolTable(from)) return nullptr; while (!from->hasTrait()) { from = from->getParentOp(); // Check that this is a valid op and isn't an unknown symbol table. if (!from || isPotentiallyUnknownSymbolTable(from)) return nullptr; } return from; } /// Walks all symbol table operations nested within, and including, `op`. For /// each symbol table operation, the provided callback is invoked with the op /// and a boolean signifying if the symbols within that symbol table can be /// treated as if all uses are visible. `allSymUsesVisible` identifies whether /// all of the symbol uses of symbols within `op` are visible. void SymbolTable::walkSymbolTables( Operation *op, bool allSymUsesVisible, function_ref callback) { bool isSymbolTable = op->hasTrait(); if (isSymbolTable) { SymbolOpInterface symbol = dyn_cast(op); allSymUsesVisible |= !symbol || symbol.isPrivate(); } else { // Otherwise if 'op' is not a symbol table, any nested symbols are // guaranteed to be hidden. allSymUsesVisible = true; } for (Region ®ion : op->getRegions()) for (Block &block : region) for (Operation &nestedOp : block) walkSymbolTables(&nestedOp, allSymUsesVisible, callback); // If 'op' had the symbol table trait, visit it after any nested symbol // tables. if (isSymbolTable) callback(op, allSymUsesVisible); } /// Returns the operation registered with the given symbol name with the /// regions of 'symbolTableOp'. 'symbolTableOp' is required to be an operation /// with the 'OpTrait::SymbolTable' trait. Returns nullptr if no valid symbol /// was found. Operation *SymbolTable::lookupSymbolIn(Operation *symbolTableOp, StringAttr symbol) { assert(symbolTableOp->hasTrait()); Region ®ion = symbolTableOp->getRegion(0); if (region.empty()) return nullptr; // Look for a symbol with the given name. StringAttr symbolNameId = StringAttr::get(symbolTableOp->getContext(), SymbolTable::getSymbolAttrName()); for (auto &op : region.front()) if (getNameIfSymbol(&op, symbolNameId) == symbol) return &op; return nullptr; } Operation *SymbolTable::lookupSymbolIn(Operation *symbolTableOp, SymbolRefAttr symbol) { SmallVector resolvedSymbols; if (failed(lookupSymbolIn(symbolTableOp, symbol, resolvedSymbols))) return nullptr; return resolvedSymbols.back(); } /// Internal implementation of `lookupSymbolIn` that allows for specialized /// implementations of the lookup function. static LogicalResult lookupSymbolInImpl( Operation *symbolTableOp, SymbolRefAttr symbol, SmallVectorImpl &symbols, function_ref lookupSymbolFn) { assert(symbolTableOp->hasTrait()); // Lookup the root reference for this symbol. symbolTableOp = lookupSymbolFn(symbolTableOp, symbol.getRootReference()); if (!symbolTableOp) return failure(); symbols.push_back(symbolTableOp); // If there are no nested references, just return the root symbol directly. ArrayRef nestedRefs = symbol.getNestedReferences(); if (nestedRefs.empty()) return success(); // Verify that the root is also a symbol table. if (!symbolTableOp->hasTrait()) return failure(); // Otherwise, lookup each of the nested non-leaf references and ensure that // each corresponds to a valid symbol table. for (FlatSymbolRefAttr ref : nestedRefs.drop_back()) { symbolTableOp = lookupSymbolFn(symbolTableOp, ref.getAttr()); if (!symbolTableOp || !symbolTableOp->hasTrait()) return failure(); symbols.push_back(symbolTableOp); } symbols.push_back(lookupSymbolFn(symbolTableOp, symbol.getLeafReference())); return success(symbols.back()); } LogicalResult SymbolTable::lookupSymbolIn(Operation *symbolTableOp, SymbolRefAttr symbol, SmallVectorImpl &symbols) { auto lookupFn = [](Operation *symbolTableOp, StringAttr symbol) { return lookupSymbolIn(symbolTableOp, symbol); }; return lookupSymbolInImpl(symbolTableOp, symbol, symbols, lookupFn); } /// Returns the operation registered with the given symbol name within the /// closes parent operation with the 'OpTrait::SymbolTable' trait. Returns /// nullptr if no valid symbol was found. Operation *SymbolTable::lookupNearestSymbolFrom(Operation *from, StringAttr symbol) { Operation *symbolTableOp = getNearestSymbolTable(from); return symbolTableOp ? lookupSymbolIn(symbolTableOp, symbol) : nullptr; } Operation *SymbolTable::lookupNearestSymbolFrom(Operation *from, SymbolRefAttr symbol) { Operation *symbolTableOp = getNearestSymbolTable(from); return symbolTableOp ? lookupSymbolIn(symbolTableOp, symbol) : nullptr; } raw_ostream &mlir::operator<<(raw_ostream &os, SymbolTable::Visibility visibility) { switch (visibility) { case SymbolTable::Visibility::Public: return os << "public"; case SymbolTable::Visibility::Private: return os << "private"; case SymbolTable::Visibility::Nested: return os << "nested"; } llvm_unreachable("Unexpected visibility"); } //===----------------------------------------------------------------------===// // SymbolTable Trait Types //===----------------------------------------------------------------------===// LogicalResult detail::verifySymbolTable(Operation *op) { if (op->getNumRegions() != 1) return op->emitOpError() << "Operations with a 'SymbolTable' must have exactly one region"; if (!llvm::hasSingleElement(op->getRegion(0))) return op->emitOpError() << "Operations with a 'SymbolTable' must have exactly one block"; // Check that all symbols are uniquely named within child regions. DenseMap nameToOrigLoc; for (auto &block : op->getRegion(0)) { for (auto &op : block) { // Check for a symbol name attribute. auto nameAttr = op.getAttrOfType(mlir::SymbolTable::getSymbolAttrName()); if (!nameAttr) continue; // Try to insert this symbol into the table. auto it = nameToOrigLoc.try_emplace(nameAttr, op.getLoc()); if (!it.second) return op.emitError() .append("redefinition of symbol named '", nameAttr.getValue(), "'") .attachNote(it.first->second) .append("see existing symbol definition here"); } } // Verify any nested symbol user operations. SymbolTableCollection symbolTable; auto verifySymbolUserFn = [&](Operation *op) -> Optional { if (SymbolUserOpInterface user = dyn_cast(op)) return WalkResult(user.verifySymbolUses(symbolTable)); return WalkResult::advance(); }; Optional result = walkSymbolTable(op->getRegions(), verifySymbolUserFn); return success(result && !result->wasInterrupted()); } LogicalResult detail::verifySymbol(Operation *op) { // Verify the name attribute. if (!op->getAttrOfType(mlir::SymbolTable::getSymbolAttrName())) return op->emitOpError() << "requires string attribute '" << mlir::SymbolTable::getSymbolAttrName() << "'"; // Verify the visibility attribute. if (Attribute vis = op->getAttr(mlir::SymbolTable::getVisibilityAttrName())) { StringAttr visStrAttr = vis.dyn_cast(); if (!visStrAttr) return op->emitOpError() << "requires visibility attribute '" << mlir::SymbolTable::getVisibilityAttrName() << "' to be a string attribute, but got " << vis; if (!llvm::is_contained(ArrayRef{"public", "private", "nested"}, visStrAttr.getValue())) return op->emitOpError() << "visibility expected to be one of [\"public\", \"private\", " "\"nested\"], but got " << visStrAttr; } return success(); } //===----------------------------------------------------------------------===// // Symbol Use Lists //===----------------------------------------------------------------------===// /// Walk all of the symbol references within the given operation, invoking the /// provided callback for each found use. The callbacks takes as arguments: the /// use of the symbol, and the nested access chain to the attribute within the /// operation dictionary. An access chain is a set of indices into nested /// container attributes. For example, a symbol use in an attribute dictionary /// that looks like the following: /// /// {use = [{other_attr, @symbol}]} /// /// May have the following access chain: /// /// [0, 0, 1] /// static WalkResult walkSymbolRefs( Operation *op, function_ref)> callback) { // Check to see if the operation has any attributes. DictionaryAttr attrDict = op->getAttrDictionary(); if (attrDict.empty()) return WalkResult::advance(); // A worklist of a container attribute and the current index into the held // attribute list. struct WorklistItem { SubElementAttrInterface container; SmallVector immediateSubElements; explicit WorklistItem(SubElementAttrInterface container) { SmallVector subElements; container.walkImmediateSubElements( [&](Attribute attr) { subElements.push_back(attr); }, [](Type) {}); immediateSubElements = std::move(subElements); } }; SmallVector attrWorklist(1, WorklistItem(attrDict)); SmallVector curAccessChain(1, /*Value=*/-1); // Process the symbol references within the given nested attribute range. auto processAttrs = [&](int &index, WorklistItem &worklistItem) -> WalkResult { for (Attribute attr : llvm::drop_begin(worklistItem.immediateSubElements, index)) { /// Check for a nested container attribute, these will also need to be /// walked. if (auto interface = attr.dyn_cast()) { attrWorklist.emplace_back(interface); curAccessChain.push_back(-1); return WalkResult::advance(); } // Invoke the provided callback if we find a symbol use and check for a // requested interrupt. if (auto symbolRef = attr.dyn_cast()) if (callback({op, symbolRef}, curAccessChain).wasInterrupted()) return WalkResult::interrupt(); // Make sure to keep the index counter in sync. ++index; } // Pop this container attribute from the worklist. attrWorklist.pop_back(); curAccessChain.pop_back(); return WalkResult::advance(); }; WalkResult result = WalkResult::advance(); do { WorklistItem &item = attrWorklist.back(); int &index = curAccessChain.back(); ++index; // Process the given attribute, which is guaranteed to be a container. result = processAttrs(index, item); } while (!attrWorklist.empty() && !result.wasInterrupted()); return result; } /// Walk all of the uses, for any symbol, that are nested within the given /// regions, invoking the provided callback for each. This does not traverse /// into any nested symbol tables. static Optional walkSymbolUses( MutableArrayRef regions, function_ref)> callback) { return walkSymbolTable(regions, [&](Operation *op) -> Optional { // Check that this isn't a potentially unknown symbol table. if (isPotentiallyUnknownSymbolTable(op)) return llvm::None; return walkSymbolRefs(op, callback); }); } /// Walk all of the uses, for any symbol, that are nested within the given /// operation 'from', invoking the provided callback for each. This does not /// traverse into any nested symbol tables. static Optional walkSymbolUses( Operation *from, function_ref)> callback) { // If this operation has regions, and it, as well as its dialect, isn't // registered then conservatively fail. The operation may define a // symbol table, so we can't opaquely know if we should traverse to find // nested uses. if (isPotentiallyUnknownSymbolTable(from)) return llvm::None; // Walk the uses on this operation. if (walkSymbolRefs(from, callback).wasInterrupted()) return WalkResult::interrupt(); // Only recurse if this operation is not a symbol table. A symbol table // defines a new scope, so we can't walk the attributes from within the symbol // table op. if (!from->hasTrait()) return walkSymbolUses(from->getRegions(), callback); return WalkResult::advance(); } namespace { /// This class represents a single symbol scope. A symbol scope represents the /// set of operations nested within a symbol table that may reference symbols /// within that table. A symbol scope does not contain the symbol table /// operation itself, just its contained operations. A scope ends at leaf /// operations or another symbol table operation. struct SymbolScope { /// Walk the symbol uses within this scope, invoking the given callback. /// This variant is used when the callback type matches that expected by /// 'walkSymbolUses'. template ::result_t, void>::value> * = nullptr> Optional walk(CallbackT cback) { if (Region *region = limit.dyn_cast()) return walkSymbolUses(*region, cback); return walkSymbolUses(limit.get(), cback); } /// This variant is used when the callback type matches a stripped down type: /// void(SymbolTable::SymbolUse use) template ::result_t, void>::value> * = nullptr> Optional walk(CallbackT cback) { return walk([=](SymbolTable::SymbolUse use, ArrayRef) { return cback(use), WalkResult::advance(); }); } /// The representation of the symbol within this scope. SymbolRefAttr symbol; /// The IR unit representing this scope. llvm::PointerUnion limit; }; } // namespace /// Collect all of the symbol scopes from 'symbol' to (inclusive) 'limit'. static SmallVector collectSymbolScopes(Operation *symbol, Operation *limit) { StringAttr symName = SymbolTable::getSymbolName(symbol); assert(!symbol->hasTrait() || symbol != limit); // Compute the ancestors of 'limit'. SetVector, SmallPtrSet> limitAncestors; Operation *limitAncestor = limit; do { // Check to see if 'symbol' is an ancestor of 'limit'. if (limitAncestor == symbol) { // Check that the nearest symbol table is 'symbol's parent. SymbolRefAttr // doesn't support parent references. if (SymbolTable::getNearestSymbolTable(limit->getParentOp()) == symbol->getParentOp()) return {{SymbolRefAttr::get(symName), limit}}; return {}; } limitAncestors.insert(limitAncestor); } while ((limitAncestor = limitAncestor->getParentOp())); // Try to find the first ancestor of 'symbol' that is an ancestor of 'limit'. Operation *commonAncestor = symbol->getParentOp(); do { if (limitAncestors.count(commonAncestor)) break; } while ((commonAncestor = commonAncestor->getParentOp())); assert(commonAncestor && "'limit' and 'symbol' have no common ancestor"); // Compute the set of valid nested references for 'symbol' as far up to the // common ancestor as possible. SmallVector references; bool collectedAllReferences = succeeded( collectValidReferencesFor(symbol, symName, commonAncestor, references)); // Handle the case where the common ancestor is 'limit'. if (commonAncestor == limit) { SmallVector scopes; // Walk each of the ancestors of 'symbol', calling the compute function for // each one. Operation *limitIt = symbol->getParentOp(); for (size_t i = 0, e = references.size(); i != e; ++i, limitIt = limitIt->getParentOp()) { assert(limitIt->hasTrait()); scopes.push_back({references[i], &limitIt->getRegion(0)}); } return scopes; } // Otherwise, we just need the symbol reference for 'symbol' that will be // used within 'limit'. This is the last reference in the list we computed // above if we were able to collect all references. if (!collectedAllReferences) return {}; return {{references.back(), limit}}; } static SmallVector collectSymbolScopes(Operation *symbol, Region *limit) { auto scopes = collectSymbolScopes(symbol, limit->getParentOp()); // If we collected some scopes to walk, make sure to constrain the one for // limit to the specific region requested. if (!scopes.empty()) scopes.back().limit = limit; return scopes; } template static SmallVector collectSymbolScopes(StringAttr symbol, IRUnit *limit) { return {{SymbolRefAttr::get(symbol), limit}}; } /// Returns true if the given reference 'SubRef' is a sub reference of the /// reference 'ref', i.e. 'ref' is a further qualified reference. static bool isReferencePrefixOf(SymbolRefAttr subRef, SymbolRefAttr ref) { if (ref == subRef) return true; // If the references are not pointer equal, check to see if `subRef` is a // prefix of `ref`. if (ref.isa() || ref.getRootReference() != subRef.getRootReference()) return false; auto refLeafs = ref.getNestedReferences(); auto subRefLeafs = subRef.getNestedReferences(); return subRefLeafs.size() < refLeafs.size() && subRefLeafs == refLeafs.take_front(subRefLeafs.size()); } //===----------------------------------------------------------------------===// // SymbolTable::getSymbolUses /// The implementation of SymbolTable::getSymbolUses below. template static Optional getSymbolUsesImpl(FromT from) { std::vector uses; auto walkFn = [&](SymbolTable::SymbolUse symbolUse, ArrayRef) { uses.push_back(symbolUse); return WalkResult::advance(); }; auto result = walkSymbolUses(from, walkFn); return result ? Optional(std::move(uses)) : llvm::None; } /// Get an iterator range for all of the uses, for any symbol, that are nested /// within the given operation 'from'. This does not traverse into any nested /// symbol tables, and will also only return uses on 'from' if it does not /// also define a symbol table. This is because we treat the region as the /// boundary of the symbol table, and not the op itself. This function returns /// None if there are any unknown operations that may potentially be symbol /// tables. auto SymbolTable::getSymbolUses(Operation *from) -> Optional { return getSymbolUsesImpl(from); } auto SymbolTable::getSymbolUses(Region *from) -> Optional { return getSymbolUsesImpl(MutableArrayRef(*from)); } //===----------------------------------------------------------------------===// // SymbolTable::getSymbolUses /// The implementation of SymbolTable::getSymbolUses below. template static Optional getSymbolUsesImpl(SymbolT symbol, IRUnitT *limit) { std::vector uses; for (SymbolScope &scope : collectSymbolScopes(symbol, limit)) { if (!scope.walk([&](SymbolTable::SymbolUse symbolUse) { if (isReferencePrefixOf(scope.symbol, symbolUse.getSymbolRef())) uses.push_back(symbolUse); })) return llvm::None; } return SymbolTable::UseRange(std::move(uses)); } /// Get all of the uses of the given symbol that are nested within the given /// operation 'from', invoking the provided callback for each. This does not /// traverse into any nested symbol tables. This function returns None if there /// are any unknown operations that may potentially be symbol tables. auto SymbolTable::getSymbolUses(StringAttr symbol, Operation *from) -> Optional { return getSymbolUsesImpl(symbol, from); } auto SymbolTable::getSymbolUses(Operation *symbol, Operation *from) -> Optional { return getSymbolUsesImpl(symbol, from); } auto SymbolTable::getSymbolUses(StringAttr symbol, Region *from) -> Optional { return getSymbolUsesImpl(symbol, from); } auto SymbolTable::getSymbolUses(Operation *symbol, Region *from) -> Optional { return getSymbolUsesImpl(symbol, from); } //===----------------------------------------------------------------------===// // SymbolTable::symbolKnownUseEmpty /// The implementation of SymbolTable::symbolKnownUseEmpty below. template static bool symbolKnownUseEmptyImpl(SymbolT symbol, IRUnitT *limit) { for (SymbolScope &scope : collectSymbolScopes(symbol, limit)) { // Walk all of the symbol uses looking for a reference to 'symbol'. if (scope.walk([&](SymbolTable::SymbolUse symbolUse, ArrayRef) { return isReferencePrefixOf(scope.symbol, symbolUse.getSymbolRef()) ? WalkResult::interrupt() : WalkResult::advance(); }) != WalkResult::advance()) return false; } return true; } /// Return if the given symbol is known to have no uses that are nested within /// the given operation 'from'. This does not traverse into any nested symbol /// tables. This function will also return false if there are any unknown /// operations that may potentially be symbol tables. bool SymbolTable::symbolKnownUseEmpty(StringAttr symbol, Operation *from) { return symbolKnownUseEmptyImpl(symbol, from); } bool SymbolTable::symbolKnownUseEmpty(Operation *symbol, Operation *from) { return symbolKnownUseEmptyImpl(symbol, from); } bool SymbolTable::symbolKnownUseEmpty(StringAttr symbol, Region *from) { return symbolKnownUseEmptyImpl(symbol, from); } bool SymbolTable::symbolKnownUseEmpty(Operation *symbol, Region *from) { return symbolKnownUseEmptyImpl(symbol, from); } //===----------------------------------------------------------------------===// // SymbolTable::replaceAllSymbolUses /// Rebuild the given attribute container after replacing all references to a /// symbol with the updated attribute in 'accesses'. static SubElementAttrInterface rebuildAttrAfterRAUW( SubElementAttrInterface container, ArrayRef, SymbolRefAttr>> accesses, unsigned depth) { // Given a range of Attributes, update the ones referred to by the given // access chains to point to the new symbol attribute. SmallVector> replacements; SmallVector subElements; container.walkImmediateSubElements( [&](Attribute attribute) { subElements.push_back(attribute); }, [](Type) {}); for (unsigned i = 0, e = accesses.size(); i != e;) { ArrayRef access = accesses[i].first; // Check to see if this is a leaf access, i.e. a SymbolRef. if (access.size() == depth + 1) { replacements.emplace_back(access.back(), accesses[i].second); ++i; continue; } // Otherwise, this is a container. Collect all of the accesses for this // index and recurse. The recursion here is bounded by the size of the // largest access array. auto nestedAccesses = accesses.drop_front(i).take_while([&](auto &it) { ArrayRef nextAccess = it.first; return nextAccess.size() > depth + 1 && nextAccess[depth] == access[depth]; }); auto result = rebuildAttrAfterRAUW(subElements[access[depth]], nestedAccesses, depth + 1); replacements.emplace_back(access[depth], result); // Skip over all of the accesses that refer to the nested container. i += nestedAccesses.size(); } return container.replaceImmediateSubAttribute(replacements); } /// Generates a new symbol reference attribute with a new leaf reference. static SymbolRefAttr generateNewRefAttr(SymbolRefAttr oldAttr, FlatSymbolRefAttr newLeafAttr) { if (oldAttr.isa()) return newLeafAttr; auto nestedRefs = llvm::to_vector<2>(oldAttr.getNestedReferences()); nestedRefs.back() = newLeafAttr; return SymbolRefAttr::get(oldAttr.getRootReference(), nestedRefs); } /// The implementation of SymbolTable::replaceAllSymbolUses below. template static LogicalResult replaceAllSymbolUsesImpl(SymbolT symbol, StringAttr newSymbol, IRUnitT *limit) { // A collection of operations along with their new attribute dictionary. std::vector> updatedAttrDicts; // The current operation being processed. Operation *curOp = nullptr; // The set of access chains into the attribute dictionary of the current // operation, as well as the replacement attribute to use. SmallVector, SymbolRefAttr>, 1> accessChains; // Generate a new attribute dictionary for the current operation by replacing // references to the old symbol. auto generateNewAttrDict = [&] { auto oldDict = curOp->getAttrDictionary(); auto newDict = rebuildAttrAfterRAUW(oldDict, accessChains, /*depth=*/0); return newDict.cast(); }; // Generate a new attribute to replace the given attribute. FlatSymbolRefAttr newLeafAttr = FlatSymbolRefAttr::get(newSymbol); for (SymbolScope &scope : collectSymbolScopes(symbol, limit)) { SymbolRefAttr newAttr = generateNewRefAttr(scope.symbol, newLeafAttr); auto walkFn = [&](SymbolTable::SymbolUse symbolUse, ArrayRef accessChain) { SymbolRefAttr useRef = symbolUse.getSymbolRef(); if (!isReferencePrefixOf(scope.symbol, useRef)) return WalkResult::advance(); // If we have a valid match, check to see if this is a proper // subreference. If it is, then we will need to generate a different new // attribute specifically for this use. SymbolRefAttr replacementRef = newAttr; if (useRef != scope.symbol) { if (scope.symbol.isa()) { replacementRef = SymbolRefAttr::get(newSymbol, useRef.getNestedReferences()); } else { auto nestedRefs = llvm::to_vector<4>(useRef.getNestedReferences()); nestedRefs[scope.symbol.getNestedReferences().size() - 1] = newLeafAttr; replacementRef = SymbolRefAttr::get(useRef.getRootReference(), nestedRefs); } } // If there was a previous operation, generate a new attribute dict // for it. This means that we've finished processing the current // operation, so generate a new dictionary for it. if (curOp && symbolUse.getUser() != curOp) { updatedAttrDicts.push_back({curOp, generateNewAttrDict()}); accessChains.clear(); } // Record this access. curOp = symbolUse.getUser(); accessChains.push_back({llvm::to_vector<1>(accessChain), replacementRef}); return WalkResult::advance(); }; if (!scope.walk(walkFn)) return failure(); // Check to see if we have a dangling op that needs to be processed. if (curOp) { updatedAttrDicts.push_back({curOp, generateNewAttrDict()}); curOp = nullptr; } } // Update the attribute dictionaries as necessary. for (auto &it : updatedAttrDicts) it.first->setAttrs(it.second); return success(); } /// Attempt to replace all uses of the given symbol 'oldSymbol' with the /// provided symbol 'newSymbol' that are nested within the given operation /// 'from'. This does not traverse into any nested symbol tables. If there are /// any unknown operations that may potentially be symbol tables, no uses are /// replaced and failure is returned. LogicalResult SymbolTable::replaceAllSymbolUses(StringAttr oldSymbol, StringAttr newSymbol, Operation *from) { return replaceAllSymbolUsesImpl(oldSymbol, newSymbol, from); } LogicalResult SymbolTable::replaceAllSymbolUses(Operation *oldSymbol, StringAttr newSymbol, Operation *from) { return replaceAllSymbolUsesImpl(oldSymbol, newSymbol, from); } LogicalResult SymbolTable::replaceAllSymbolUses(StringAttr oldSymbol, StringAttr newSymbol, Region *from) { return replaceAllSymbolUsesImpl(oldSymbol, newSymbol, from); } LogicalResult SymbolTable::replaceAllSymbolUses(Operation *oldSymbol, StringAttr newSymbol, Region *from) { return replaceAllSymbolUsesImpl(oldSymbol, newSymbol, from); } //===----------------------------------------------------------------------===// // SymbolTableCollection //===----------------------------------------------------------------------===// Operation *SymbolTableCollection::lookupSymbolIn(Operation *symbolTableOp, StringAttr symbol) { return getSymbolTable(symbolTableOp).lookup(symbol); } Operation *SymbolTableCollection::lookupSymbolIn(Operation *symbolTableOp, SymbolRefAttr name) { SmallVector symbols; if (failed(lookupSymbolIn(symbolTableOp, name, symbols))) return nullptr; return symbols.back(); } /// A variant of 'lookupSymbolIn' that returns all of the symbols referenced by /// a given SymbolRefAttr. Returns failure if any of the nested references could /// not be resolved. LogicalResult SymbolTableCollection::lookupSymbolIn(Operation *symbolTableOp, SymbolRefAttr name, SmallVectorImpl &symbols) { auto lookupFn = [this](Operation *symbolTableOp, StringAttr symbol) { return lookupSymbolIn(symbolTableOp, symbol); }; return lookupSymbolInImpl(symbolTableOp, name, symbols, lookupFn); } /// Returns the operation registered with the given symbol name within the /// closest parent operation of, or including, 'from' with the /// 'OpTrait::SymbolTable' trait. Returns nullptr if no valid symbol was /// found. Operation *SymbolTableCollection::lookupNearestSymbolFrom(Operation *from, StringAttr symbol) { Operation *symbolTableOp = SymbolTable::getNearestSymbolTable(from); return symbolTableOp ? lookupSymbolIn(symbolTableOp, symbol) : nullptr; } Operation * SymbolTableCollection::lookupNearestSymbolFrom(Operation *from, SymbolRefAttr symbol) { Operation *symbolTableOp = SymbolTable::getNearestSymbolTable(from); return symbolTableOp ? lookupSymbolIn(symbolTableOp, symbol) : nullptr; } /// Lookup, or create, a symbol table for an operation. SymbolTable &SymbolTableCollection::getSymbolTable(Operation *op) { auto it = symbolTables.try_emplace(op, nullptr); if (it.second) it.first->second = std::make_unique(op); return *it.first->second; } //===----------------------------------------------------------------------===// // SymbolUserMap //===----------------------------------------------------------------------===// SymbolUserMap::SymbolUserMap(SymbolTableCollection &symbolTable, Operation *symbolTableOp) : symbolTable(symbolTable) { // Walk each of the symbol tables looking for discardable callgraph nodes. SmallVector symbols; auto walkFn = [&](Operation *symbolTableOp, bool allUsesVisible) { for (Operation &nestedOp : symbolTableOp->getRegion(0).getOps()) { auto symbolUses = SymbolTable::getSymbolUses(&nestedOp); assert(symbolUses && "expected uses to be valid"); for (const SymbolTable::SymbolUse &use : *symbolUses) { symbols.clear(); (void)symbolTable.lookupSymbolIn(symbolTableOp, use.getSymbolRef(), symbols); for (Operation *symbolOp : symbols) symbolToUsers[symbolOp].insert(use.getUser()); } } }; // We just set `allSymUsesVisible` to false here because it isn't necessary // for building the user map. SymbolTable::walkSymbolTables(symbolTableOp, /*allSymUsesVisible=*/false, walkFn); } void SymbolUserMap::replaceAllUsesWith(Operation *symbol, StringAttr newSymbolName) { auto it = symbolToUsers.find(symbol); if (it == symbolToUsers.end()) return; SetVector &users = it->second; // Replace the uses within the users of `symbol`. for (Operation *user : users) (void)SymbolTable::replaceAllSymbolUses(symbol, newSymbolName, user); // Move the current users of `symbol` to the new symbol if it is in the // symbol table. Operation *newSymbol = symbolTable.lookupSymbolIn(symbol->getParentOp(), newSymbolName); if (newSymbol != symbol) { // Transfer over the users to the new symbol. auto newIt = symbolToUsers.find(newSymbol); if (newIt == symbolToUsers.end()) symbolToUsers.try_emplace(newSymbol, std::move(users)); else newIt->second.set_union(users); symbolToUsers.erase(symbol); } } //===----------------------------------------------------------------------===// // Visibility parsing implementation. //===----------------------------------------------------------------------===// ParseResult impl::parseOptionalVisibilityKeyword(OpAsmParser &parser, NamedAttrList &attrs) { StringRef visibility; if (parser.parseOptionalKeyword(&visibility, {"public", "private", "nested"})) return failure(); StringAttr visibilityAttr = parser.getBuilder().getStringAttr(visibility); attrs.push_back(parser.getBuilder().getNamedAttr( SymbolTable::getVisibilityAttrName(), visibilityAttr)); return success(); } //===----------------------------------------------------------------------===// // Symbol Interfaces //===----------------------------------------------------------------------===// /// Include the generated symbol interfaces. #include "mlir/IR/SymbolInterfaces.cpp.inc"