//===- Vectorization.cpp - Implementation of linalg Vectorization ---------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file implements the linalg dialect Vectorization transformations. // //===----------------------------------------------------------------------===// #include "mlir/Dialect/Affine/Utils.h" #include "mlir/Analysis/SliceAnalysis.h" #include "mlir/Dialect/Affine/IR/AffineOps.h" #include "mlir/Dialect/Arith/IR/Arith.h" #include "mlir/Dialect/Func/IR/FuncOps.h" #include "mlir/Dialect/Linalg/IR/Linalg.h" #include "mlir/Dialect/Linalg/Transforms/Transforms.h" #include "mlir/Dialect/Linalg/Utils/Utils.h" #include "mlir/Dialect/Tensor/IR/Tensor.h" #include "mlir/Dialect/Utils/StructuredOpsUtils.h" #include "mlir/Dialect/Vector/IR/VectorOps.h" #include "mlir/Dialect/Vector/Interfaces/MaskableOpInterface.h" #include "mlir/IR/AffineExpr.h" #include "mlir/IR/PatternMatch.h" #include "mlir/Support/LLVM.h" #include "mlir/Transforms/RegionUtils.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/Sequence.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/TypeSwitch.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" #include #include using namespace mlir; using namespace mlir::linalg; #define DEBUG_TYPE "linalg-vectorization" #define DBGS() (llvm::dbgs() << '[' << DEBUG_TYPE << "] ") #define LDBG(X) LLVM_DEBUG(DBGS() << X << "\n") /// Try to vectorize `convOp` as a convolution. static FailureOr vectorizeConvolution(RewriterBase &rewriter, LinalgOp convOp); /// Return the unique instance of OpType in `block` if it is indeed unique. /// Return null if none or more than 1 instances exist. template static OpType getSingleOpOfType(Block &block) { OpType res; block.walk([&](OpType op) { if (res) { res = nullptr; return WalkResult::interrupt(); } res = op; return WalkResult::advance(); }); return res; } /// Helper function to extract the input slices after filter is unrolled along /// kw. static SmallVector extractConvInputSlices(RewriterBase &rewriter, Location loc, Value input, int64_t nSize, int64_t wSize, int64_t cSize, int64_t kwSize, int strideW, int dilationW, int64_t wSizeStep, bool isSingleChanneled) { SmallVector result; if (isSingleChanneled) { // Extract input slice of size {wSizeStep} @ [w + kw] for non-channeled // convolution. SmallVector sizes{wSizeStep}; SmallVector strides{1}; for (int64_t kw = 0; kw < kwSize; ++kw) { for (int64_t w = 0; w < wSize; w += wSizeStep) { result.push_back(rewriter.create( loc, input, /*offsets=*/ArrayRef{w + kw}, sizes, strides)); } } } else { // Extract lhs slice of size {n, wSizeStep, c} @ [0, sw * w + dw * kw, 0] // for channeled convolution. SmallVector sizes{nSize, wSizeStep, cSize}; SmallVector strides{1, 1, 1}; for (int64_t kw = 0; kw < kwSize; ++kw) { for (int64_t w = 0; w < wSize; w += wSizeStep) { result.push_back(rewriter.create( loc, input, /*offsets=*/ArrayRef{0, w * strideW + kw * dilationW, 0}, sizes, strides)); } } } return result; } /// Helper function to extract the filter slices after filter is unrolled along /// kw. static SmallVector extractConvFilterSlices(RewriterBase &rewriter, Location loc, Value filter, int64_t kwSize) { SmallVector result; // Extract rhs slice of size [{c, f} for channeled convolutions and {1} for // non-chanelled convolution] @ [kw]. for (int64_t kw = 0; kw < kwSize; ++kw) { result.push_back(rewriter.create( loc, filter, /*offsets=*/ArrayRef{kw})); } return result; } /// Helper function to extract the result slices after filter is unrolled along /// kw. static SmallVector extractConvResultSlices(RewriterBase &rewriter, Location loc, Value res, int64_t nSize, int64_t wSize, int64_t fSize, int64_t wSizeStep, bool isSingleChanneled) { SmallVector result; if (isSingleChanneled) { // Extract res slice: {wSizeStep} @ [w] for non-channeled convolution. SmallVector sizes{wSizeStep}; SmallVector strides{1}; for (int64_t w = 0; w < wSize; w += wSizeStep) { result.push_back(rewriter.create( loc, res, /*offsets=*/ArrayRef{w}, sizes, strides)); } } else { // Extract res slice: {n, wSizeStep, f} @ [0, w, 0] for channeled // convolution. SmallVector sizes{nSize, wSizeStep, fSize}; SmallVector strides{1, 1, 1}; for (int64_t w = 0; w < wSize; w += wSizeStep) { result.push_back(rewriter.create( loc, res, /*offsets=*/ArrayRef{0, w, 0}, sizes, strides)); } } return result; } /// Helper function to insert the computed result slices. static Value insertConvResultSlices(RewriterBase &rewriter, Location loc, Value res, int64_t wSize, int64_t wSizeStep, SmallVectorImpl &resVals, bool isSingleChanneled) { if (isSingleChanneled) { // Write back res slice: {wSizeStep} @ [w] for non-channeled convolution. // This does not depend on kw. SmallVector strides{1}; for (int64_t w = 0; w < wSize; w += wSizeStep) { res = rewriter.create( loc, resVals[w], res, /*offsets=*/ArrayRef{w}, strides); } } else { // Write back res slice: {n, wSizeStep, f} @ [0, w, 0] for channeled // convolution. This does not depend on kw. SmallVector strides{1, 1, 1}; for (int64_t w = 0; w < wSize; w += wSizeStep) { res = rewriter.create( loc, resVals[w], res, /*offsets=*/ArrayRef{0, w, 0}, strides); } } return res; } /// Contains the vectorization state and related methods used across the /// vectorization process of a given operation. struct VectorizationState { VectorizationState(RewriterBase &rewriter) : rewriterGuard(rewriter) {} /// Initializes the vectorization state, including the computation of the /// canonical vector shape for vectorization. LogicalResult initState(RewriterBase &rewriter, LinalgOp linalgOp, ArrayRef inputVectorSizes, ArrayRef inputScalableVecDims); /// Returns the canonical vector shape used to vectorize the iteration space. ArrayRef getCanonicalVecShape() const { return canonicalVecShape; } /// Returns a vector type of the provided `elementType` with the canonical /// vector shape and the corresponding fixed/scalable dimensions bit. If /// `dimPermutation` is provided, the canonical vector dimensions are permuted /// accordingly. VectorType getCanonicalVecType( Type elementType, std::optional dimPermutation = std::nullopt) const { SmallVector vectorShape; SmallVector scalableDims; if (dimPermutation.has_value()) { vectorShape = applyPermutationMap(*dimPermutation, canonicalVecShape); scalableDims = applyPermutationMap(*dimPermutation, scalableVecDims); } else { vectorShape.append(canonicalVecShape.begin(), canonicalVecShape.end()); scalableDims.append(scalableVecDims.begin(), scalableVecDims.end()); } return VectorType::get(vectorShape, elementType, scalableDims); } /// Masks an operation with the canonical vector mask if the operation needs /// masking. Returns the masked operation or the original operation if masking /// is not needed. If provided, the canonical mask for this operation is /// permuted using `maybeMaskingMap`. Operation * maskOperation(RewriterBase &rewriter, Operation *opToMask, LinalgOp linalgOp, std::optional maybeMaskingMap = std::nullopt); private: /// Initializes the iteration space static sizes using the Linalg op /// information. This may become more complicated in the future. void initIterSpaceStaticSizes(LinalgOp linalgOp) { iterSpaceStaticSizes.append(linalgOp.getStaticLoopRanges()); } /// Generates 'arith.constant' and 'tensor/memref.dim' operations for /// all the static and dynamic dimensions of the iteration space to be /// vectorized and store them in `iterSpaceValueSizes`. LogicalResult precomputeIterSpaceValueSizes(RewriterBase &rewriter, LinalgOp linalgOp); /// Create or retrieve an existing mask value to mask `opToMask` in the /// canonical vector iteration space. If `maybeMaskingMap` the mask is /// permuted using that permutation map. If a new mask is created, it will be /// cached for future users. Value getOrCreateMaskFor(RewriterBase &rewriter, Operation *opToMask, LinalgOp linalgOp, std::optional maybeMaskingMap); // Holds the compile-time static sizes of the iteration space to vectorize. // Dynamic dimensions are represented using ShapedType::kDynamic. SmallVector iterSpaceStaticSizes; /// Holds the value sizes of the iteration space to vectorize. Static /// dimensions are represented by 'arith.constant' and dynamic /// dimensions by 'tensor/memref.dim'. SmallVector iterSpaceValueSizes; /// Holds the canonical vector shape used to vectorize the iteration space. SmallVector canonicalVecShape; /// Holds the vector dimensions that are scalable in the canonical vector /// shape. SmallVector scalableVecDims; /// Holds the active masks for permutations of the canonical vector iteration /// space. DenseMap activeMaskCache; /// Global vectorization guard for the incoming rewriter. It's initialized /// when the vectorization state is initialized. OpBuilder::InsertionGuard rewriterGuard; }; LogicalResult VectorizationState::precomputeIterSpaceValueSizes(RewriterBase &rewriter, LinalgOp linalgOp) { // TODO: Support 0-d vectors. for (int vecDim = 0, end = canonicalVecShape.size(); vecDim < end; ++vecDim) { if (!ShapedType::isDynamic(iterSpaceStaticSizes[vecDim])) { // Create constant index op for static dimensions. iterSpaceValueSizes.push_back(rewriter.create( linalgOp.getLoc(), iterSpaceStaticSizes[vecDim])); continue; } // Find an operand defined on this dimension of the iteration space to // extract the runtime dimension size. Value operand; unsigned operandDimPos; if (failed(linalgOp.mapIterationSpaceDimToOperandDim(vecDim, operand, operandDimPos))) return failure(); Value dynamicDim = linalgOp.hasTensorSemantics() ? (Value)rewriter.create( linalgOp.getLoc(), operand, operandDimPos) : (Value)rewriter.create( linalgOp.getLoc(), operand, operandDimPos); iterSpaceValueSizes.push_back(dynamicDim); } return success(); } /// Initializes the vectorization state, including the computation of the /// canonical vector shape for vectorization. // TODO: Move this to the constructor when we can remove the failure cases. LogicalResult VectorizationState::initState(RewriterBase &rewriter, LinalgOp linalgOp, ArrayRef inputVectorSizes, ArrayRef inputScalableVecDims) { // Initialize the insertion point. rewriter.setInsertionPoint(linalgOp); if (!inputVectorSizes.empty()) { // Get the canonical vector shape from the input vector sizes provided. This // path should be taken to vectorize code with dynamic shapes and when using // vector sizes greater than the iteration space sizes. canonicalVecShape.append(inputVectorSizes.begin(), inputVectorSizes.end()); scalableVecDims.append(inputScalableVecDims.begin(), inputScalableVecDims.end()); } else { // Compute the canonical vector shape from the operation shape. If there are // dynamic shapes, the operation won't be vectorized. We assume all the // vector dimensions are fixed. canonicalVecShape = linalgOp.getStaticLoopRanges(); scalableVecDims.append(linalgOp.getNumLoops(), false); } LDBG("Canonical vector shape: "); LLVM_DEBUG(llvm::interleaveComma(canonicalVecShape, llvm::dbgs())); LLVM_DEBUG(llvm::dbgs() << "\n"); LDBG("Scalable vector dims: "); LLVM_DEBUG(llvm::interleaveComma(scalableVecDims, llvm::dbgs())); LLVM_DEBUG(llvm::dbgs() << "\n"); if (ShapedType::isDynamicShape(canonicalVecShape)) return failure(); // Initialize iteration space static sizes. initIterSpaceStaticSizes(linalgOp); // Generate 'arith.constant' and 'tensor/memref.dim' operations for // all the static and dynamic dimensions of the iteration space, needed to // compute a mask during vectorization. if (failed(precomputeIterSpaceValueSizes(rewriter, linalgOp))) return failure(); return success(); } /// Create or retrieve an existing mask value to mask `opToMask` in the /// canonical vector iteration space. If `maybeMaskingMap` the mask is permuted /// using that permutation map. If a new mask is created, it will be cached for /// future users. Value VectorizationState::getOrCreateMaskFor( RewriterBase &rewriter, Operation *opToMask, LinalgOp linalgOp, std::optional maybeMaskingMap) { // No mask is needed if the operation is not maskable. auto maskableOp = dyn_cast(opToMask); if (!maskableOp) return Value(); assert(!maskableOp.isMasked() && "Masking an operation that is already masked"); // If no masking map was provided, use an identity map with the loop dims. assert((!maybeMaskingMap || *maybeMaskingMap) && "Unexpected null mask permutation map"); AffineMap maskingMap = maybeMaskingMap ? *maybeMaskingMap : AffineMap::getMultiDimIdentityMap( linalgOp.getNumLoops(), rewriter.getContext()); LDBG("Masking map: " << maskingMap << "\n"); // Return the active mask for the masking map of this operation if it was // already created. auto activeMaskIt = activeMaskCache.find(maskingMap); if (activeMaskIt != activeMaskCache.end()) { Value mask = activeMaskIt->second; LDBG("Reusing mask: " << mask << "\n"); return mask; } // Compute permuted projection of the iteration space to be masked and the // corresponding mask shape. If the resulting iteration space dimensions are // static and identical to the mask shape, masking is not needed for this // operation. // TODO: Improve this check. Only projected permutation indexing maps are // supported. SmallVector permutedStaticSizes = applyPermutationMap(maskingMap, iterSpaceStaticSizes); auto maskType = getCanonicalVecType(rewriter.getI1Type(), maskingMap); auto maskShape = maskType.getShape(); LDBG("Mask shape: "); LLVM_DEBUG(llvm::interleaveComma(maskShape, llvm::dbgs())); LLVM_DEBUG(llvm::dbgs() << "\n"); if (permutedStaticSizes == maskShape) { LDBG("Masking is not needed for masking map: " << maskingMap << "\n"); activeMaskCache[maskingMap] = Value(); return Value(); } // Permute the iteration space value sizes to compute the mask upper bounds. SmallVector upperBounds = applyPermutationMap(maskingMap, ArrayRef(iterSpaceValueSizes)); assert(!maskShape.empty() && !upperBounds.empty() && "Masked 0-d vectors are not supported yet"); // Create the mask based on the dimension values. Value mask = rewriter.create(linalgOp.getLoc(), maskType, upperBounds); LDBG("Creating new mask: " << mask << "\n"); activeMaskCache[maskingMap] = mask; return mask; } /// Masks an operation with the canonical vector mask if the operation needs /// masking. Returns the masked operation or the original operation if masking /// is not needed. If provided, the canonical mask for this operation is /// permuted using `maybeMaskingMap`. Operation * VectorizationState::maskOperation(RewriterBase &rewriter, Operation *opToMask, LinalgOp linalgOp, std::optional maybeMaskingMap) { LDBG("Trying to mask: " << *opToMask << "\n"); // Create or retrieve mask for this operation. Value mask = getOrCreateMaskFor(rewriter, opToMask, linalgOp, maybeMaskingMap); if (!mask) { LDBG("No mask required\n"); return opToMask; } // Wrap the operation with a new `vector.mask` and update D-U chain. assert(opToMask && "Expected a valid operation to mask"); auto maskOp = cast( mlir::vector::maskOperation(rewriter, opToMask, mask)); Operation *maskOpTerminator = &maskOp.getMaskRegion().front().back(); for (auto [resIdx, resVal] : llvm::enumerate(opToMask->getResults())) rewriter.replaceAllUsesExcept(resVal, maskOp.getResult(resIdx), maskOpTerminator); LDBG("Masked operation: " << *maskOp << "\n"); return maskOp; } /// Given an indexing `map` coming from a LinalgOp indexing, restricted to a /// projectedPermutation, compress the unused dimensions to serve as a /// permutation_map for a vector transfer operation. /// For example, given a linalg op such as: /// /// ``` /// %0 = linalg.generic { /// indexing_maps = affine_map<(d0, d1, d2, d3, d4) -> (d4, d0, d2)>, /// indexing_maps = affine_map<(d0, d1, d2, d3, d4) -> (d1, d3)> /// } /// ins(%0 : tensor<2x3x4xf32>) /// outs(%1 : tensor<5x6xf32>) /// ``` /// /// the iteration domain size of the linalg op is 3x5x4x6x2. The first affine /// map is reindexed to `affine_map<(d0, d1, d2) -> (d2, d0, d1)>`, the second /// affine map is reindexed to `affine_map<(d0, d1) -> (d0, d1)>`. static AffineMap reindexIndexingMap(AffineMap map) { assert(map.isProjectedPermutation(/*allowZeroInResults=*/true) && "expected projected permutation"); auto res = compressUnusedDims(map); assert(res.getNumDims() == res.getNumResults() && "expected reindexed map with same number of dims and results"); return res; } /// Helper enum to represent conv1d input traversal order. enum class Conv1DOpOrder { W, // Corresponds to non-channeled 1D convolution operation. Ncw, // Corresponds to operation that traverses the input in (n, c, w) order. Nwc // Corresponds to operation that traverses the input in (n, w, c) order. }; /// Helper data structure to represent the result of vectorization. /// In certain specific cases, like terminators, we do not want to propagate/ enum VectorizationStatus { /// Op failed to vectorize. Failure = 0, /// Op vectorized and custom function took care of replacement logic NoReplace, /// Op vectorized into a new Op whose results will replace original Op's /// results. NewOp // TODO: support values if Op vectorized to Many-Ops whose results we need to // aggregate for replacement. }; struct VectorizationResult { /// Return status from vectorizing the current op. enum VectorizationStatus status = VectorizationStatus::Failure; /// New vectorized operation to replace the current op. /// Replacement behavior is specified by `status`. Operation *newOp; }; std::optional mlir::linalg::getCombinerOpKind(Operation *combinerOp) { using ::mlir::vector::CombiningKind; if (!combinerOp) return std::nullopt; return llvm::TypeSwitch>(combinerOp) .Case( [&](auto op) { return CombiningKind::ADD; }) .Case([&](auto op) { return CombiningKind::AND; }) .Case([&](auto op) { return CombiningKind::MAXSI; }) .Case([&](auto op) { return CombiningKind::MAXUI; }) .Case([&](auto op) { return CombiningKind::MAXIMUMF; }) .Case([&](auto op) { return CombiningKind::MINSI; }) .Case([&](auto op) { return CombiningKind::MINUI; }) .Case([&](auto op) { return CombiningKind::MINIMUMF; }) .Case( [&](auto op) { return CombiningKind::MUL; }) .Case([&](auto op) { return CombiningKind::OR; }) .Case([&](auto op) { return CombiningKind::XOR; }) .Default([&](auto op) { return std::nullopt; }); } /// Check whether `outputOperand` is a reduction with a single combiner /// operation. Return the combiner operation of the reduction. Return /// nullptr otherwise. Multiple reduction operations would impose an /// ordering between reduction dimensions and is currently unsupported in /// Linalg. This limitation is motivated by the fact that e.g. min(max(X)) != /// max(min(X)) // TODO: use in LinalgOp verification, there is a circular dependency atm. static Operation *matchLinalgReduction(OpOperand *outputOperand) { auto linalgOp = cast(outputOperand->getOwner()); unsigned outputPos = outputOperand->getOperandNumber() - linalgOp.getNumDpsInputs(); // Only single combiner operations are supported for now. SmallVector combinerOps; if (!matchReduction(linalgOp.getRegionOutputArgs(), outputPos, combinerOps) || combinerOps.size() != 1) return nullptr; // Return the combiner operation. return combinerOps[0]; } /// Broadcast `value` to a vector of `shape` if possible. Return value /// otherwise. static Value broadcastIfNeeded(OpBuilder &b, Value value, Type dstType) { auto dstVecType = dyn_cast(dstType); // If no shape to broadcast to, just return `value`. if (dstVecType.getRank() == 0) return value; if (vector::isBroadcastableTo(value.getType(), dstVecType) != vector::BroadcastableToResult::Success) return value; Location loc = b.getInsertionPoint()->getLoc(); return b.createOrFold(loc, dstVecType, value); } /// Create MultiDimReductionOp to compute the reduction for `reductionOp`. This /// assumes that `reductionOp` has two operands and one of them is the reduction /// initial value.buildMultiDimReduce // Note: this is a true builder that notifies the OpBuilder listener. // TODO: Consider moving as a static helper on the ReduceOp. static Operation *buildMultiDimReduce(OpBuilder &b, Operation *reduceOp, Value valueToReduce, Value acc, ArrayRef dimsToMask) { auto maybeKind = getCombinerOpKind(reduceOp); assert(maybeKind && "Failed precondition: could not get reduction kind"); return b.create( reduceOp->getLoc(), valueToReduce, acc, dimsToMask, *maybeKind); } static SmallVector getDimsToReduce(LinalgOp linalgOp) { return llvm::to_vector( llvm::map_range(linalgOp.getIteratorTypesArray(), isReductionIterator)); } /// Build a vector.transfer_write of `value` into `outputOperand` at indices set /// to all `0`; where `outputOperand` is an output operand of the LinalgOp /// currently being vectorized. If `dest` has null rank, build an memref.store. /// Return the produced value or null if no value is produced. // Note: this is a true builder that notifies the OpBuilder listener. // TODO: Consider moving as a static helper on the ReduceOp. static Value buildVectorWrite(RewriterBase &rewriter, Value value, OpOperand *outputOperand, VectorizationState &state) { Location loc = value.getLoc(); auto linalgOp = cast(outputOperand->getOwner()); AffineMap opOperandMap = linalgOp.getMatchingIndexingMap(outputOperand); // Compute the vector type of the value to store. This type should be an // identity or projection of the canonical vector type without any permutation // applied, given that any permutation in a transfer write happens as part of // the write itself. AffineMap vectorTypeMap = AffineMap::getFilteredIdentityMap( opOperandMap.getContext(), opOperandMap.getNumInputs(), [&](AffineDimExpr dimExpr) -> bool { return llvm::is_contained(opOperandMap.getResults(), dimExpr); }); auto vectorType = state.getCanonicalVecType( getElementTypeOrSelf(outputOperand->get().getType()), vectorTypeMap); Operation *write; if (vectorType.getRank() > 0) { AffineMap writeMap = inversePermutation(reindexIndexingMap(opOperandMap)); SmallVector indices(linalgOp.getRank(outputOperand), rewriter.create(loc, 0)); value = broadcastIfNeeded(rewriter, value, vectorType); assert(value.getType() == vectorType && "Incorrect type"); write = rewriter.create( loc, value, outputOperand->get(), indices, writeMap); } else { // 0-d case is still special: do not invert the reindexing writeMap. if (!isa(value.getType())) value = rewriter.create(loc, vectorType, value); assert(value.getType() == vectorType && "Incorrect type"); write = rewriter.create( loc, value, outputOperand->get(), ValueRange{}); } write = state.maskOperation(rewriter, write, linalgOp, opOperandMap); // If masked, set in-bounds to true. Masking guarantees that the access will // be in-bounds. if (auto maskOp = dyn_cast(write)) { auto maskedWriteOp = cast(maskOp.getMaskableOp()); SmallVector inBounds(maskedWriteOp.getVectorType().getRank(), true); maskedWriteOp.setInBoundsAttr(rewriter.getBoolArrayAttr(inBounds)); } LDBG("vectorized op: " << *write << "\n"); if (!write->getResults().empty()) return write->getResult(0); return Value(); } // Custom vectorization precondition function type. This is intented to be used // with CustomVectorizationHook. Returns success if the corresponding custom // hook can vectorize the op. using CustomVectorizationPrecondition = std::function; // Custom vectorization function type. Produce a vector form of Operation* // assuming all its vectorized operands are already in the IRMapping. // Return nullptr if the Operation cannot be vectorized. using CustomVectorizationHook = std::function; /// Helper function to vectorize the terminator of a `linalgOp`. New result /// vector values are appended to `newResults`. Return /// VectorizationStatus::NoReplace to signal the vectorization algorithm that it /// should not try to map produced operations and instead return the results /// using the `newResults` vector making them available to the vectorization /// algorithm for RAUW. This function is meant to be used as a /// CustomVectorizationHook. static VectorizationResult vectorizeLinalgYield(RewriterBase &rewriter, Operation *op, const IRMapping &bvm, VectorizationState &state, LinalgOp linalgOp, SmallVectorImpl &newResults) { auto yieldOp = dyn_cast(op); if (!yieldOp) return VectorizationResult{VectorizationStatus::Failure, nullptr}; for (const auto &output : llvm::enumerate(yieldOp.getValues())) { // TODO: Scan for an opportunity for reuse. // TODO: use a map. Value vectorValue = bvm.lookup(output.value()); Value newResult = buildVectorWrite(rewriter, vectorValue, linalgOp.getDpsInitOperand(output.index()), state); if (newResult) newResults.push_back(newResult); } return VectorizationResult{VectorizationStatus::NoReplace, nullptr}; } /// Helper function to vectorize the index operations of a `linalgOp`. Return /// VectorizationStatus::NewOp to signal the vectorization algorithm that it /// should map the produced operations. This function is meant to be used as a /// CustomVectorizationHook. static VectorizationResult vectorizeLinalgIndex(RewriterBase &rewriter, VectorizationState &state, Operation *op, LinalgOp linalgOp) { IndexOp indexOp = dyn_cast(op); if (!indexOp) return VectorizationResult{VectorizationStatus::Failure, nullptr}; auto loc = indexOp.getLoc(); // Compute the static loop sizes of the index op. auto targetShape = state.getCanonicalVecShape(); // Compute a one-dimensional index vector for the index op dimension. auto constantSeq = llvm::to_vector(llvm::seq(0, targetShape[indexOp.getDim()])); auto indexSteps = rewriter.create( loc, rewriter.getIndexVectorAttr(constantSeq)); // Return the one-dimensional index vector if it lives in the trailing // dimension of the iteration space since the vectorization algorithm in this // case can handle the broadcast. if (indexOp.getDim() == targetShape.size() - 1) return VectorizationResult{VectorizationStatus::NewOp, indexSteps}; // Otherwise permute the targetShape to move the index dimension last, // broadcast the one-dimensional index vector to the permuted shape, and // finally transpose the broadcasted index vector to undo the permutation. auto permPattern = llvm::to_vector(llvm::seq(0, targetShape.size())); std::swap(permPattern[indexOp.getDim()], permPattern.back()); auto permMap = AffineMap::getPermutationMap(permPattern, linalgOp.getContext()); auto broadCastOp = rewriter.create( loc, state.getCanonicalVecType(rewriter.getIndexType(), permMap), indexSteps); SmallVector transposition = llvm::to_vector<16>(llvm::seq(0, linalgOp.getNumLoops())); std::swap(transposition.back(), transposition[indexOp.getDim()]); auto transposeOp = rewriter.create(loc, broadCastOp, transposition); return VectorizationResult{VectorizationStatus::NewOp, transposeOp}; } /// Helper function to check if the tensor.extract can be vectorized by the /// custom hook vectorizeTensorExtract. static LogicalResult tensorExtractVectorizationPrecondition(Operation *op, bool vectorizeNDExtract) { tensor::ExtractOp extractOp = dyn_cast(op); if (!extractOp) return failure(); if (extractOp.getIndices().size() != 1 && !vectorizeNDExtract) return failure(); // Check the index type, but only for non 0-d tensors (for which we do need // access indices). if (not extractOp.getIndices().empty()) { if (!VectorType::isValidElementType(extractOp.getIndices()[0].getType())) return failure(); } if (llvm::any_of(extractOp->getResultTypes(), [](Type type) { return !VectorType::isValidElementType(type); })) { return failure(); } return success(); } /// Calculates the offsets (`$index_vec`) for `vector.gather` operations /// generated from `tensor.extract`. The offset is calculated as follows /// (example using scalar values): /// /// offset = extractOp.indices[0] /// for (i = 1; i < numIndices; i++) /// offset = extractOp.dimSize[i] * offset + extractOp.indices[i]; /// /// For tensor<45 x 80 x 15 x f32> and index [1, 2, 3], this leads to: /// offset = ( ( 1 ) * 80 + 2 ) * 15 + 3 static Value calculateGatherOffset(RewriterBase &rewriter, VectorizationState &state, tensor::ExtractOp extractOp, const IRMapping &bvm) { // The vector of indices for GatherOp should be shaped as the output vector. auto indexVecType = state.getCanonicalVecType(rewriter.getIndexType()); auto loc = extractOp.getLoc(); Value offset = broadcastIfNeeded( rewriter, bvm.lookup(extractOp.getIndices()[0]), indexVecType); const size_t numIndices = extractOp.getIndices().size(); for (size_t i = 1; i < numIndices; i++) { Value dimIdx = rewriter.create(loc, i); auto dimSize = broadcastIfNeeded( rewriter, rewriter.create(loc, extractOp.getTensor(), dimIdx), indexVecType); offset = rewriter.create(loc, offset, dimSize); auto extractOpIndex = broadcastIfNeeded( rewriter, bvm.lookup(extractOp.getIndices()[i]), indexVecType); offset = rewriter.create(loc, extractOpIndex, offset); } return offset; } enum VectorMemoryAccessKind { ScalarBroadcast, Contiguous, Gather }; /// Checks whether /p val can be used for calculating a loop invariant index. static bool isLoopInvariantIdx(LinalgOp &linalgOp, Value &val) { auto targetShape = linalgOp.getStaticLoopRanges(); assert(((llvm::count_if(targetShape, [](int64_t dimSize) { return dimSize > 1; }) == 1)) && "n-D vectors are not yet supported"); assert(targetShape.back() != 1 && "1-D vectors with the trailing dim eqaual 1 are not yet supported"); // Blocks outside _this_ linalg.generic are effectively loop invariant. // However, analysing block arguments for _this_ linalg.generic Op is a bit // tricky. Just bail out in the latter case. // TODO: We could try analysing the corresponding affine map here. auto *block = linalgOp.getBlock(); if (isa(val)) return llvm::all_of(block->getArguments(), [&val](Value v) { return (v != val); }); Operation *defOp = val.getDefiningOp(); assert(defOp && "This is neither a block argument nor an operation result"); // IndexOp is loop invariant as long as its result remains constant across // iterations. Given the assumptions on the loop ranges above, only the // trailing loop dim ever changes. auto trailingLoopDim = linalgOp.getStaticLoopRanges().size() - 1; if (auto indexOp = dyn_cast(defOp)) return (indexOp.getDim() != trailingLoopDim); auto *ancestor = block->findAncestorOpInBlock(*defOp); // Values define outside `linalgOp` are loop invariant. if (!ancestor) return true; // Values defined inside `linalgOp`, which are constant, are loop invariant. if (isa(ancestor)) return true; bool result = true; for (auto op : ancestor->getOperands()) result &= isLoopInvariantIdx(linalgOp, op); return result; } /// Check whether \p val could be used for calculating the trailing index for a /// contiguous load operation. /// /// There are currently 3 types of values that are allowed here: /// 1. loop-invariant values, /// 2. values that increment by 1 with every loop iteration, /// 3. results of basic arithmetic operations (linear and continuous) /// involving 1., 2. and 3. /// This method returns True if indeed only such values are used in calculating /// \p val. /// /// Additionally, the trailing index for a contiguous load operation should /// increment by 1 with every loop iteration, i.e. be based on: /// * `linalg.index ` , /// where is the trailing dim of the iteration space. \p foundIndexOp is /// updated to `true` when such an op is found. static bool isContiguousLoadIdx(LinalgOp &linalgOp, Value &val, bool &foundIndexOp) { auto targetShape = linalgOp.getStaticLoopRanges(); assert(((llvm::count_if(targetShape, [](int64_t dimSize) { return dimSize > 1; }) == 1)) && "n-D vectors are not yet supported"); assert(targetShape.back() != 1 && "1-D vectors with the trailing dim 1 are not yet supported"); // Blocks outside _this_ linalg.generic are effectively loop invariant. // However, analysing block arguments for _this_ linalg.generic Op is a bit // tricky. Just bail out in the latter case. // TODO: We could try analysing the corresponding affine map here. auto *block = linalgOp.getBlock(); if (isa(val)) return llvm::all_of(block->getArguments(), [&val](Value v) { return (v != val); }); Operation *defOp = val.getDefiningOp(); assert(defOp && "This is neither a block argument nor an operation result"); // Given the assumption on the loop ranges above, only the trailing loop // index is not constant. auto trailingLoopDim = linalgOp.getStaticLoopRanges().size() - 1; if (auto indexOp = dyn_cast(defOp)) { foundIndexOp = (indexOp.getDim() == trailingLoopDim); return true; } auto *ancestor = block->findAncestorOpInBlock(*defOp); if (!ancestor) return false; // Conservatively reject Ops that could lead to indices with stride other // than 1. if (!isa( ancestor)) return false; bool result = false; for (auto op : ancestor->getOperands()) result |= isContiguousLoadIdx(linalgOp, op, foundIndexOp); return result; } /// Check whether \p extractOp would be a gather or a contiguous load Op after /// vectorising \p linalgOp. Note that it is always safe to use gather load /// operations for contiguous loads (albeit slow), but not vice-versa. When in /// doubt, bail out and assume that \p extractOp is a gather load. static VectorMemoryAccessKind getTensorExtractMemoryAccessPattern(tensor::ExtractOp extractOp, LinalgOp &linalgOp) { auto targetShape = linalgOp.getStaticLoopRanges(); auto inputShape = cast(extractOp.getTensor().getType()); // 0.1 Is this a 0-D vector? If yes then this is a scalar broadcast. if (inputShape.getShape().empty()) return VectorMemoryAccessKind::ScalarBroadcast; // 0.2 In the case of dynamic shapes just bail-out and assume that it's a // gather load. // TODO: Relax this condition. if (linalgOp.hasDynamicShape()) return VectorMemoryAccessKind::Gather; // 1. Assume that it's a gather load when reading _into_: // * an n-D vector, like`tensor<1x2x4xi32` or`tensor<2x1x4xi32>`, or // * a 1-D vector with the trailing dim equal 1, e.g. `tensor<1x4x1xi32`. // TODO: Relax these conditions. // FIXME: This condition assumes non-dynamic sizes. if ((llvm::count_if(targetShape, [](int64_t dimSize) { return dimSize > 1; }) != 1) || targetShape.back() == 1) return VectorMemoryAccessKind::Gather; // 2. Assume that it's a gather load when reading _from_ a tensor for which // the trailing dimension is 1, e.g. `tensor<1x4x1xi32>`. // TODO: Relax this condition. if (inputShape.getShape().back() == 1) return VectorMemoryAccessKind::Gather; bool leadingIdxsLoopInvariant = true; // 3. Analyze the leading indices of `extractOp`. // Look at the way each index is calculated and decide whether it is suitable // for a contiguous load, i.e. whether it's loop invariant. auto indices = extractOp.getIndices(); auto leadIndices = indices.drop_back(1); for (auto [i, indexVal] : llvm::enumerate(leadIndices)) { if (inputShape.getShape()[i] == 1) continue; leadingIdxsLoopInvariant &= isLoopInvariantIdx(linalgOp, indexVal); } if (!leadingIdxsLoopInvariant) { LDBG("Found gather load: " << extractOp); return VectorMemoryAccessKind::Gather; } // 4. Analyze the trailing index for `extractOp`. // At this point we know that the leading indices are loop invariant. This // means that is potentially a scalar or a contiguous load. We can decide // based on the trailing idx. auto extractOpTrailingIdx = indices.back(); // 4a. Scalar broadcast load // If the trailing index is loop invariant then this is a scalar load. if (leadingIdxsLoopInvariant && isLoopInvariantIdx(linalgOp, extractOpTrailingIdx)) { LDBG("Found scalar broadcast load: " << extractOp); return VectorMemoryAccessKind::ScalarBroadcast; } // 4b. Contiguous loads // The trailing `extractOp` index should increment with every loop iteration. // This effectively means that it must be based on the trailing loop index. // This is what the following bool captures. bool foundIndexOp = false; bool isContiguousLoad = isContiguousLoadIdx(linalgOp, extractOpTrailingIdx, foundIndexOp); isContiguousLoad &= foundIndexOp; if (isContiguousLoad) { LDBG("Found contigous load: " << extractOp); return VectorMemoryAccessKind::Contiguous; } // 5. Fallback case - gather load. LDBG("Found gather load: " << extractOp); return VectorMemoryAccessKind::Gather; } /// Helper function to vectorize the tensor.extract operations. Returns /// VectorizationStatus::NewOp to signal the vectorization algorithm that it /// should map the produced operations. This function is meant to be used as a /// CustomVectorizationHook. static VectorizationResult vectorizeTensorExtract(RewriterBase &rewriter, VectorizationState &state, Operation *op, LinalgOp linalgOp, const IRMapping &bvm) { tensor::ExtractOp extractOp = dyn_cast(op); if (!extractOp) return VectorizationResult{VectorizationStatus::Failure, nullptr}; auto loc = extractOp.getLoc(); // Compute the static loop sizes of the extract op. auto resultType = state.getCanonicalVecType(extractOp.getResult().getType()); auto maskConstantOp = rewriter.create( loc, DenseIntElementsAttr::get(state.getCanonicalVecType(rewriter.getI1Type()), /*value=*/true)); auto passThruConstantOp = rewriter.create(loc, rewriter.getZeroAttr(resultType)); // Base indices are currently set to 0. We will need to re-visit if more // generic scenarios are to be supported. SmallVector baseIndices( extractOp.getIndices().size(), rewriter.create(loc, 0)); VectorMemoryAccessKind memAccessKind = getTensorExtractMemoryAccessPattern(extractOp, linalgOp); // 1. Handle gather access if (memAccessKind == VectorMemoryAccessKind::Gather) { Value offset = calculateGatherOffset(rewriter, state, extractOp, bvm); // Generate the gather load Operation *gatherOp = rewriter.create( loc, resultType, extractOp.getTensor(), baseIndices, offset, maskConstantOp, passThruConstantOp); gatherOp = state.maskOperation(rewriter, gatherOp, linalgOp); LDBG("Vectorised as gather load: " << extractOp << "\n"); return VectorizationResult{VectorizationStatus::NewOp, gatherOp}; } // 2. Handle: // a. scalar loads + broadcast, // b. contiguous loads. // Both cases use vector.transfer_read. // Collect indices for `vector.transfer_read`. At this point, the indices will // either be scalars or would have been broadcast to vectors matching the // result type. For indices that are vectors, there are two options: // * for non-trailing indices, all elements are identical (contiguous // loads are identified by looking for non-trailing indices that are // invariant with respect to the corresponding linalg.generic), or // * for trailing indices, the index vector will contain values with stride // one, but for `vector.transfer_read` only the first (i.e. 0th) index is // needed. // This means that // * for scalar indices - just re-use it, // * for vector indices (e.g. `vector<1x1x4xindex>`) - extract the bottom // (0th) element and use that. SmallVector transferReadIdxs; auto resTrailingDim = resultType.getShape().back(); auto zero = rewriter.create( loc, rewriter.getI32Type(), rewriter.getZeroAttr(rewriter.getI32Type())); for (size_t i = 0; i < extractOp.getIndices().size(); i++) { auto idx = bvm.lookup(extractOp.getIndices()[i]); if (idx.getType().isIndex()) { transferReadIdxs.push_back(idx); continue; } auto indexAs1dVector = rewriter.create( loc, VectorType::get({resTrailingDim}, rewriter.getIndexType()), bvm.lookup(extractOp.getIndices()[i])); transferReadIdxs.push_back( rewriter.create(loc, indexAs1dVector, zero)); } // `tensor.extract_element` is always in-bounds, hence the following holds. auto dstRank = resultType.getRank(); auto srcRank = extractOp.getTensor().getType().getRank(); SmallVector inBounds(dstRank, true); // 2a. Handle scalar broadcast access. if (memAccessKind == VectorMemoryAccessKind::ScalarBroadcast) { MLIRContext *ctx = rewriter.getContext(); SmallVector exprs(dstRank, getAffineConstantExpr(0, ctx)); auto permutationMap = AffineMap::get(srcRank, 0, exprs, ctx); auto transferReadOp = rewriter.create( loc, resultType, extractOp.getTensor(), transferReadIdxs, permutationMap, inBounds); LDBG("Vectorised as scalar broadcast load: " << extractOp << "\n"); return VectorizationResult{VectorizationStatus::NewOp, transferReadOp}; } // 2b. Handle contiguous access. auto permutationMap = AffineMap::getMinorIdentityMap( srcRank, std::min(dstRank, srcRank), rewriter.getContext()); int32_t rankDiff = dstRank - srcRank; // When dstRank > srcRank, broadcast the source tensor to the unitary leading // dims so that the ranks match. This is done by extending the map with 0s. // For example, for dstRank = 3, srcRank = 2, the following map created // above: // (d0, d1) --> (d0, d1) // is extended as: // (d0, d1) --> (0, d0, d1) while (rankDiff > 0) { permutationMap = permutationMap.insertResult( mlir::getAffineConstantExpr(0, rewriter.getContext()), 0); rankDiff--; } auto transferReadOp = rewriter.create( loc, resultType, extractOp.getTensor(), transferReadIdxs, permutationMap, inBounds); LDBG("Vectorised as contiguous load: " << extractOp); return VectorizationResult{VectorizationStatus::NewOp, transferReadOp}; } /// Emit reduction operations if the shapes of the value to reduce is different /// that the result shape. // Note: this is a true builder that notifies the OpBuilder listener. // TODO: Consider moving as a static helper on the ReduceOp. static Operation *reduceIfNeeded(OpBuilder &b, LinalgOp linalgOp, Operation *op, Value reduceValue, Value initialValue, const IRMapping &bvm) { Value reduceVec = bvm.lookup(reduceValue); Value outputVec = bvm.lookup(initialValue); auto reduceType = dyn_cast(reduceVec.getType()); auto outputType = dyn_cast(outputVec.getType()); // Reduce only if needed as the value may already have been reduce for // contraction vectorization. if (!reduceType || (outputType && reduceType.getShape() == outputType.getShape())) return nullptr; SmallVector dimsToMask = getDimsToReduce(linalgOp); return buildMultiDimReduce(b, op, reduceVec, outputVec, dimsToMask); } /// Generic vectorization for a single operation `op`, given already vectorized /// operands carried by `bvm`. Vectorization occurs as follows: /// 1. Try to apply any of the `customVectorizationHooks` and return its /// result on success. /// 2. Clone any constant in the current scope without vectorization: each /// consumer of the constant will later determine the shape to which the /// constant needs to be broadcast to. /// 3. Fail on any remaining non `ElementwiseMappable` op. It is the purpose /// of the `customVectorizationHooks` to cover such cases. /// 4. Clone `op` in vector form to a vector of shape prescribed by the first /// operand of maximal rank. Other operands have smaller rank and are /// broadcast accordingly. It is assumed this broadcast is always legal, /// otherwise, it means one of the `customVectorizationHooks` is incorrect. /// /// This function assumes all operands of `op` have been vectorized and are in /// the `bvm` mapping. As a consequence, this function is meant to be called on /// a topologically-sorted list of ops. /// This function does not update `bvm` but returns a VectorizationStatus that /// instructs the caller what `bvm` update needs to occur. static VectorizationResult vectorizeOneOp(RewriterBase &rewriter, VectorizationState &state, LinalgOp linalgOp, Operation *op, const IRMapping &bvm, ArrayRef customVectorizationHooks) { LDBG("vectorize op " << *op << "\n"); // 1. Try to apply any CustomVectorizationHook. if (!customVectorizationHooks.empty()) { for (auto &customFunc : customVectorizationHooks) { VectorizationResult result = customFunc(op, bvm); if (result.status == VectorizationStatus::Failure) continue; return result; } } // 2. Constant ops don't get vectorized but rather broadcasted at their users. // Clone so that the constant is not confined to the linalgOp block . if (isa(op)) return VectorizationResult{VectorizationStatus::NewOp, rewriter.clone(*op)}; // 3. Only ElementwiseMappable are allowed in the generic vectorization. if (!OpTrait::hasElementwiseMappableTraits(op)) return VectorizationResult{VectorizationStatus::Failure, nullptr}; // 4 . Check if the operation is a reduction. SmallVector> reductionOperands; for (Value operand : op->getOperands()) { auto blockArg = dyn_cast(operand); if (!blockArg || blockArg.getOwner() != linalgOp.getBlock() || blockArg.getArgNumber() < linalgOp.getNumDpsInputs()) continue; SmallVector reductionOps; Value reduceValue = matchReduction( linalgOp.getRegionOutputArgs(), blockArg.getArgNumber() - linalgOp.getNumDpsInputs(), reductionOps); if (!reduceValue) continue; reductionOperands.push_back(std::make_pair(reduceValue, operand)); } if (!reductionOperands.empty()) { assert(reductionOperands.size() == 1); Operation *reduceOp = reduceIfNeeded(rewriter, linalgOp, op, reductionOperands[0].first, reductionOperands[0].second, bvm); if (reduceOp) return VectorizationResult{VectorizationStatus::NewOp, reduceOp}; } // 5. Generic vectorization path for ElementwiseMappable ops. // a. Get the first max ranked shape. VectorType firstMaxRankedType; for (Value operand : op->getOperands()) { auto vecOperand = bvm.lookup(operand); assert(vecOperand && "Vector operand couldn't be found"); auto vecType = dyn_cast(vecOperand.getType()); if (vecType && (!firstMaxRankedType || firstMaxRankedType.getRank() < vecType.getRank())) firstMaxRankedType = vecType; } // b. Broadcast each op if needed. SmallVector vecOperands; for (Value scalarOperand : op->getOperands()) { Value vecOperand = bvm.lookup(scalarOperand); assert(vecOperand && "Vector operand couldn't be found"); if (firstMaxRankedType) { auto vecType = VectorType::get(firstMaxRankedType.getShape(), getElementTypeOrSelf(vecOperand.getType()), firstMaxRankedType.getScalableDims()); vecOperands.push_back(broadcastIfNeeded(rewriter, vecOperand, vecType)); } else { vecOperands.push_back(vecOperand); } } // c. for elementwise, the result is the vector with the firstMaxRankedShape SmallVector resultTypes; for (Type resultType : op->getResultTypes()) { resultTypes.push_back( firstMaxRankedType ? VectorType::get(firstMaxRankedType.getShape(), resultType, firstMaxRankedType.getScalableDims()) : resultType); } // d. Build and return the new op. return VectorizationResult{ VectorizationStatus::NewOp, rewriter.create(op->getLoc(), op->getName().getIdentifier(), vecOperands, resultTypes, op->getAttrs())}; } /// Generic vectorization function that rewrites the body of a `linalgOp` into /// vector form. Generic vectorization proceeds as follows: /// 1. Verify the `linalgOp` has one non-empty region. /// 2. Values defined above the region are mapped to themselves and will be /// broadcasted on a per-need basis by their consumers. /// 3. Each region argument is vectorized into a vector.transfer_read (or 0-d /// load). /// TODO: Reuse opportunities for RAR dependencies. /// 4a. Register CustomVectorizationHook for YieldOp to capture the results. /// 4rewriter. Register CustomVectorizationHook for IndexOp to access the /// iteration indices. /// 5. Iteratively call vectorizeOneOp on the region operations. /// /// When `broadcastToMaximalCommonShape` is set to true, eager broadcasting is /// performed to the maximal common vector size implied by the `linalgOp` /// iteration space. This eager broadcasting is introduced in the /// permutation_map of the vector.transfer_read operations. The eager /// broadcasting makes it trivial to detrmine where broadcast, transposes and /// reductions should occur, without any bookkeeping. The tradeoff is that, in /// the absence of good canonicalizations, the amount of work increases. /// This is not deemed a problem as we expect canonicalizations and foldings to /// aggressively clean up the useless work. static LogicalResult vectorizeAsLinalgGeneric(RewriterBase &rewriter, VectorizationState &state, LinalgOp linalgOp, SmallVectorImpl &newResults) { LDBG("Vectorizing operation as linalg generic\n"); Block *block = linalgOp.getBlock(); // 2. Values defined above the region can only be broadcast for now. Make them // map to themselves. IRMapping bvm; SetVector valuesSet; mlir::getUsedValuesDefinedAbove(linalgOp->getRegion(0), valuesSet); bvm.map(valuesSet.getArrayRef(), valuesSet.getArrayRef()); if (linalgOp.getNumDpsInits() == 0) return failure(); // 3. Turn all BBArgs into vector.transfer_read / load. Location loc = linalgOp.getLoc(); Value zero = rewriter.create(loc, 0); for (OpOperand *opOperand : linalgOp.getOpOperandsMatchingBBargs()) { BlockArgument bbarg = linalgOp.getMatchingBlockArgument(opOperand); if (linalgOp.isScalar(opOperand)) { bvm.map(bbarg, opOperand->get()); continue; } // 3.a. Convert the indexing map for this input/output to a transfer read // permutation map and masking map. AffineMap indexingMap = linalgOp.getMatchingIndexingMap(opOperand); // Remove zeros from indexing map to use it as masking map. SmallVector zeroPos; auto results = indexingMap.getResults(); for (const auto &result : llvm::enumerate(results)) { if (result.value().isa()) { zeroPos.push_back(result.index()); } } AffineMap maskingMap = indexingMap.dropResults(zeroPos); AffineMap readMap; VectorType readType; Type elemType = getElementTypeOrSelf(opOperand->get()); if (linalgOp.isDpsInput(opOperand)) { // 3.a.i. For input reads we use the canonical vector shape. readMap = inverseAndBroadcastProjectedPermutation(indexingMap); readType = state.getCanonicalVecType(elemType); } else { // 3.a.ii. For output reads (iteration-carried dependence, e.g., // reductions), the vector shape is computed by mapping the canonical // vector shape to the output domain and back to the canonical domain. readMap = inversePermutation(reindexIndexingMap(indexingMap)); readType = state.getCanonicalVecType(elemType, readMap.compose(indexingMap)); } SmallVector indices(linalgOp.getShape(opOperand).size(), zero); Operation *read = rewriter.create( loc, readType, opOperand->get(), indices, readMap); read = state.maskOperation(rewriter, read, linalgOp, maskingMap); Value readValue = read->getResult(0); // 3.b. If masked, set in-bounds to true. Masking guarantees that the access // will be in-bounds. if (auto maskOp = dyn_cast(read)) { SmallVector inBounds(readType.getRank(), true); cast(maskOp.getMaskableOp()) .setInBoundsAttr(rewriter.getBoolArrayAttr(inBounds)); } // 3.c. Not all ops support 0-d vectors, extract the scalar for now. // TODO: remove this. if (readType.getRank() == 0) readValue = rewriter.create(loc, readValue); LDBG("New vectorized bbarg(" << bbarg.getArgNumber() << "): " << readValue << "\n"); bvm.map(bbarg, readValue); bvm.map(opOperand->get(), readValue); } SmallVector hooks; // 4a. Register CustomVectorizationHook for yieldOp. CustomVectorizationHook vectorizeYield = [&](Operation *op, const IRMapping &bvm) -> VectorizationResult { return vectorizeLinalgYield(rewriter, op, bvm, state, linalgOp, newResults); }; hooks.push_back(vectorizeYield); // 4b. Register CustomVectorizationHook for indexOp. CustomVectorizationHook vectorizeIndex = [&](Operation *op, const IRMapping &bvm) -> VectorizationResult { return vectorizeLinalgIndex(rewriter, state, op, linalgOp); }; hooks.push_back(vectorizeIndex); // 4c. Register CustomVectorizationHook for extractOp. CustomVectorizationHook vectorizeExtract = [&](Operation *op, const IRMapping &bvm) -> VectorizationResult { return vectorizeTensorExtract(rewriter, state, op, linalgOp, bvm); }; hooks.push_back(vectorizeExtract); // 5. Iteratively call `vectorizeOneOp` to each op in the slice. for (Operation &op : block->getOperations()) { VectorizationResult result = vectorizeOneOp(rewriter, state, linalgOp, &op, bvm, hooks); if (result.status == VectorizationStatus::Failure) { LDBG("failed to vectorize: " << op << "\n"); return failure(); } if (result.status == VectorizationStatus::NewOp) { Operation *maybeMaskedOp = state.maskOperation(rewriter, result.newOp, linalgOp); LDBG("New vector op: " << *maybeMaskedOp << "\n"); bvm.map(op.getResults(), maybeMaskedOp->getResults()); } } return success(); } /// Vectorize a `padOp` with (1) static result type, (2) constant padding value /// and (3) all-zero lowPad to /// `transfer_write_in_bounds(transfer_read_masked(pad_source, pad_value))`. static LogicalResult vectorizeAsTensorPadOp(RewriterBase &rewriter, tensor::PadOp padOp, ArrayRef inputVectorSizes, SmallVectorImpl &newResults) { auto padValue = padOp.getConstantPaddingValue(); Location loc = padOp.getLoc(); int64_t rank = inputVectorSizes.size(); auto maskType = VectorType::get(inputVectorSizes, rewriter.getI1Type()); auto vectorType = VectorType::get(inputVectorSizes, padValue.getType()); // transfer_write_in_bounds(transfer_read_masked(pad_source, pad_value)) OpBuilder::InsertionGuard g(rewriter); rewriter.setInsertionPoint(padOp); ReifiedRankedShapedTypeDims reifiedReturnShapes; LogicalResult status = cast(padOp.getOperation()) .reifyResultShapes(rewriter, reifiedReturnShapes); (void)status; // prevent unused variable warning on non-assert builds assert(succeeded(status) && "failed to reify result shapes"); auto emptyOp = rewriter.create(loc, reifiedReturnShapes[0], padValue.getType()); SmallVector mixedSourceDims = tensor::getMixedSizes(rewriter, loc, padOp.getSource()); Value mask = rewriter.create(loc, maskType, mixedSourceDims); auto zero = rewriter.create(loc, 0); auto transferReadOp = rewriter.create( loc, /*vectorType=*/vectorType, /*source=*/padOp.getSource(), /*indices=*/SmallVector(rank, zero), /*padding=*/padValue, /*inBounds=*/SmallVector(rank, true)); auto maskedOp = cast( mlir::vector::maskOperation(rewriter, transferReadOp, mask)); Operation *write = rewriter.create( loc, /*vector=*/maskedOp->getResult(0), /*source=*/emptyOp, /*indices=*/SmallVector(rank, zero), /*inBounds=*/SmallVector(rank, true)); bool needMaskForWrite = llvm::any_of( llvm::zip_equal(inputVectorSizes, padOp.getResultType().getShape()), [](auto it) { return std::get<0>(it) != std::get<1>(it); }); if (needMaskForWrite) { Value maskForWrite = rewriter.create( loc, maskType, reifiedReturnShapes[0]); write = mlir::vector::maskOperation(rewriter, write, maskForWrite); } newResults.push_back(write->getResult(0)); return success(); } // TODO: probably need some extra checks for reduction followed by consumer // ops that may not commute (e.g. linear reduction + non-linear instructions). static LogicalResult reductionPreconditions(LinalgOp op) { if (llvm::none_of(op.getIteratorTypesArray(), isReductionIterator)) { LDBG("reduction precondition failed: no reduction iterator\n"); return failure(); } for (OpOperand *opOperand : op.getDpsInitOperands()) { AffineMap indexingMap = op.getMatchingIndexingMap(opOperand); if (indexingMap.isPermutation()) continue; Operation *reduceOp = matchLinalgReduction(opOperand); if (!reduceOp || !getCombinerOpKind(reduceOp)) { LDBG("reduction precondition failed: reduction detection failed\n"); return failure(); } } return success(); } static LogicalResult vectorizeDynamicLinalgOpPrecondition(linalg::LinalgOp op) { // TODO: Masking only supports dynamic generic ops for now. if (!isa(op.getOperation())) return failure(); LDBG("Dynamically-shaped op meets vectorization pre-conditions\n"); return success(); } /// Returns success if `inputVectorSizes` is a valid masking configuraion for /// given `shape`, i.e., it meets: /// 1. The numbers of elements in both array are equal. /// 2. `inputVectorSizes` does nos have dynamic dimensions. /// 3. All the values in `inputVectorSizes` are greater than or equal to /// static sizes in `shape`. static LogicalResult isValidMaskedInputVector(ArrayRef shape, ArrayRef inputVectorSizes) { LDBG("Iteration space static sizes:"); LLVM_DEBUG(llvm::interleaveComma(shape, llvm::dbgs())); LLVM_DEBUG(llvm::dbgs() << "\n"); if (inputVectorSizes.size() != shape.size()) { LDBG("Input vector sizes don't match the number of loops"); return failure(); } if (ShapedType::isDynamicShape(inputVectorSizes)) { LDBG("Input vector sizes can't have dynamic dimensions"); return failure(); } if (!llvm::all_of(llvm::zip(shape, inputVectorSizes), [](std::tuple sizePair) { int64_t staticSize = std::get<0>(sizePair); int64_t inputSize = std::get<1>(sizePair); return ShapedType::isDynamic(staticSize) || staticSize <= inputSize; })) { LDBG("Input vector sizes must be greater than or equal to iteration space " "static sizes"); return failure(); } return success(); } static LogicalResult vectorizeLinalgOpPrecondition(LinalgOp linalgOp, ArrayRef inputVectorSizes, bool vectorizeNDExtract) { // tensor with dimension of 0 cannot be vectorized. if (llvm::any_of(linalgOp.getStaticShape(), [](int64_t dim) { return dim == 0; })) return failure(); // Check API contract for input vector sizes. if (!inputVectorSizes.empty() && failed(isValidMaskedInputVector(linalgOp.getStaticLoopRanges(), inputVectorSizes))) return failure(); if (linalgOp.hasDynamicShape() && failed(vectorizeDynamicLinalgOpPrecondition(linalgOp))) { LDBG("Dynamically-shaped op failed vectorization pre-conditions\n"); return failure(); } SmallVector customPreconditions; // Register CustomVectorizationPrecondition for extractOp. customPreconditions.push_back(tensorExtractVectorizationPrecondition); // All types in the body should be a supported element type for VectorType. for (Operation &innerOp : linalgOp->getRegion(0).front()) { // Check if any custom hook can vectorize the inner op. if (llvm::any_of( customPreconditions, [&](const CustomVectorizationPrecondition &customPrecondition) { return succeeded( customPrecondition(&innerOp, vectorizeNDExtract)); })) { continue; } if (llvm::any_of(innerOp.getOperandTypes(), [](Type type) { return !VectorType::isValidElementType(type); })) { return failure(); } if (llvm::any_of(innerOp.getResultTypes(), [](Type type) { return !VectorType::isValidElementType(type); })) { return failure(); } } if (isElementwise(linalgOp)) return success(); // TODO: isaConvolutionOpInterface that can also infer from generic features. // But we will still need stride/dilation attributes that will be annoying to // reverse-engineer... if (isa(linalgOp.getOperation())) return success(); // TODO: the common vector shape is equal to the static loop sizes only when // all indexing maps are projected permutations. For convs and stencils the // logic will need to evolve. if (!allIndexingsAreProjectedPermutation(linalgOp)) { LDBG("precondition failed: not projected permutations\n"); return failure(); } if (failed(reductionPreconditions(linalgOp))) { LDBG("precondition failed: reduction preconditions\n"); return failure(); } return success(); } static LogicalResult vectorizePadOpPrecondition(tensor::PadOp padOp, ArrayRef inputVectorSizes) { auto padValue = padOp.getConstantPaddingValue(); if (!padValue) { LDBG("pad value is not constant: " << padOp << "\n"); return failure(); } ArrayRef resultTensorShape = padOp.getResultType().getShape(); if (failed(isValidMaskedInputVector(resultTensorShape, inputVectorSizes))) return failure(); if (llvm::any_of(padOp.getLow(), [](Value v) { std::optional res = getConstantIntValue(v); return !res.has_value() || res.value() != 0; })) { LDBG("low pad must all be zero: " << padOp << "\n"); return failure(); } return success(); } /// Preconditions for scalable vectors. static LogicalResult vectorizeScalableVectorPrecondition(Operation *op, ArrayRef inputVectorSizes, ArrayRef inputScalableVecDims) { assert(inputVectorSizes.size() == inputScalableVecDims.size() && "Number of input vector sizes and scalable dims doesn't match"); if (inputVectorSizes.empty()) return success(); bool isScalable = inputScalableVecDims.back(); if (!isScalable) return success(); // Only element-wise ops supported in the presence of scalable dims. auto linalgOp = dyn_cast(op); return success(linalgOp && isElementwise(linalgOp)); } LogicalResult mlir::linalg::vectorizeOpPrecondition( Operation *op, ArrayRef inputVectorSizes, ArrayRef inputScalableVecDims, bool vectorizeNDExtract) { if (failed(vectorizeScalableVectorPrecondition(op, inputVectorSizes, inputScalableVecDims))) return failure(); return TypeSwitch(op) .Case([&](auto linalgOp) { return vectorizeLinalgOpPrecondition(linalgOp, inputVectorSizes, vectorizeNDExtract); }) .Case([&](auto padOp) { return vectorizePadOpPrecondition(padOp, inputVectorSizes); }) .Default([](auto) { return failure(); }); } /// Converts affine.apply Ops to arithmetic operations. static void convertAffineApply(RewriterBase &rewriter, LinalgOp linalgOp) { OpBuilder::InsertionGuard g(rewriter); auto toReplace = linalgOp.getBlock()->getOps(); for (auto op : make_early_inc_range(toReplace)) { rewriter.setInsertionPoint(op); auto expanded = affine::expandAffineExpr( rewriter, op->getLoc(), op.getAffineMap().getResult(0), op.getOperands().take_front(op.getAffineMap().getNumDims()), op.getOperands().take_back(op.getAffineMap().getNumSymbols())); rewriter.replaceOp(op, expanded); } } /// Emit a suitable vector form for an operation. If provided, /// `inputVectorSizes` are used to vectorize this operation. `inputVectorSizes` /// must match the rank of the iteration space of the operation and the input /// vector sizes must be greater than or equal to their counterpart iteration /// space sizes, if static. `inputVectorShapes` also allows the vectorization of /// operations with dynamic shapes. LogicalResult mlir::linalg::vectorize(RewriterBase &rewriter, Operation *op, ArrayRef inputVectorSizes, ArrayRef inputScalableVecDims, bool vectorizeNDExtract) { LDBG("Attempting to vectorize:\n" << *op << "\n"); LDBG("Input vector sizes: "); LLVM_DEBUG(llvm::interleaveComma(inputVectorSizes, llvm::dbgs())); LLVM_DEBUG(llvm::dbgs() << "\n"); LDBG("Input scalable vector dims: "); LLVM_DEBUG(llvm::interleaveComma(inputScalableVecDims, llvm::dbgs())); LLVM_DEBUG(llvm::dbgs() << "\n"); if (failed(vectorizeOpPrecondition(op, inputVectorSizes, inputScalableVecDims, vectorizeNDExtract))) { LDBG("Vectorization pre-conditions failed\n"); return failure(); } // Initialize vectorization state. VectorizationState state(rewriter); if (auto linalgOp = dyn_cast(op)) { if (failed(state.initState(rewriter, linalgOp, inputVectorSizes, inputScalableVecDims))) { LDBG("Vectorization state couldn't be initialized\n"); return failure(); } } SmallVector results; auto vectorizeResult = TypeSwitch(op) .Case([&](auto linalgOp) { // TODO: isaConvolutionOpInterface that can also infer from generic // features. Will require stride/dilation attributes inference. FailureOr convOr = vectorizeConvolution(rewriter, linalgOp); if (succeeded(convOr)) { llvm::append_range(results, (*convOr)->getResults()); return success(); } LDBG("Vectorize generic by broadcasting to the canonical vector " "shape\n"); // Pre-process before proceeding. convertAffineApply(rewriter, linalgOp); // TODO: 'vectorize' takes in a 'RewriterBase' which is up-casted // to 'OpBuilder' when it is passed over to some methods like // 'vectorizeAsLinalgGeneric'. This is highly problematic: if we // erase an op within these methods, the actual rewriter won't be // notified and we will end up with read-after-free issues! return vectorizeAsLinalgGeneric(rewriter, state, linalgOp, results); }) .Case([&](auto padOp) { return vectorizeAsTensorPadOp(rewriter, padOp, inputVectorSizes, results); }) .Default([](auto) { return failure(); }); if (failed(vectorizeResult)) { LDBG("Vectorization failed\n"); return failure(); } if (!results.empty()) rewriter.replaceOp(op, results); else rewriter.eraseOp(op); return success(); } LogicalResult mlir::linalg::vectorizeCopy(RewriterBase &rewriter, memref::CopyOp copyOp) { auto srcType = cast(copyOp.getSource().getType()); auto dstType = cast(copyOp.getTarget().getType()); if (!srcType.hasStaticShape() || !dstType.hasStaticShape()) return failure(); auto srcElementType = getElementTypeOrSelf(srcType); auto dstElementType = getElementTypeOrSelf(dstType); if (!VectorType::isValidElementType(srcElementType) || !VectorType::isValidElementType(dstElementType)) return failure(); auto readType = VectorType::get(srcType.getShape(), srcElementType); auto writeType = VectorType::get(dstType.getShape(), dstElementType); Location loc = copyOp->getLoc(); Value zero = rewriter.create(loc, 0); SmallVector indices(srcType.getRank(), zero); Value readValue = rewriter.create( loc, readType, copyOp.getSource(), indices, rewriter.getMultiDimIdentityMap(srcType.getRank())); if (cast(readValue.getType()).getRank() == 0) { readValue = rewriter.create(loc, readValue); readValue = rewriter.create(loc, writeType, readValue); } Operation *writeValue = rewriter.create( loc, readValue, copyOp.getTarget(), indices, rewriter.getMultiDimIdentityMap(srcType.getRank())); rewriter.replaceOp(copyOp, writeValue->getResults()); return success(); } //----------------------------------------------------------------------------// // Misc. vectorization patterns. //----------------------------------------------------------------------------// /// Helper function that retrieves the value of an IntegerAttr. static int64_t getIntFromAttr(Attribute attr) { return cast(attr).getInt(); } /// Given an ArrayRef of OpFoldResults, return a vector of Values. /// IntegerAttrs are converted to ConstantIndexOps. Other attribute types are /// not supported. static SmallVector ofrToIndexValues(RewriterBase &rewriter, Location loc, ArrayRef ofrs) { SmallVector result; for (auto o : ofrs) { if (auto val = llvm::dyn_cast_if_present(o)) { result.push_back(val); } else { result.push_back(rewriter.create( loc, getIntFromAttr(o.template get()))); } } return result; } /// Rewrite a tensor::PadOp into a sequence of EmptyOp, FillOp and /// InsertSliceOp. For now, only constant padding values are supported. /// If there is enough static type information, TransferReadOps and /// TransferWriteOps may be generated instead of InsertSliceOps. struct GenericPadOpVectorizationPattern : public GeneralizePadOpPattern { GenericPadOpVectorizationPattern(MLIRContext *context, PatternBenefit benefit = 1) : GeneralizePadOpPattern(context, tryVectorizeCopy, benefit) {} /// Vectorize the copying of a tensor::PadOp's source. This is possible if /// each dimension size is statically know in the source type or the result /// type (or both). static LogicalResult tryVectorizeCopy(RewriterBase &rewriter, tensor::PadOp padOp, Value dest) { auto sourceType = padOp.getSourceType(); auto resultType = padOp.getResultType(); if (!VectorType::isValidElementType(sourceType.getElementType())) return failure(); // Copy cannot be vectorized if pad value is non-constant and source shape // is dynamic. In case of a dynamic source shape, padding must be appended // by TransferReadOp, but TransferReadOp supports only constant padding. auto padValue = padOp.getConstantPaddingValue(); if (!padValue) { if (!sourceType.hasStaticShape()) return failure(); // Create dummy padding value. auto elemType = sourceType.getElementType(); padValue = rewriter.create( padOp.getLoc(), elemType, rewriter.getZeroAttr(elemType)); } SmallVector vecShape; SmallVector readInBounds; SmallVector writeInBounds; for (unsigned i = 0; i < sourceType.getRank(); ++i) { if (!sourceType.isDynamicDim(i)) { vecShape.push_back(sourceType.getDimSize(i)); // Source shape is statically known: Neither read nor write are // out-of- bounds. readInBounds.push_back(true); writeInBounds.push_back(true); } else if (!resultType.isDynamicDim(i)) { // Source shape is not statically known, but result shape is. // Vectorize with size of result shape. This may be larger than the // source size. vecShape.push_back(resultType.getDimSize(i)); // Read may be out-of-bounds because the result size could be larger // than the source size. readInBounds.push_back(false); // Write is out-of-bounds if low padding > 0. writeInBounds.push_back( getConstantIntValue(padOp.getMixedLowPad()[i]) == static_cast(0)); } else { // Neither source nor result dim of padOp is static. Cannot vectorize // the copy. return failure(); } } auto vecType = VectorType::get(vecShape, sourceType.getElementType()); // Generate TransferReadOp. SmallVector readIndices( vecType.getRank(), rewriter.create(padOp.getLoc(), 0)); auto read = rewriter.create( padOp.getLoc(), vecType, padOp.getSource(), readIndices, padValue, ArrayRef{readInBounds}); // If `dest` is a FillOp and the TransferWriteOp would overwrite the // entire tensor, write directly to the FillOp's operand. if (llvm::equal(vecShape, resultType.getShape()) && llvm::all_of(writeInBounds, [](bool b) { return b; })) if (auto fill = dest.getDefiningOp()) dest = fill.output(); // Generate TransferWriteOp. auto writeIndices = ofrToIndexValues(rewriter, padOp.getLoc(), padOp.getMixedLowPad()); rewriter.replaceOpWithNewOp( padOp, read, dest, writeIndices, ArrayRef{writeInBounds}); return success(); } }; /// Base pattern for rewriting tensor::PadOps whose result is consumed by a /// given operation type OpTy. template struct VectorizePadOpUserPattern : public OpRewritePattern { using OpRewritePattern::OpRewritePattern; LogicalResult matchAndRewrite(tensor::PadOp padOp, PatternRewriter &rewriter) const final { bool changed = false; // Insert users in vector, because some users may be replaced/removed. for (auto *user : llvm::to_vector<4>(padOp->getUsers())) if (auto op = dyn_cast(user)) changed |= rewriteUser(rewriter, padOp, op).succeeded(); return success(changed); } protected: virtual LogicalResult rewriteUser(PatternRewriter &rewriter, tensor::PadOp padOp, OpTy op) const = 0; }; /// Rewrite use of tensor::PadOp result in TransferReadOp. E.g.: /// ``` /// %0 = tensor.pad %src ... : tensor to tensor<17x5xf32> /// %r = vector.transfer_read %0[%c0, %c0], %cst /// {in_bounds = [true, true]} : tensor<17x5xf32>, vector<17x5xf32> /// ``` /// is rewritten to: /// ``` /// %r = vector.transfer_read %src[%c0, %c0], %padding /// {in_bounds = [true, true]} /// : tensor, vector<17x5xf32> /// ``` /// Note: By restricting this pattern to in-bounds TransferReadOps, we can be /// sure that the original padding value %cst was never used. /// /// This rewrite is possible if: /// - `xferOp` has no out-of-bounds dims or mask. /// - Low padding is static 0. /// - Single, scalar padding value. struct PadOpVectorizationWithTransferReadPattern : public VectorizePadOpUserPattern { using VectorizePadOpUserPattern< vector::TransferReadOp>::VectorizePadOpUserPattern; LogicalResult rewriteUser(PatternRewriter &rewriter, tensor::PadOp padOp, vector::TransferReadOp xferOp) const override { // Low padding must be static 0. if (!padOp.hasZeroLowPad()) return failure(); // Pad value must be a constant. auto padValue = padOp.getConstantPaddingValue(); if (!padValue) return failure(); // Padding value of existing `xferOp` is unused. if (xferOp.hasOutOfBoundsDim() || xferOp.getMask()) return failure(); rewriter.updateRootInPlace(xferOp, [&]() { SmallVector inBounds(xferOp.getVectorType().getRank(), false); xferOp->setAttr(xferOp.getInBoundsAttrName(), rewriter.getBoolArrayAttr(inBounds)); xferOp.getSourceMutable().assign(padOp.getSource()); xferOp.getPaddingMutable().assign(padValue); }); return success(); } }; /// Rewrite use of tensor::PadOp result in TransferWriteOp. /// This pattern rewrites TransferWriteOps that write to a padded tensor /// value, where the same amount of padding is immediately removed again after /// the write. In such cases, the TransferWriteOp can write to the non-padded /// tensor value and apply out-of-bounds masking. E.g.: /// ``` /// %0 = tensor.extract_slice ...[...] [%s0, %s1] [1, 1] /// : tensor<...> to tensor /// %1 = tensor.pad %0 ... : tensor to tensor<17x5xf32> /// %2 = vector.transfer_write %vec, %1[...] /// : vector<17x5xf32>, tensor<17x5xf32> /// %r = tensor.extract_slice %2[0, 0] [%s0, %s1] [1, 1] /// : tensor<17x5xf32> to tensor /// ``` /// is rewritten to: /// ``` /// %0 = tensor.extract_slice ...[...] [%s0, %s1] [1, 1] /// : tensor<...> to tensor /// %r = vector.transfer_write %vec, %0[...] : vector<17x5xf32>, /// tensor /// ``` /// Note: It is important that the ExtractSliceOp %r resizes the result of the /// TransferWriteOp to the same size as the input of the TensorPadOp (or an /// even smaller size). Otherwise, %r's new (dynamic) dimensions would differ /// from %r's old dimensions. /// /// This rewrite is possible if: /// - Low padding is static 0. /// - `xferOp` has exactly one use, which is an ExtractSliceOp. This /// ExtractSliceOp trims the same amount of padding that was added /// beforehand. /// - Single, scalar padding value. struct PadOpVectorizationWithTransferWritePattern : public VectorizePadOpUserPattern { using VectorizePadOpUserPattern< vector::TransferWriteOp>::VectorizePadOpUserPattern; LogicalResult rewriteUser(PatternRewriter &rewriter, tensor::PadOp padOp, vector::TransferWriteOp xferOp) const override { // TODO: support 0-d corner case. if (xferOp.getTransferRank() == 0) return failure(); // Low padding must be static 0. if (!padOp.hasZeroLowPad()) return failure(); // Pad value must be a constant. auto padValue = padOp.getConstantPaddingValue(); if (!padValue) return failure(); // TransferWriteOp result must be directly consumed by an ExtractSliceOp. if (!xferOp->hasOneUse()) return failure(); auto trimPadding = dyn_cast(*xferOp->user_begin()); if (!trimPadding) return failure(); // Only static zero offsets supported when trimming padding. if (!trimPadding.hasZeroOffset()) return failure(); // trimPadding must remove the amount of padding that was added earlier. if (!hasSameTensorSize(padOp.getSource(), trimPadding)) return failure(); // Insert the new TransferWriteOp at position of the old TransferWriteOp. rewriter.setInsertionPoint(xferOp); SmallVector inBounds(xferOp.getVectorType().getRank(), false); auto newXferOp = rewriter.replaceOpWithNewOp( xferOp, padOp.getSource().getType(), xferOp.getVector(), padOp.getSource(), xferOp.getIndices(), xferOp.getPermutationMapAttr(), xferOp.getMask(), rewriter.getBoolArrayAttr(inBounds)); rewriter.replaceOp(trimPadding, newXferOp->getResult(0)); return success(); } /// Check if `beforePadding` and `afterTrimming` have the same tensor size, /// i.e., same dimensions. /// /// Dimensions may be static, dynamic or mix of both. In case of dynamic /// dimensions, this function tries to infer the (static) tensor size by /// looking at the defining op and utilizing op-specific knowledge. /// /// This is a conservative analysis. In case equal tensor sizes cannot be /// proven statically, this analysis returns `false` even though the tensor /// sizes may turn out to be equal at runtime. bool hasSameTensorSize(Value beforePadding, tensor::ExtractSliceOp afterTrimming) const { // If the input to tensor::PadOp is a CastOp, try with both CastOp // result and CastOp operand. if (auto castOp = beforePadding.getDefiningOp()) if (hasSameTensorSize(castOp.getSource(), afterTrimming)) return true; auto t1 = dyn_cast(beforePadding.getType()); auto t2 = dyn_cast(afterTrimming.getType()); // Only RankedTensorType supported. if (!t1 || !t2) return false; // Rank of both values must be the same. if (t1.getRank() != t2.getRank()) return false; // All static dimensions must be the same. Mixed cases (e.g., dimension // static in `t1` but dynamic in `t2`) are not supported. for (unsigned i = 0; i < t1.getRank(); ++i) { if (t1.isDynamicDim(i) != t2.isDynamicDim(i)) return false; if (!t1.isDynamicDim(i) && t1.getDimSize(i) != t2.getDimSize(i)) return false; } // Nothing more to check if all dimensions are static. if (t1.getNumDynamicDims() == 0) return true; // All dynamic sizes must be the same. The only supported case at the // moment is when `beforePadding` is an ExtractSliceOp (or a cast // thereof). // Apart from CastOp, only ExtractSliceOp is supported. auto beforeSlice = beforePadding.getDefiningOp(); if (!beforeSlice) return false; assert(static_cast(t1.getRank()) == beforeSlice.getMixedSizes().size()); assert(static_cast(t2.getRank()) == afterTrimming.getMixedSizes().size()); for (unsigned i = 0; i < t1.getRank(); ++i) { // Skip static dimensions. if (!t1.isDynamicDim(i)) continue; auto size1 = beforeSlice.getMixedSizes()[i]; auto size2 = afterTrimming.getMixedSizes()[i]; // Case 1: Same value or same constant int. if (isEqualConstantIntOrValue(size1, size2)) continue; // Other cases: Take a deeper look at defining ops of values. auto v1 = llvm::dyn_cast_if_present(size1); auto v2 = llvm::dyn_cast_if_present(size2); if (!v1 || !v2) return false; // Case 2: Both values are identical AffineMinOps. (Should not happen if // CSE is run.) auto minOp1 = v1.getDefiningOp(); auto minOp2 = v2.getDefiningOp(); if (minOp1 && minOp2 && minOp1.getAffineMap() == minOp2.getAffineMap() && minOp1.getOperands() == minOp2.getOperands()) continue; // Add additional cases as needed. } // All tests passed. return true; } }; /// Rewrite use of tensor::PadOp result in InsertSliceOp. E.g.: /// ``` /// %0 = tensor.pad %src ... : tensor to tensor<17x5xf32> /// %r = tensor.insert_slice %0 /// into %dest[%a, %b, 0, 0] [1, 1, 17, 5] [1, 1, 1, 1] /// : tensor<17x5xf32> into tensor /// ``` /// is rewritten to: /// ``` /// %0 = vector.transfer_read %src[%c0, %c0], %padding /// : tensor, vector<17x5xf32> /// %r = vector.transfer_write %0, %dest[%a, %b, %c0, %c0] /// {in_bounds = [true, true]} : vector<17x5xf32>, tensor /// ``` /// /// This rewrite is possible if: /// - Low padding is static 0. /// - `padOp` result shape is static. /// - The entire padded tensor is inserted. /// (Implies that sizes of `insertOp` are all static.) /// - Only unit strides in `insertOp`. /// - Single, scalar padding value. /// - `padOp` result not used as destination. struct PadOpVectorizationWithInsertSlicePattern : public VectorizePadOpUserPattern { using VectorizePadOpUserPattern< tensor::InsertSliceOp>::VectorizePadOpUserPattern; LogicalResult rewriteUser(PatternRewriter &rewriter, tensor::PadOp padOp, tensor::InsertSliceOp insertOp) const override { // Low padding must be static 0. if (!padOp.hasZeroLowPad()) return failure(); // Only unit stride supported. if (!insertOp.hasUnitStride()) return failure(); // Pad value must be a constant. auto padValue = padOp.getConstantPaddingValue(); if (!padValue) return failure(); // Dynamic shapes not supported. if (!cast(padOp.getResult().getType()).hasStaticShape()) return failure(); // Pad result not used as destination. if (insertOp.getDest() == padOp.getResult()) return failure(); auto vecType = VectorType::get(padOp.getType().getShape(), padOp.getType().getElementType()); unsigned vecRank = vecType.getRank(); unsigned tensorRank = insertOp.getType().getRank(); // Check if sizes match: Insert the entire tensor into most minor dims. // (No permutations allowed.) SmallVector expectedSizes(tensorRank - vecRank, 1); expectedSizes.append(vecType.getShape().begin(), vecType.getShape().end()); if (!llvm::all_of( llvm::zip(insertOp.getMixedSizes(), expectedSizes), [](auto it) { return getConstantIntValue(std::get<0>(it)) == std::get<1>(it); })) return failure(); // Insert the TransferReadOp and TransferWriteOp at the position of the // InsertSliceOp. rewriter.setInsertionPoint(insertOp); // Generate TransferReadOp: Read entire source tensor and add high // padding. SmallVector readIndices( vecRank, rewriter.create(padOp.getLoc(), 0)); auto read = rewriter.create( padOp.getLoc(), vecType, padOp.getSource(), readIndices, padValue); // Generate TransferWriteOp: Write to InsertSliceOp's dest tensor at // specified offsets. Write is fully in-bounds because a InsertSliceOp's // source must fit into the destination at the specified offsets. auto writeIndices = ofrToIndexValues(rewriter, padOp.getLoc(), insertOp.getMixedOffsets()); SmallVector inBounds(vecRank, true); rewriter.replaceOpWithNewOp( insertOp, read, insertOp.getDest(), writeIndices, ArrayRef{inBounds}); return success(); } }; void mlir::linalg::populatePadOpVectorizationPatterns( RewritePatternSet &patterns, PatternBenefit baseBenefit) { patterns.add(patterns.getContext(), baseBenefit); // Try these specialized patterns first before resorting to the generic one. patterns.add( patterns.getContext(), baseBenefit.getBenefit() + 1); } //----------------------------------------------------------------------------// // Forwarding patterns //----------------------------------------------------------------------------// /// Check whether there is any interleaved use of any `values` between /// `firstOp` and `secondOp`. Conservatively return `true` if any op or value /// is in a different block. static bool mayExistInterleavedUses(Operation *firstOp, Operation *secondOp, ValueRange values) { if (firstOp->getBlock() != secondOp->getBlock() || !firstOp->isBeforeInBlock(secondOp)) { LDBG("interleavedUses precondition failed, firstOp: " << *firstOp << ", second op: " << *secondOp << "\n"); return true; } for (auto v : values) { for (auto &u : v.getUses()) { Operation *owner = u.getOwner(); if (owner == firstOp || owner == secondOp) continue; // TODO: this is too conservative, use dominance info in the future. if (owner->getBlock() == firstOp->getBlock() && (owner->isBeforeInBlock(firstOp) || secondOp->isBeforeInBlock(owner))) continue; LDBG(" found interleaved op " << *owner << ", firstOp: " << *firstOp << ", second op: " << *secondOp << "\n"); return true; } } return false; } /// Return the unique subview use of `v` if it is indeed unique, null /// otherwise. static memref::SubViewOp getSubViewUseIfUnique(Value v) { memref::SubViewOp subViewOp; for (auto &u : v.getUses()) { if (auto newSubViewOp = dyn_cast(u.getOwner())) { if (subViewOp) return memref::SubViewOp(); subViewOp = newSubViewOp; } } return subViewOp; } /// TODO: use interfaces, side-effects and aliasing analysis as appropriate, /// when available. LogicalResult LinalgCopyVTRForwardingPattern::matchAndRewrite( vector::TransferReadOp xferOp, PatternRewriter &rewriter) const { // TODO: support mask. if (xferOp.getMask()) return rewriter.notifyMatchFailure(xferOp, "unsupported mask"); // Transfer into `view`. Value viewOrAlloc = xferOp.getSource(); if (!viewOrAlloc.getDefiningOp() && !viewOrAlloc.getDefiningOp()) return rewriter.notifyMatchFailure(xferOp, "source not a view or alloc"); // Ensure there is exactly one subview of `viewOrAlloc` defining `subView`. memref::SubViewOp subViewOp = getSubViewUseIfUnique(viewOrAlloc); if (!subViewOp) return rewriter.notifyMatchFailure(xferOp, "no subview found"); Value subView = subViewOp.getResult(); // Find the copy into `subView` without interleaved uses. memref::CopyOp copyOp; for (auto &u : subView.getUses()) { if (auto newCopyOp = dyn_cast(u.getOwner())) { assert(isa(newCopyOp.getTarget().getType())); if (newCopyOp.getTarget() != subView) continue; if (mayExistInterleavedUses(newCopyOp, xferOp, {viewOrAlloc, subView})) continue; copyOp = newCopyOp; break; } } if (!copyOp) return rewriter.notifyMatchFailure(xferOp, "no copy found"); // Find the fill into `viewOrAlloc` without interleaved uses before the // copy. FillOp maybeFillOp; for (auto &u : viewOrAlloc.getUses()) { if (auto newFillOp = dyn_cast(u.getOwner())) { assert(isa(newFillOp.output().getType())); if (newFillOp.output() != viewOrAlloc) continue; if (mayExistInterleavedUses(newFillOp, copyOp, {viewOrAlloc, subView})) continue; maybeFillOp = newFillOp; break; } } // Ensure padding matches. if (maybeFillOp && xferOp.getPadding() != maybeFillOp.value()) return rewriter.notifyMatchFailure(xferOp, "padding value does not match fill"); // `in` is the subview that memref.copy reads. Replace it. Value in = copyOp.getSource(); // memref.copy + linalg.fill can be used to create a padded local buffer. // The `masked` attribute is only valid on this padded buffer. // When forwarding to vector.transfer_read, the attribute must be reset // conservatively. Value res = rewriter.create( xferOp.getLoc(), xferOp.getVectorType(), in, xferOp.getIndices(), xferOp.getPermutationMapAttr(), xferOp.getPadding(), xferOp.getMask(), // in_bounds is explicitly reset /*inBoundsAttr=*/ArrayAttr()); if (maybeFillOp) rewriter.eraseOp(maybeFillOp); rewriter.eraseOp(copyOp); rewriter.replaceOp(xferOp, res); return success(); } /// TODO: use interfaces, side-effects and aliasing analysis as appropriate, /// when available. LogicalResult LinalgCopyVTWForwardingPattern::matchAndRewrite( vector::TransferWriteOp xferOp, PatternRewriter &rewriter) const { // TODO: support mask. if (xferOp.getMask()) return rewriter.notifyMatchFailure(xferOp, "unsupported mask"); // Transfer into `viewOrAlloc`. Value viewOrAlloc = xferOp.getSource(); if (!viewOrAlloc.getDefiningOp() && !viewOrAlloc.getDefiningOp()) return rewriter.notifyMatchFailure(xferOp, "source not a view or alloc"); // Ensure there is exactly one subview of `viewOrAlloc` defining `subView`. memref::SubViewOp subViewOp = getSubViewUseIfUnique(viewOrAlloc); if (!subViewOp) return rewriter.notifyMatchFailure(xferOp, "no subview found"); Value subView = subViewOp.getResult(); // Find the copy from `subView` without interleaved uses. memref::CopyOp copyOp; for (auto &u : subViewOp.getResult().getUses()) { if (auto newCopyOp = dyn_cast(u.getOwner())) { if (newCopyOp.getSource() != subView) continue; if (mayExistInterleavedUses(xferOp, newCopyOp, {viewOrAlloc, subView})) continue; copyOp = newCopyOp; break; } } if (!copyOp) return rewriter.notifyMatchFailure(xferOp, "no copy found"); // `out` is the subview copied into that we replace. assert(isa(copyOp.getTarget().getType())); Value out = copyOp.getTarget(); // Forward vector.transfer into copy. // memref.copy + linalg.fill can be used to create a padded local buffer. // The `masked` attribute is only valid on this padded buffer. // When forwarding to vector.transfer_write, the attribute must be reset // conservatively. rewriter.create( xferOp.getLoc(), xferOp.getVector(), out, xferOp.getIndices(), xferOp.getPermutationMapAttr(), xferOp.getMask(), // in_bounds is explicitly reset /*inBoundsAttr=*/ArrayAttr()); rewriter.eraseOp(copyOp); rewriter.eraseOp(xferOp); return success(); } //===----------------------------------------------------------------------===// // Convolution vectorization patterns //===----------------------------------------------------------------------===// template static void bindShapeDims(ShapedType shapedType) {} template static void bindShapeDims(ShapedType shapedType, IntTy &val, IntTy2 &...vals) { val = shapedType.getShape()[N]; bindShapeDims(shapedType, vals...); } /// Bind a pack of int& to the leading dimensions of shapedType.getShape(). template static void bindShapeDims(ShapedType shapedType, IntTy &...vals) { bindShapeDims<0>(shapedType, vals...); } namespace { bool isCastOfBlockArgument(Operation *op) { return isa(op) && op->getNumOperands() == 1 && isa(op->getOperand(0)); } bool isSupportedPoolKind(vector::CombiningKind kind) { switch (kind) { case vector::CombiningKind::ADD: case vector::CombiningKind::MAXF: case vector::CombiningKind::MAXIMUMF: case vector::CombiningKind::MAXSI: case vector::CombiningKind::MAXUI: case vector::CombiningKind::MINF: case vector::CombiningKind::MINIMUMF: case vector::CombiningKind::MINSI: case vector::CombiningKind::MINUI: return true; default: return false; } } /// Generate a vector implementation for either: /// ``` /// Op def: ( w, kw ) /// Iters: ({Par(), Red()}) /// Layout: {{w + kw}, {kw}, {w}} /// ``` /// kw is unrolled. /// /// or /// /// ``` /// Op def: ( n, w, c, kw, f ) /// Iters: ({Par(), Par(), Par(), Red(), Red()}) /// Layout: {{n, strideW * w + dilationW * kw, c}, {kw, c, f}, {n, w, f}} /// ``` /// kw is unrolled, w is unrolled iff dilationW > 1. /// /// or /// /// ``` /// Op def: ( n, c, w, f, kw ) /// Iters: ({Par(), Par(), Par(), Red(), Red()}) /// Layout: {{n, c, strideW * w + dilationW * kw}, {f, c, kw}, {n, f, w}} /// ``` /// kw is unrolled, w is unrolled iff dilationW > 1. /// /// or /// /// ``` /// Op def: ( n, w, c, kw ) /// Iters: ({Par(), Par(), Par(), Red()}) /// Layout: {{n, strideW * w + dilationW * kw, c}, {kw, c}, {n, w, c}} /// ``` /// kw is unrolled, w is unrolled iff dilationW > 1. struct Conv1DGenerator : public StructuredGenerator { Conv1DGenerator(RewriterBase &rewriter, LinalgOp linalgOp, int strideW, int dilationW) : StructuredGenerator(rewriter, linalgOp), strideW(strideW), dilationW(dilationW) { // Determine whether `linalgOp` can be generated with this generator if (linalgOp.getNumDpsInputs() != 2 || linalgOp.getNumDpsInits() != 1) return; lhsShaped = linalgOp.getDpsInputOperand(0)->get(); rhsShaped = linalgOp.getDpsInputOperand(1)->get(); resShaped = linalgOp.getDpsInitOperand(0)->get(); lhsShapedType = dyn_cast(lhsShaped.getType()); rhsShapedType = dyn_cast(rhsShaped.getType()); resShapedType = dyn_cast(resShaped.getType()); if (!lhsShapedType || !rhsShapedType || !resShapedType) return; // (LHS has dimension NCW/NWC and RES has dimension NFW/NCW/NWF/NWC) OR // (non-channeled convolution -> LHS and RHS both have single dimensions). if (!((lhsShapedType.getRank() == 3 && resShapedType.getRank() == 3) || (lhsShapedType.getRank() == 1 && resShapedType.getRank() == 1))) return; Operation *reduceOp = matchLinalgReduction(linalgOp.getDpsInitOperand(0)); if (!reduceOp) return; redOp = reduceOp->getName().getIdentifier(); if (!setOperKind(reduceOp)) return; auto maybeKind = getCombinerOpKind(reduceOp); if (!maybeKind || (*maybeKind != vector::CombiningKind::ADD && (oper != Pool || !isSupportedPoolKind(*maybeKind)))) { return; } auto rhsRank = rhsShapedType.getRank(); switch (oper) { case Conv: if (rhsRank != 1 && rhsRank != 2 && rhsRank != 3) return; break; case Pool: if (rhsRank != 1) return; break; } // The op is now known to be valid. valid = true; } /// Generate a vector implementation for: /// ``` /// Op def: ( w, kw ) /// Iters: ({Par(), Red()}) /// Layout: {{w + kw}, {kw}, {w}} /// ``` /// kw is always unrolled. /// /// or /// /// ``` /// Op def: ( n, w, c, kw, f ) /// Iters: ({Par(), Par(), Par(), Red(), Red()}) /// Layout: {{n, strideW * w + dilationW * kw, c}, {kw, c, f}, {n, w, f}} /// ``` /// kw is always unrolled. /// TODO: w (resp. kw) is unrolled when the strideW ( resp. dilationW) is /// > 1. FailureOr conv(Conv1DOpOrder conv1DOpOrder) { if (!valid) return rewriter.notifyMatchFailure(op, "unvectorizable 1-D conv/pool"); int64_t nSize, wSize, cSize, kwSize, fSize; SmallVector lhsShape, rhsShape, resShape; bool isSingleChanneled = (conv1DOpOrder == Conv1DOpOrder::W); switch (conv1DOpOrder) { case Conv1DOpOrder::W: // Initialize unused dimensions nSize = fSize = cSize = 0; // out{W} bindShapeDims(resShapedType, wSize); // kernel{kw} bindShapeDims(rhsShapedType, kwSize); lhsShape = {// iw = ow + kw - 1 // (i.e. 16 convolved with 3 -> 14) (wSize + kwSize - 1)}; rhsShape = {kwSize}; resShape = {wSize}; break; case Conv1DOpOrder::Nwc: // out{n, w, f} bindShapeDims(resShapedType, nSize, wSize, fSize); switch (oper) { case Conv: // kernel{kw, c, f} bindShapeDims(rhsShapedType, kwSize, cSize); break; case Pool: // kernel{kw} bindShapeDims(rhsShapedType, kwSize); cSize = fSize; break; } lhsShape = {nSize, // iw = ow * sw + kw * dw - 1 // (i.e. 16 convolved with 3 (@stride 1 dilation 1) -> 14) // Perform the proper inclusive -> exclusive -> inclusive. ((wSize - 1) * strideW + 1) + ((kwSize - 1) * dilationW + 1) - 1, cSize}; switch (oper) { case Conv: rhsShape = {kwSize, cSize, fSize}; break; case Pool: rhsShape = {kwSize}; break; } resShape = {nSize, wSize, fSize}; break; case Conv1DOpOrder::Ncw: // out{n, f, w} bindShapeDims(resShapedType, nSize, fSize, wSize); switch (oper) { case Conv: // kernel{f, c, kw} bindShapeDims(rhsShapedType, fSize, cSize, kwSize); break; case Pool: // kernel{kw} bindShapeDims(rhsShapedType, kwSize); cSize = fSize; break; } lhsShape = {nSize, cSize, // iw = ow * sw + kw * dw - 1 // (i.e. 16 convolved with 3 (@stride 1 dilation 1) -> 14) // Perform the proper inclusive -> exclusive -> inclusive. ((wSize - 1) * strideW + 1) + ((kwSize - 1) * dilationW + 1) - 1}; switch (oper) { case Conv: rhsShape = {fSize, cSize, kwSize}; break; case Pool: rhsShape = {kwSize}; break; } resShape = {nSize, fSize, wSize}; break; } vector::TransferWriteOp write; Value zero = rewriter.create(loc, 0); // w is unrolled (i.e. wSizeStep == 1) iff strideW > 1. // When strideW == 1, we can batch the contiguous loads and avoid // unrolling int64_t wSizeStep = strideW == 1 ? wSize : 1; Type lhsEltType = lhsShapedType.getElementType(); Type rhsEltType = rhsShapedType.getElementType(); Type resEltType = resShapedType.getElementType(); auto lhsType = VectorType::get(lhsShape, lhsEltType); auto rhsType = VectorType::get(rhsShape, rhsEltType); auto resType = VectorType::get(resShape, resEltType); // Zero padding with the corresponding dimensions for lhs, rhs and res. SmallVector lhsPadding(lhsShape.size(), zero); SmallVector rhsPadding(rhsShape.size(), zero); SmallVector resPadding(resShape.size(), zero); // Read the whole lhs, rhs and res in one shot (with zero padding). Value lhs = rewriter.create(loc, lhsType, lhsShaped, lhsPadding); // This is needed only for Conv. Value rhs = nullptr; if (oper == Conv) rhs = rewriter.create(loc, rhsType, rhsShaped, rhsPadding); Value res = rewriter.create(loc, resType, resShaped, resPadding); // The base vectorization case for channeled convolution is input: {n,w,c}, // weight: {kw,c,f}, output: {n,w,f}. To reuse the base pattern // vectorization case, we do pre transpose on input, weight, and output. switch (conv1DOpOrder) { case Conv1DOpOrder::W: case Conv1DOpOrder::Nwc: // Base case, so no transposes necessary. break; case Conv1DOpOrder::Ncw: { // To match base vectorization case, we pre-transpose current case. // ncw -> nwc static constexpr std::array permLhs = {0, 2, 1}; lhs = rewriter.create(loc, lhs, permLhs); // fcw -> wcf static constexpr std::array permRhs = {2, 1, 0}; // This is needed only for Conv. if (oper == Conv) rhs = rewriter.create(loc, rhs, permRhs); // nfw -> nwf static constexpr std::array permRes = {0, 2, 1}; res = rewriter.create(loc, res, permRes); break; } } //===------------------------------------------------------------------===// // Begin vector-only rewrite part //===------------------------------------------------------------------===// // Unroll along kw and read slices of lhs and rhs. SmallVector lhsVals, rhsVals, resVals; lhsVals = extractConvInputSlices(rewriter, loc, lhs, nSize, wSize, cSize, kwSize, strideW, dilationW, wSizeStep, isSingleChanneled); // Do not do for pooling. if (oper == Conv) rhsVals = extractConvFilterSlices(rewriter, loc, rhs, kwSize); resVals = extractConvResultSlices(rewriter, loc, res, nSize, wSize, fSize, wSizeStep, isSingleChanneled); auto linearIndex = [&](int64_t kw, int64_t w) { return kw * (wSize / wSizeStep) + w; }; // Compute contraction: O{n, w, f} += I{n, sw * w + dw * kw, c} * F{c, f} or // perform outerproduct for non-channeled convolution or // perform simple arith operation for pooling for (int64_t kw = 0; kw < kwSize; ++kw) { for (int64_t w = 0; w < wSize; w += wSizeStep) { switch (oper) { case Conv: if (isSingleChanneled) { resVals[w] = conv1dSliceAsOuterProduct(rewriter, loc, lhsVals[linearIndex(kw, w)], rhsVals[kw], resVals[w]); } else { resVals[w] = conv1dSliceAsContraction(rewriter, loc, lhsVals[linearIndex(kw, w)], rhsVals[kw], resVals[w]); } break; case Pool: resVals[w] = pool1dSlice(rewriter, loc, lhsVals[linearIndex(kw, w)], resVals[w]); break; } } } res = insertConvResultSlices(rewriter, loc, res, wSize, wSizeStep, resVals, isSingleChanneled); //===------------------------------------------------------------------===// // End vector-only rewrite part //===------------------------------------------------------------------===// // The base vectorization case for channeled convolution is output: {n,w,f} // To reuse the result from base pattern vectorization case, we post // transpose the base case result. switch (conv1DOpOrder) { case Conv1DOpOrder::W: case Conv1DOpOrder::Nwc: // Base case, so no transposes necessary. break; case Conv1DOpOrder::Ncw: { // nwf -> nfw static constexpr std::array perm = {0, 2, 1}; res = rewriter.create(loc, res, perm); break; } } return rewriter .create(loc, res, resShaped, resPadding) .getOperation(); } // Take a value and widen to have the same element type as `ty`. Value promote(RewriterBase &rewriter, Location loc, Value val, Type ty) { const Type srcElementType = getElementTypeOrSelf(val.getType()); const Type dstElementType = getElementTypeOrSelf(ty); assert(isa(dstElementType) || isa(dstElementType)); if (srcElementType == dstElementType) return val; const int64_t srcWidth = srcElementType.getIntOrFloatBitWidth(); const int64_t dstWidth = dstElementType.getIntOrFloatBitWidth(); const Type dstType = cast(val.getType()).cloneWith(std::nullopt, dstElementType); if (isa(srcElementType) && isa(dstElementType)) { return rewriter.create(loc, dstType, val); } if (isa(srcElementType) && isa(dstElementType) && srcWidth < dstWidth) return rewriter.create(loc, dstType, val); if (isa(srcElementType) && isa(dstElementType) && srcWidth < dstWidth) return rewriter.create(loc, dstType, val); assert(false && "unhandled promotion case"); return nullptr; } // Create a contraction: lhs{n, w, c} * rhs{c, f} -> res{n, w, f} Value conv1dSliceAsContraction(RewriterBase &rewriter, Location loc, Value lhs, Value rhs, Value res) { vector::IteratorType par = vector::IteratorType::parallel; vector::IteratorType red = vector::IteratorType::reduction; AffineExpr n, w, f, c; bindDims(ctx, n, w, f, c); lhs = promote(rewriter, loc, lhs, res.getType()); rhs = promote(rewriter, loc, rhs, res.getType()); return rewriter.create( loc, lhs, rhs, res, /*indexingMaps=*/MapList{{n, w, c}, {c, f}, {n, w, f}}, /*iteratorTypes=*/ArrayRef{par, par, par, red}); } // Create an outerproduct: lhs{w} * rhs{1} -> res{w} for single channel // convolution. Value conv1dSliceAsOuterProduct(RewriterBase &rewriter, Location loc, Value lhs, Value rhs, Value res) { return rewriter.create( loc, res.getType(), lhs, rhs, res, vector::CombiningKind::ADD); } // Create a reduction: lhs{n, w, c} -> res{n, w, c} Value pool1dSlice(RewriterBase &rewriter, Location loc, Value lhs, Value res) { if (isPoolExt) lhs = rewriter.create(loc, poolExtOp, lhs, res.getType())->getResult(0); return rewriter .create(loc, redOp, ArrayRef{lhs, res}, res.getType()) ->getResult(0); } /// Generate a vector implementation for: /// ``` /// Op def: ( n, w, c, kw) /// Iters: ({Par(), Par(), Par(), Red()}) /// Layout: {{n, strideW * w + dilationW * kw, c}, {kw, c}, {n, w, c}} /// ``` /// kw is always unrolled. /// TODO: w (resp. kw) is unrolled when the strideW ( resp. dilationW) is /// > 1. FailureOr depthwiseConv() { if (!valid) return rewriter.notifyMatchFailure(op, "unvectorizable depthwise conv"); int64_t nSize, wSize, cSize, kwSize; // kernel{kw, c} bindShapeDims(rhsShapedType, kwSize, cSize); // out{n, w, c} bindShapeDims(resShapedType, nSize, wSize); vector::TransferWriteOp write; Value zero = rewriter.create(loc, 0); // w is unrolled (i.e. wSizeStep == 1) iff strideW > 1. // When strideW == 1, we can batch the contiguous loads and avoid // unrolling int64_t wSizeStep = strideW == 1 ? wSize : 1; Type lhsEltType = lhsShapedType.getElementType(); Type rhsEltType = rhsShapedType.getElementType(); Type resEltType = resShapedType.getElementType(); VectorType lhsType = VectorType::get( {nSize, // iw = ow * sw + kw * dw - 1 // (i.e. 16 convolved with 3 (@stride 1 dilation 1) -> 14) ((wSize - 1) * strideW + 1) + ((kwSize - 1) * dilationW + 1) - 1, cSize}, lhsEltType); VectorType rhsType = VectorType::get({kwSize, cSize}, rhsEltType); VectorType resType = VectorType::get({nSize, wSize, cSize}, resEltType); // Read lhs slice of size {n, w * strideW + kw * dilationW, c} @ [0, 0, // 0]. Value lhs = rewriter.create( loc, lhsType, lhsShaped, ValueRange{zero, zero, zero}); // Read rhs slice of size {kw, c} @ [0, 0]. Value rhs = rewriter.create(loc, rhsType, rhsShaped, ValueRange{zero, zero}); // Read res slice of size {n, w, c} @ [0, 0, 0]. Value res = rewriter.create( loc, resType, resShaped, ValueRange{zero, zero, zero}); //===------------------------------------------------------------------===// // Begin vector-only rewrite part //===------------------------------------------------------------------===// // Unroll along kw and read slices of lhs and rhs. SmallVector lhsVals, rhsVals, resVals; // Extract lhs slice of size {n, wSizeStep, c} // @ [0, sw * w + dw * kw, 0]. for (int64_t kw = 0; kw < kwSize; ++kw) { for (int64_t w = 0; w < wSize; w += wSizeStep) { lhsVals.push_back(rewriter.create( loc, lhs, /*offsets=*/ArrayRef{0, w * strideW + kw * dilationW, 0}, /*sizes=*/ArrayRef{nSize, wSizeStep, cSize}, /*strides=*/ArrayRef{1, 1, 1})); } } // Extract rhs slice of size {c} @ [kw]. for (int64_t kw = 0; kw < kwSize; ++kw) { rhsVals.push_back(rewriter.create( loc, rhs, /*offsets=*/ArrayRef{kw})); } // Extract res slice: {n, wSizeStep, c} @ [0, w, 0]. for (int64_t w = 0; w < wSize; w += wSizeStep) { resVals.push_back(rewriter.create( loc, res, /*offsets=*/ArrayRef{0, w, 0}, /*sizes=*/ArrayRef{nSize, wSizeStep, cSize}, /*strides=*/ArrayRef{1, 1, 1})); } auto linearIndex = [&](int64_t kw, int64_t w) { return kw * (wSize / wSizeStep) + w; }; // Compute contraction: O{n, w, c} += I{n, sw * w + dw * kw, c} * F{c} for (int64_t kw = 0; kw < kwSize; ++kw) { for (int64_t w = 0; w < wSize; w += wSizeStep) { resVals[w] = depthwiseConv1dSliceAsMulAcc(rewriter, loc, lhsVals[linearIndex(kw, w)], rhsVals[kw], resVals[w]); } } // Its possible we failed to create the Fma. if (!llvm::all_of(resVals, [](Value v) { return v; })) { // Manually revert (in reverse order) to avoid leaving a bad IR state. for (auto &collection : {resVals, rhsVals, lhsVals, {res, rhs, lhs, zero}}) for (Value v : collection) rewriter.eraseOp(v.getDefiningOp()); return rewriter.notifyMatchFailure(op, "failed to create FMA"); } // Write back res slice: {n, wSizeStep, c} @ [0, w, 0]. // This does not depend on kw. for (int64_t w = 0; w < wSize; w += wSizeStep) { res = rewriter.create( loc, resVals[w], res, /*offsets=*/ArrayRef{0, w, 0}, /*strides=*/ArrayRef{1, 1, 1}); } //===------------------------------------------------------------------===// // End vector-only rewrite part //===------------------------------------------------------------------===// // Write back res slice of size {n, w, c} @ [0, 0, 0]. return rewriter .create(loc, res, resShaped, ValueRange{zero, zero, zero}) .getOperation(); } /// Lower lhs{n, w, c} * rhs{c} -> res{n, w, c} to MulAcc Value depthwiseConv1dSliceAsMulAcc(RewriterBase &rewriter, Location loc, Value lhs, Value rhs, Value res) { auto rhsTy = cast(rhs.getType()); auto resTy = cast(res.getType()); // TODO(suderman): Change this to use a vector.ima intrinsic. lhs = promote(rewriter, loc, lhs, resTy); rhs = rewriter.create( loc, resTy.clone(rhsTy.getElementType()), rhs); rhs = promote(rewriter, loc, rhs, resTy); if (!lhs || !rhs) return nullptr; if (isa(resTy.getElementType())) return rewriter.create(loc, lhs, rhs, res); auto mul = rewriter.create(loc, lhs, rhs); return rewriter.create(loc, mul, res); } /// Entry point for non-channeled convolution: /// {{w + kw}, {kw}, {w}} FailureOr generateNonChanneledConv() { AffineExpr w, kw; bindDims(ctx, w, kw); if (!iters({Par(), Red()})) return rewriter.notifyMatchFailure(op, "failed to match conv::W 1-par 1-red"); // No transposition needed. if (layout({/*lhsIndex*/ {w + kw}, /*rhsIndex*/ {kw}, /*resIndex*/ {w}})) return conv(Conv1DOpOrder::W); return rewriter.notifyMatchFailure(op, "not a conv::W layout"); } /// Entry point that transposes into the common form: /// {{n, strideW * w + dilationW * kw, c}, {kw, c, f}, {n, w, f}} FailureOr generateNwcConv() { AffineExpr n, w, f, kw, c; bindDims(ctx, n, w, f, kw, c); if (!iters({Par(), Par(), Par(), Red(), Red()})) return rewriter.notifyMatchFailure( op, "failed to match conv::Nwc 3-par 2-red"); // No transposition needed. if (layout({/*lhsIndex*/ {n, strideW * w + dilationW * kw, c}, /*rhsIndex*/ {kw, c, f}, /*resIndex*/ {n, w, f}})) return conv(Conv1DOpOrder::Nwc); return rewriter.notifyMatchFailure(op, "not a conv::Nwc layout"); } /// Entry point that transposes into the common form: /// {{n, c, strideW * w + dilationW * kw}, {f, c, kw}, {n, f, w}} FailureOr generateNcwConv() { AffineExpr n, w, f, kw, c; bindDims(ctx, n, f, w, c, kw); if (!iters({Par(), Par(), Par(), Red(), Red()})) return rewriter.notifyMatchFailure( op, "failed to match conv::Ncw 3-par 2-red"); if (layout({/*lhsIndex*/ {n, c, strideW * w + dilationW * kw}, /*rhsIndex*/ {f, c, kw}, /*resIndex*/ {n, f, w}})) return conv(Conv1DOpOrder::Ncw); return rewriter.notifyMatchFailure(op, "not a conv::Ncw layout"); } /// Entry point that transposes into the common form: /// {{n, strideW * w + dilationW * kw, c}, {kw}, {n, w, c}} for pooling FailureOr generateNwcPooling() { AffineExpr n, w, c, kw; bindDims(ctx, n, w, c, kw); if (!iters({Par(), Par(), Par(), Red()})) return rewriter.notifyMatchFailure(op, "failed to match pooling 3-par 1-red"); // No transposition needed. if (layout({/*lhsIndex*/ {n, strideW * w + dilationW * kw, c}, /*rhsIndex*/ {kw}, /*resIndex*/ {n, w, c}})) return conv(Conv1DOpOrder::Nwc); return rewriter.notifyMatchFailure(op, "not a pooling::Nwc layout"); } /// Entry point that transposes into the common form: /// {{n, c, strideW * w + dilationW * kw}, {kw}, {n, c, w}} for pooling FailureOr generateNcwPooling() { AffineExpr n, w, c, kw; bindDims(ctx, n, c, w, kw); if (!iters({Par(), Par(), Par(), Red()})) return rewriter.notifyMatchFailure(op, "failed to match pooling 3-par 1-red"); if (layout({/*lhsIndex*/ {n, c, strideW * w + dilationW * kw}, /*rhsIndex*/ {kw}, /*resIndex*/ {n, c, w}})) return conv(Conv1DOpOrder::Ncw); return rewriter.notifyMatchFailure(op, "not a pooling::Ncw layout"); } /// Entry point that transposes into the common form: /// {{n, strideW * w + dilationW * kw, c}, {kw, c}, {n, w, c}} FailureOr generateDilatedConv() { AffineExpr n, w, c, kw; bindDims(ctx, n, w, c, kw); if (!iters({Par(), Par(), Par(), Red()})) return rewriter.notifyMatchFailure( op, "failed to match depthwise::Nwc conv 3-par 1-red"); // No transposition needed. if (layout({/*lhsIndex*/ {n, strideW * w + dilationW * kw, c}, /*rhsIndex*/ {kw, c}, /*resIndex*/ {n, w, c}})) return depthwiseConv(); return rewriter.notifyMatchFailure(op, "not a depthwise::Nwc layout"); } private: enum OperKind { Conv, Pool }; bool valid = false; OperKind oper = Conv; StringAttr redOp; StringAttr poolExtOp; bool isPoolExt = false; int strideW, dilationW; Value lhsShaped, rhsShaped, resShaped; ShapedType lhsShapedType, rhsShapedType, resShapedType; // Sets oper, poolExtOp and isPoolExt for valid conv/pooling ops. // Returns true iff it is a valid conv/pooling op. // If (region has 2 ops (reduction + yield) or 3 ops (extension + reduction // + yield) and rhs is not used) then it is the body of a pooling // If conv, check for single `mul` predecessor. The `mul` operands must be // block arguments or extension of block arguments. // Otherwise, check for one or zero `ext` predecessor. The `ext` operands // must be block arguments or extension of block arguments. bool setOperKind(Operation *reduceOp) { int numBlockArguments = llvm::count_if( reduceOp->getOperands(), [](Value v) { return isa(v); }); switch (numBlockArguments) { case 1: { // Will be convolution if feeder is a MulOp. // Otherwise, if it can be pooling. auto feedValIt = llvm::find_if(reduceOp->getOperands(), [](Value v) { return !isa(v); }); Operation *feedOp = (*feedValIt).getDefiningOp(); if (isCastOfBlockArgument(feedOp)) { oper = Pool; isPoolExt = true; poolExtOp = feedOp->getName().getIdentifier(); } else if (!(isa(feedOp) && llvm::all_of(feedOp->getOperands(), [](Value v) { if (isa(v)) return true; if (Operation *op = v.getDefiningOp()) return isCastOfBlockArgument(op); return false; }))) { return false; } return true; } case 2: // Must be pooling oper = Pool; isPoolExt = false; return true; default: return false; } } }; } // namespace /// Helper function to vectorize a LinalgOp with convolution semantics. // TODO: extend the generic vectorization to support windows and drop this. static FailureOr vectorizeConvolution(RewriterBase &rewriter, LinalgOp op) { // The ConvolutionOpInterface gives us guarantees of existence for // strides/dilations. However, we do not need to rely on those, we can simply // use them if present, otherwise use the default and let the generic conv. // matcher in the ConvGenerator succeed or fail. auto strides = op->getAttrOfType("strides"); auto dilations = op->getAttrOfType("dilations"); auto stride = strides ? *strides.getValues().begin() : 1; auto dilation = dilations ? *dilations.getValues().begin() : 1; Conv1DGenerator e(rewriter, op, stride, dilation); auto res = e.generateNonChanneledConv(); if (succeeded(res)) return res; res = e.generateNwcConv(); if (succeeded(res)) return res; res = e.generateNcwConv(); if (succeeded(res)) return res; res = e.generateNwcPooling(); if (succeeded(res)) return res; res = e.generateNcwPooling(); if (succeeded(res)) return res; return e.generateDilatedConv(); } struct VectorizeConvolution : public OpInterfaceRewritePattern { using OpInterfaceRewritePattern::OpInterfaceRewritePattern; LogicalResult matchAndRewrite(LinalgOp op, PatternRewriter &rewriter) const override { FailureOr resultOrFail = vectorizeConvolution(rewriter, op); if (failed(resultOrFail)) return failure(); Operation *newOp = *resultOrFail; if (newOp->getNumResults() == 0) { rewriter.eraseOp(op.getOperation()); return success(); } assert(newOp->getNumResults() == 1 && "expected single result"); rewriter.replaceOp(op.getOperation(), newOp->getResult(0)); return success(); } }; void mlir::linalg::populateConvolutionVectorizationPatterns( RewritePatternSet &patterns, PatternBenefit benefit) { patterns.add(patterns.getContext(), benefit); }