//===-- ObjectFileELF.cpp ------------------------------------- -*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #include "ObjectFileELF.h" #include #include #include "lldb/Core/ArchSpec.h" #include "lldb/Core/DataBuffer.h" #include "lldb/Core/Error.h" #include "lldb/Core/FileSpecList.h" #include "lldb/Core/Module.h" #include "lldb/Core/ModuleSpec.h" #include "lldb/Core/PluginManager.h" #include "lldb/Core/Section.h" #include "lldb/Core/Stream.h" #include "lldb/Symbol/SymbolContext.h" #include "lldb/Host/Host.h" #include "llvm/ADT/PointerUnion.h" #define CASE_AND_STREAM(s, def, width) \ case def: s->Printf("%-*s", width, #def); break; using namespace lldb; using namespace lldb_private; using namespace elf; using namespace llvm::ELF; namespace { //===----------------------------------------------------------------------===// /// @class ELFRelocation /// @brief Generic wrapper for ELFRel and ELFRela. /// /// This helper class allows us to parse both ELFRel and ELFRela relocation /// entries in a generic manner. class ELFRelocation { public: /// Constructs an ELFRelocation entry with a personality as given by @p /// type. /// /// @param type Either DT_REL or DT_RELA. Any other value is invalid. ELFRelocation(unsigned type); ~ELFRelocation(); bool Parse(const lldb_private::DataExtractor &data, lldb::offset_t *offset); static unsigned RelocType32(const ELFRelocation &rel); static unsigned RelocType64(const ELFRelocation &rel); static unsigned RelocSymbol32(const ELFRelocation &rel); static unsigned RelocSymbol64(const ELFRelocation &rel); private: typedef llvm::PointerUnion RelocUnion; RelocUnion reloc; }; ELFRelocation::ELFRelocation(unsigned type) { if (type == DT_REL) reloc = new ELFRel(); else if (type == DT_RELA) reloc = new ELFRela(); else { assert(false && "unexpected relocation type"); reloc = static_cast(NULL); } } ELFRelocation::~ELFRelocation() { if (reloc.is()) delete reloc.get(); else delete reloc.get(); } bool ELFRelocation::Parse(const lldb_private::DataExtractor &data, lldb::offset_t *offset) { if (reloc.is()) return reloc.get()->Parse(data, offset); else return reloc.get()->Parse(data, offset); } unsigned ELFRelocation::RelocType32(const ELFRelocation &rel) { if (rel.reloc.is()) return ELFRel::RelocType32(*rel.reloc.get()); else return ELFRela::RelocType32(*rel.reloc.get()); } unsigned ELFRelocation::RelocType64(const ELFRelocation &rel) { if (rel.reloc.is()) return ELFRel::RelocType64(*rel.reloc.get()); else return ELFRela::RelocType64(*rel.reloc.get()); } unsigned ELFRelocation::RelocSymbol32(const ELFRelocation &rel) { if (rel.reloc.is()) return ELFRel::RelocSymbol32(*rel.reloc.get()); else return ELFRela::RelocSymbol32(*rel.reloc.get()); } unsigned ELFRelocation::RelocSymbol64(const ELFRelocation &rel) { if (rel.reloc.is()) return ELFRel::RelocSymbol64(*rel.reloc.get()); else return ELFRela::RelocSymbol64(*rel.reloc.get()); } } // end anonymous namespace //------------------------------------------------------------------ // Static methods. //------------------------------------------------------------------ void ObjectFileELF::Initialize() { PluginManager::RegisterPlugin(GetPluginNameStatic(), GetPluginDescriptionStatic(), CreateInstance, CreateMemoryInstance, GetModuleSpecifications); } void ObjectFileELF::Terminate() { PluginManager::UnregisterPlugin(CreateInstance); } lldb_private::ConstString ObjectFileELF::GetPluginNameStatic() { static ConstString g_name("elf"); return g_name; } const char * ObjectFileELF::GetPluginDescriptionStatic() { return "ELF object file reader."; } ObjectFile * ObjectFileELF::CreateInstance (const lldb::ModuleSP &module_sp, DataBufferSP &data_sp, lldb::offset_t data_offset, const lldb_private::FileSpec* file, lldb::offset_t file_offset, lldb::offset_t length) { if (!data_sp) { data_sp = file->MemoryMapFileContents(file_offset, length); data_offset = 0; } if (data_sp && data_sp->GetByteSize() > (llvm::ELF::EI_NIDENT + data_offset)) { const uint8_t *magic = data_sp->GetBytes() + data_offset; if (ELFHeader::MagicBytesMatch(magic)) { // Update the data to contain the entire file if it doesn't already if (data_sp->GetByteSize() < length) { data_sp = file->MemoryMapFileContents(file_offset, length); data_offset = 0; magic = data_sp->GetBytes(); } unsigned address_size = ELFHeader::AddressSizeInBytes(magic); if (address_size == 4 || address_size == 8) { std::unique_ptr objfile_ap(new ObjectFileELF(module_sp, data_sp, data_offset, file, file_offset, length)); ArchSpec spec; if (objfile_ap->GetArchitecture(spec) && objfile_ap->SetModulesArchitecture(spec)) return objfile_ap.release(); } } } return NULL; } ObjectFile* ObjectFileELF::CreateMemoryInstance (const lldb::ModuleSP &module_sp, DataBufferSP& data_sp, const lldb::ProcessSP &process_sp, lldb::addr_t header_addr) { return NULL; } bool ObjectFileELF::MagicBytesMatch (DataBufferSP& data_sp, lldb::addr_t data_offset, lldb::addr_t data_length) { if (data_sp && data_sp->GetByteSize() > (llvm::ELF::EI_NIDENT + data_offset)) { const uint8_t *magic = data_sp->GetBytes() + data_offset; return ELFHeader::MagicBytesMatch(magic); } return false; } size_t ObjectFileELF::GetModuleSpecifications (const lldb_private::FileSpec& file, lldb::DataBufferSP& data_sp, lldb::offset_t data_offset, lldb::offset_t file_offset, lldb::offset_t length, lldb_private::ModuleSpecList &specs) { const size_t initial_count = specs.GetSize(); if (ObjectFileELF::MagicBytesMatch(data_sp, 0, data_sp->GetByteSize())) { DataExtractor data; data.SetData(data_sp); elf::ELFHeader header; if (header.Parse(data, &data_offset)) { if (data_sp) { ModuleSpec spec; spec.GetFileSpec() = file; spec.GetArchitecture().SetArchitecture(eArchTypeELF, header.e_machine, LLDB_INVALID_CPUTYPE); if (spec.GetArchitecture().IsValid()) { // We could parse the ABI tag information (in .note, .notes, or .note.ABI-tag) to get the // machine information. However, we'd have to read a good bit of the rest of the file, // and this info isn't guaranteed to exist or be correct. More details here: // http://refspecs.linuxfoundation.org/LSB_1.2.0/gLSB/noteabitag.html // Instead of passing potentially incorrect information down the pipeline, grab // the host information and use it. spec.GetArchitecture().GetTriple().setOSName (Host::GetOSString().GetCString()); spec.GetArchitecture().GetTriple().setVendorName(Host::GetVendorString().GetCString()); specs.Append(spec); } } } } return specs.GetSize() - initial_count; } //------------------------------------------------------------------ // PluginInterface protocol //------------------------------------------------------------------ lldb_private::ConstString ObjectFileELF::GetPluginName() { return GetPluginNameStatic(); } uint32_t ObjectFileELF::GetPluginVersion() { return m_plugin_version; } //------------------------------------------------------------------ // ObjectFile protocol //------------------------------------------------------------------ ObjectFileELF::ObjectFileELF (const lldb::ModuleSP &module_sp, DataBufferSP& data_sp, lldb::offset_t data_offset, const FileSpec* file, lldb::offset_t file_offset, lldb::offset_t length) : ObjectFile(module_sp, file, file_offset, length, data_sp, data_offset), m_header(), m_program_headers(), m_section_headers(), m_filespec_ap(), m_shstr_data() { if (file) m_file = *file; ::memset(&m_header, 0, sizeof(m_header)); } ObjectFileELF::~ObjectFileELF() { } bool ObjectFileELF::IsExecutable() const { return m_header.e_entry != 0; } ByteOrder ObjectFileELF::GetByteOrder() const { if (m_header.e_ident[EI_DATA] == ELFDATA2MSB) return eByteOrderBig; if (m_header.e_ident[EI_DATA] == ELFDATA2LSB) return eByteOrderLittle; return eByteOrderInvalid; } uint32_t ObjectFileELF::GetAddressByteSize() const { return m_data.GetAddressByteSize(); } size_t ObjectFileELF::SectionIndex(const SectionHeaderCollIter &I) { return std::distance(m_section_headers.begin(), I) + 1u; } size_t ObjectFileELF::SectionIndex(const SectionHeaderCollConstIter &I) const { return std::distance(m_section_headers.begin(), I) + 1u; } bool ObjectFileELF::ParseHeader() { lldb::offset_t offset = 0; return m_header.Parse(m_data, &offset); } bool ObjectFileELF::GetUUID(lldb_private::UUID* uuid) { if (m_uuid.IsValid()) { *uuid = m_uuid; return true; } // FIXME: Return MD5 sum here. See comment in ObjectFile.h. return false; } uint32_t ObjectFileELF::GetDependentModules(FileSpecList &files) { size_t num_modules = ParseDependentModules(); uint32_t num_specs = 0; for (unsigned i = 0; i < num_modules; ++i) { if (files.AppendIfUnique(m_filespec_ap->GetFileSpecAtIndex(i))) num_specs++; } return num_specs; } user_id_t ObjectFileELF::GetSectionIndexByType(unsigned type) { if (!ParseSectionHeaders()) return 0; for (SectionHeaderCollIter sh_pos = m_section_headers.begin(); sh_pos != m_section_headers.end(); ++sh_pos) { if (sh_pos->sh_type == type) return SectionIndex(sh_pos); } return 0; } Address ObjectFileELF::GetImageInfoAddress() { if (!ParseDynamicSymbols()) return Address(); SectionList *section_list = GetSectionList(); if (!section_list) return Address(); user_id_t dynsym_id = GetSectionIndexByType(SHT_DYNAMIC); if (!dynsym_id) return Address(); const ELFSectionHeader *dynsym_hdr = GetSectionHeaderByIndex(dynsym_id); if (!dynsym_hdr) return Address(); SectionSP dynsym_section_sp (section_list->FindSectionByID(dynsym_id)); if (dynsym_section_sp) { for (size_t i = 0; i < m_dynamic_symbols.size(); ++i) { ELFDynamic &symbol = m_dynamic_symbols[i]; if (symbol.d_tag == DT_DEBUG) { // Compute the offset as the number of previous entries plus the // size of d_tag. addr_t offset = i * dynsym_hdr->sh_entsize + GetAddressByteSize(); return Address(dynsym_section_sp, offset); } } } return Address(); } lldb_private::Address ObjectFileELF::GetEntryPointAddress () { SectionList *sections; addr_t offset; if (m_entry_point_address.IsValid()) return m_entry_point_address; if (!ParseHeader() || !IsExecutable()) return m_entry_point_address; sections = GetSectionList(); offset = m_header.e_entry; if (!sections) { m_entry_point_address.SetOffset(offset); return m_entry_point_address; } m_entry_point_address.ResolveAddressUsingFileSections(offset, sections); return m_entry_point_address; } //---------------------------------------------------------------------- // ParseDependentModules //---------------------------------------------------------------------- size_t ObjectFileELF::ParseDependentModules() { if (m_filespec_ap.get()) return m_filespec_ap->GetSize(); m_filespec_ap.reset(new FileSpecList()); if (!(ParseSectionHeaders() && GetSectionHeaderStringTable())) return 0; // Locate the dynamic table. user_id_t dynsym_id = 0; user_id_t dynstr_id = 0; for (SectionHeaderCollIter sh_pos = m_section_headers.begin(); sh_pos != m_section_headers.end(); ++sh_pos) { if (sh_pos->sh_type == SHT_DYNAMIC) { dynsym_id = SectionIndex(sh_pos); dynstr_id = sh_pos->sh_link + 1; // Section ID's are 1 based. break; } } if (!(dynsym_id && dynstr_id)) return 0; SectionList *section_list = GetSectionList(); if (!section_list) return 0; // Resolve and load the dynamic table entries and corresponding string // table. Section *dynsym = section_list->FindSectionByID(dynsym_id).get(); Section *dynstr = section_list->FindSectionByID(dynstr_id).get(); if (!(dynsym && dynstr)) return 0; DataExtractor dynsym_data; DataExtractor dynstr_data; if (ReadSectionData(dynsym, dynsym_data) && ReadSectionData(dynstr, dynstr_data)) { ELFDynamic symbol; const lldb::offset_t section_size = dynsym_data.GetByteSize(); lldb::offset_t offset = 0; // The only type of entries we are concerned with are tagged DT_NEEDED, // yielding the name of a required library. while (offset < section_size) { if (!symbol.Parse(dynsym_data, &offset)) break; if (symbol.d_tag != DT_NEEDED) continue; uint32_t str_index = static_cast(symbol.d_val); const char *lib_name = dynstr_data.PeekCStr(str_index); m_filespec_ap->Append(FileSpec(lib_name, true)); } } return m_filespec_ap->GetSize(); } //---------------------------------------------------------------------- // ParseProgramHeaders //---------------------------------------------------------------------- size_t ObjectFileELF::ParseProgramHeaders() { // We have already parsed the program headers if (!m_program_headers.empty()) return m_program_headers.size(); // If there are no program headers to read we are done. if (m_header.e_phnum == 0) return 0; m_program_headers.resize(m_header.e_phnum); if (m_program_headers.size() != m_header.e_phnum) return 0; const size_t ph_size = m_header.e_phnum * m_header.e_phentsize; const elf_off ph_offset = m_header.e_phoff; DataExtractor data; if (GetData (ph_offset, ph_size, data) != ph_size) return 0; uint32_t idx; lldb::offset_t offset; for (idx = 0, offset = 0; idx < m_header.e_phnum; ++idx) { if (m_program_headers[idx].Parse(data, &offset) == false) break; } if (idx < m_program_headers.size()) m_program_headers.resize(idx); return m_program_headers.size(); } //---------------------------------------------------------------------- // ParseSectionHeaders //---------------------------------------------------------------------- size_t ObjectFileELF::ParseSectionHeaders() { // We have already parsed the section headers if (!m_section_headers.empty()) return m_section_headers.size(); // If there are no section headers we are done. if (m_header.e_shnum == 0) return 0; m_section_headers.resize(m_header.e_shnum); if (m_section_headers.size() != m_header.e_shnum) return 0; const size_t sh_size = m_header.e_shnum * m_header.e_shentsize; const elf_off sh_offset = m_header.e_shoff; DataExtractor data; if (GetData (sh_offset, sh_size, data) != sh_size) return 0; uint32_t idx; lldb::offset_t offset; for (idx = 0, offset = 0; idx < m_header.e_shnum; ++idx) { if (m_section_headers[idx].Parse(data, &offset) == false) break; } if (idx < m_section_headers.size()) m_section_headers.resize(idx); return m_section_headers.size(); } size_t ObjectFileELF::GetSectionHeaderStringTable() { if (m_shstr_data.GetByteSize() == 0) { const unsigned strtab_idx = m_header.e_shstrndx; if (strtab_idx && strtab_idx < m_section_headers.size()) { const ELFSectionHeader &sheader = m_section_headers[strtab_idx]; const size_t byte_size = sheader.sh_size; const Elf64_Off offset = sheader.sh_offset; m_shstr_data.SetData (m_data, offset, byte_size); if (m_shstr_data.GetByteSize() != byte_size) return 0; } } return m_shstr_data.GetByteSize(); } lldb::user_id_t ObjectFileELF::GetSectionIndexByName(const char *name) { if (!(ParseSectionHeaders() && GetSectionHeaderStringTable())) return 0; // Search the collection of section headers for one with a matching name. for (SectionHeaderCollIter I = m_section_headers.begin(); I != m_section_headers.end(); ++I) { const char *sectionName = m_shstr_data.PeekCStr(I->sh_name); if (!sectionName) return 0; if (strcmp(name, sectionName) != 0) continue; return SectionIndex(I); } return 0; } const elf::ELFSectionHeader * ObjectFileELF::GetSectionHeaderByIndex(lldb::user_id_t id) { if (!ParseSectionHeaders() || !id) return NULL; if (--id < m_section_headers.size()) return &m_section_headers[id]; return NULL; } static bool ParseNoteGNUBuildID(DataExtractor& data, lldb_private::UUID& uuid) { // Try to parse the note section (ie .note.gnu.build-id|.notes|.note|...) and get the build id. // BuildID documentation: https://fedoraproject.org/wiki/Releases/FeatureBuildId struct { uint32_t name_len; // Length of note name uint32_t desc_len; // Length of note descriptor uint32_t type; // Type of note (1 is ABI_TAG, 3 is BUILD_ID) } notehdr; lldb::offset_t offset = 0; static const uint32_t g_gnu_build_id = 3; // NT_GNU_BUILD_ID from elf.h while (true) { if (data.GetU32 (&offset, ¬ehdr, 3) == NULL) return false; notehdr.name_len = llvm::RoundUpToAlignment (notehdr.name_len, 4); notehdr.desc_len = llvm::RoundUpToAlignment (notehdr.desc_len, 4); lldb::offset_t offset_next_note = offset + notehdr.name_len + notehdr.desc_len; // 16 bytes is UUID|MD5, 20 bytes is SHA1 if ((notehdr.type == g_gnu_build_id) && (notehdr.name_len == 4) && (notehdr.desc_len == 16 || notehdr.desc_len == 20)) { char name[4]; if (data.GetU8 (&offset, name, 4) == NULL) return false; if (!strcmp(name, "GNU")) { uint8_t uuidbuf[20]; if (data.GetU8 (&offset, &uuidbuf, notehdr.desc_len) == NULL) return false; uuid.SetBytes (uuidbuf, notehdr.desc_len); return true; } } offset = offset_next_note; } return false; } SectionList * ObjectFileELF::GetSectionList() { if (m_sections_ap.get()) return m_sections_ap.get(); if (ParseSectionHeaders() && GetSectionHeaderStringTable()) { m_sections_ap.reset(new SectionList()); for (SectionHeaderCollIter I = m_section_headers.begin(); I != m_section_headers.end(); ++I) { const ELFSectionHeader &header = *I; ConstString name(m_shstr_data.PeekCStr(header.sh_name)); const uint64_t file_size = header.sh_type == SHT_NOBITS ? 0 : header.sh_size; const uint64_t vm_size = header.sh_flags & SHF_ALLOC ? header.sh_size : 0; static ConstString g_sect_name_text (".text"); static ConstString g_sect_name_data (".data"); static ConstString g_sect_name_bss (".bss"); static ConstString g_sect_name_tdata (".tdata"); static ConstString g_sect_name_tbss (".tbss"); static ConstString g_sect_name_dwarf_debug_abbrev (".debug_abbrev"); static ConstString g_sect_name_dwarf_debug_aranges (".debug_aranges"); static ConstString g_sect_name_dwarf_debug_frame (".debug_frame"); static ConstString g_sect_name_dwarf_debug_info (".debug_info"); static ConstString g_sect_name_dwarf_debug_line (".debug_line"); static ConstString g_sect_name_dwarf_debug_loc (".debug_loc"); static ConstString g_sect_name_dwarf_debug_macinfo (".debug_macinfo"); static ConstString g_sect_name_dwarf_debug_pubnames (".debug_pubnames"); static ConstString g_sect_name_dwarf_debug_pubtypes (".debug_pubtypes"); static ConstString g_sect_name_dwarf_debug_ranges (".debug_ranges"); static ConstString g_sect_name_dwarf_debug_str (".debug_str"); static ConstString g_sect_name_eh_frame (".eh_frame"); SectionType sect_type = eSectionTypeOther; bool is_thread_specific = false; if (name == g_sect_name_text) sect_type = eSectionTypeCode; else if (name == g_sect_name_data) sect_type = eSectionTypeData; else if (name == g_sect_name_bss) sect_type = eSectionTypeZeroFill; else if (name == g_sect_name_tdata) { sect_type = eSectionTypeData; is_thread_specific = true; } else if (name == g_sect_name_tbss) { sect_type = eSectionTypeZeroFill; is_thread_specific = true; } else if (name == g_sect_name_dwarf_debug_abbrev) sect_type = eSectionTypeDWARFDebugAbbrev; else if (name == g_sect_name_dwarf_debug_aranges) sect_type = eSectionTypeDWARFDebugAranges; else if (name == g_sect_name_dwarf_debug_frame) sect_type = eSectionTypeDWARFDebugFrame; else if (name == g_sect_name_dwarf_debug_info) sect_type = eSectionTypeDWARFDebugInfo; else if (name == g_sect_name_dwarf_debug_line) sect_type = eSectionTypeDWARFDebugLine; else if (name == g_sect_name_dwarf_debug_loc) sect_type = eSectionTypeDWARFDebugLoc; else if (name == g_sect_name_dwarf_debug_macinfo) sect_type = eSectionTypeDWARFDebugMacInfo; else if (name == g_sect_name_dwarf_debug_pubnames) sect_type = eSectionTypeDWARFDebugPubNames; else if (name == g_sect_name_dwarf_debug_pubtypes) sect_type = eSectionTypeDWARFDebugPubTypes; else if (name == g_sect_name_dwarf_debug_ranges) sect_type = eSectionTypeDWARFDebugRanges; else if (name == g_sect_name_dwarf_debug_str) sect_type = eSectionTypeDWARFDebugStr; else if (name == g_sect_name_eh_frame) sect_type = eSectionTypeEHFrame; else if (header.sh_type == SHT_NOTE) { if (!m_uuid.IsValid()) { DataExtractor data; if (vm_size && (GetData (header.sh_offset, vm_size, data) == vm_size)) { ParseNoteGNUBuildID (data, m_uuid); } } } SectionSP section_sp(new Section( GetModule(), // Module to which this section belongs. SectionIndex(I), // Section ID. name, // Section name. sect_type, // Section type. header.sh_addr, // VM address. vm_size, // VM size in bytes of this section. header.sh_offset, // Offset of this section in the file. file_size, // Size of the section as found in the file. header.sh_flags)); // Flags for this section. if (is_thread_specific) section_sp->SetIsThreadSpecific (is_thread_specific); m_sections_ap->AddSection(section_sp); } m_sections_ap->Finalize(); // Now that we're done adding sections, finalize to build fast-lookup caches } return m_sections_ap.get(); } static unsigned ParseSymbols(Symtab *symtab, user_id_t start_id, SectionList *section_list, const ELFSectionHeader *symtab_shdr, const DataExtractor &symtab_data, const DataExtractor &strtab_data) { ELFSymbol symbol; lldb::offset_t offset = 0; const size_t num_symbols = symtab_data.GetByteSize() / symtab_shdr->sh_entsize; static ConstString text_section_name(".text"); static ConstString init_section_name(".init"); static ConstString fini_section_name(".fini"); static ConstString ctors_section_name(".ctors"); static ConstString dtors_section_name(".dtors"); static ConstString data_section_name(".data"); static ConstString rodata_section_name(".rodata"); static ConstString rodata1_section_name(".rodata1"); static ConstString data2_section_name(".data1"); static ConstString bss_section_name(".bss"); //StreamFile strm(stdout, false); unsigned i; for (i = 0; i < num_symbols; ++i) { if (symbol.Parse(symtab_data, &offset) == false) break; const char *symbol_name = strtab_data.PeekCStr(symbol.st_name); // No need to add symbols that have no names if (symbol_name == NULL || symbol_name[0] == '\0') continue; //symbol.Dump (&strm, i, &strtab_data, section_list); SectionSP symbol_section_sp; SymbolType symbol_type = eSymbolTypeInvalid; Elf64_Half symbol_idx = symbol.st_shndx; switch (symbol_idx) { case SHN_ABS: symbol_type = eSymbolTypeAbsolute; break; case SHN_UNDEF: symbol_type = eSymbolTypeUndefined; break; default: symbol_section_sp = section_list->GetSectionAtIndex(symbol_idx); break; } // If a symbol is undefined do not process it further even if it has a STT type if (symbol_type != eSymbolTypeUndefined) { switch (symbol.getType()) { default: case STT_NOTYPE: // The symbol's type is not specified. break; case STT_OBJECT: // The symbol is associated with a data object, such as a variable, // an array, etc. symbol_type = eSymbolTypeData; break; case STT_FUNC: // The symbol is associated with a function or other executable code. symbol_type = eSymbolTypeCode; break; case STT_SECTION: // The symbol is associated with a section. Symbol table entries of // this type exist primarily for relocation and normally have // STB_LOCAL binding. break; case STT_FILE: // Conventionally, the symbol's name gives the name of the source // file associated with the object file. A file symbol has STB_LOCAL // binding, its section index is SHN_ABS, and it precedes the other // STB_LOCAL symbols for the file, if it is present. symbol_type = eSymbolTypeSourceFile; break; case STT_GNU_IFUNC: // The symbol is associated with an indirect function. The actual // function will be resolved if it is referenced. symbol_type = eSymbolTypeResolver; break; } } if (symbol_type == eSymbolTypeInvalid) { if (symbol_section_sp) { const ConstString §_name = symbol_section_sp->GetName(); if (sect_name == text_section_name || sect_name == init_section_name || sect_name == fini_section_name || sect_name == ctors_section_name || sect_name == dtors_section_name) { symbol_type = eSymbolTypeCode; } else if (sect_name == data_section_name || sect_name == data2_section_name || sect_name == rodata_section_name || sect_name == rodata1_section_name || sect_name == bss_section_name) { symbol_type = eSymbolTypeData; } } } uint64_t symbol_value = symbol.st_value; if (symbol_section_sp) symbol_value -= symbol_section_sp->GetFileAddress(); bool is_global = symbol.getBinding() == STB_GLOBAL; uint32_t flags = symbol.st_other << 8 | symbol.st_info; bool is_mangled = symbol_name ? (symbol_name[0] == '_' && symbol_name[1] == 'Z') : false; Symbol dc_symbol( i + start_id, // ID is the original symbol table index. symbol_name, // Symbol name. is_mangled, // Is the symbol name mangled? symbol_type, // Type of this symbol is_global, // Is this globally visible? false, // Is this symbol debug info? false, // Is this symbol a trampoline? false, // Is this symbol artificial? symbol_section_sp, // Section in which this symbol is defined or null. symbol_value, // Offset in section or symbol value. symbol.st_size, // Size in bytes of this symbol. true, // Size is valid flags); // Symbol flags. symtab->AddSymbol(dc_symbol); } return i; } unsigned ObjectFileELF::ParseSymbolTable(Symtab *symbol_table, user_id_t start_id, const ELFSectionHeader *symtab_hdr, user_id_t symtab_id) { assert(symtab_hdr->sh_type == SHT_SYMTAB || symtab_hdr->sh_type == SHT_DYNSYM); // Parse in the section list if needed. SectionList *section_list = GetSectionList(); if (!section_list) return 0; // Section ID's are ones based. user_id_t strtab_id = symtab_hdr->sh_link + 1; Section *symtab = section_list->FindSectionByID(symtab_id).get(); Section *strtab = section_list->FindSectionByID(strtab_id).get(); unsigned num_symbols = 0; if (symtab && strtab) { DataExtractor symtab_data; DataExtractor strtab_data; if (ReadSectionData(symtab, symtab_data) && ReadSectionData(strtab, strtab_data)) { num_symbols = ParseSymbols(symbol_table, start_id, section_list, symtab_hdr, symtab_data, strtab_data); } } return num_symbols; } size_t ObjectFileELF::ParseDynamicSymbols() { if (m_dynamic_symbols.size()) return m_dynamic_symbols.size(); user_id_t dyn_id = GetSectionIndexByType(SHT_DYNAMIC); if (!dyn_id) return 0; SectionList *section_list = GetSectionList(); if (!section_list) return 0; Section *dynsym = section_list->FindSectionByID(dyn_id).get(); if (!dynsym) return 0; ELFDynamic symbol; DataExtractor dynsym_data; if (ReadSectionData(dynsym, dynsym_data)) { const lldb::offset_t section_size = dynsym_data.GetByteSize(); lldb::offset_t cursor = 0; while (cursor < section_size) { if (!symbol.Parse(dynsym_data, &cursor)) break; m_dynamic_symbols.push_back(symbol); } } return m_dynamic_symbols.size(); } const ELFDynamic * ObjectFileELF::FindDynamicSymbol(unsigned tag) { if (!ParseDynamicSymbols()) return NULL; SectionList *section_list = GetSectionList(); if (!section_list) return 0; DynamicSymbolCollIter I = m_dynamic_symbols.begin(); DynamicSymbolCollIter E = m_dynamic_symbols.end(); for ( ; I != E; ++I) { ELFDynamic *symbol = &*I; if (symbol->d_tag == tag) return symbol; } return NULL; } Section * ObjectFileELF::PLTSection() { const ELFDynamic *symbol = FindDynamicSymbol(DT_JMPREL); SectionList *section_list = GetSectionList(); if (symbol && section_list) { addr_t addr = symbol->d_ptr; return section_list->FindSectionContainingFileAddress(addr).get(); } return NULL; } unsigned ObjectFileELF::PLTRelocationType() { const ELFDynamic *symbol = FindDynamicSymbol(DT_PLTREL); if (symbol) return symbol->d_val; return 0; } static unsigned ParsePLTRelocations(Symtab *symbol_table, user_id_t start_id, unsigned rel_type, const ELFHeader *hdr, const ELFSectionHeader *rel_hdr, const ELFSectionHeader *plt_hdr, const ELFSectionHeader *sym_hdr, const lldb::SectionSP &plt_section_sp, DataExtractor &rel_data, DataExtractor &symtab_data, DataExtractor &strtab_data) { ELFRelocation rel(rel_type); ELFSymbol symbol; lldb::offset_t offset = 0; const elf_xword plt_entsize = plt_hdr->sh_entsize; const elf_xword num_relocations = rel_hdr->sh_size / rel_hdr->sh_entsize; typedef unsigned (*reloc_info_fn)(const ELFRelocation &rel); reloc_info_fn reloc_type; reloc_info_fn reloc_symbol; if (hdr->Is32Bit()) { reloc_type = ELFRelocation::RelocType32; reloc_symbol = ELFRelocation::RelocSymbol32; } else { reloc_type = ELFRelocation::RelocType64; reloc_symbol = ELFRelocation::RelocSymbol64; } unsigned slot_type = hdr->GetRelocationJumpSlotType(); unsigned i; for (i = 0; i < num_relocations; ++i) { if (rel.Parse(rel_data, &offset) == false) break; if (reloc_type(rel) != slot_type) continue; lldb::offset_t symbol_offset = reloc_symbol(rel) * sym_hdr->sh_entsize; uint64_t plt_index = (i + 1) * plt_entsize; if (!symbol.Parse(symtab_data, &symbol_offset)) break; const char *symbol_name = strtab_data.PeekCStr(symbol.st_name); bool is_mangled = symbol_name ? (symbol_name[0] == '_' && symbol_name[1] == 'Z') : false; Symbol jump_symbol( i + start_id, // Symbol table index symbol_name, // symbol name. is_mangled, // is the symbol name mangled? eSymbolTypeTrampoline, // Type of this symbol false, // Is this globally visible? false, // Is this symbol debug info? true, // Is this symbol a trampoline? true, // Is this symbol artificial? plt_section_sp, // Section in which this symbol is defined or null. plt_index, // Offset in section or symbol value. plt_entsize, // Size in bytes of this symbol. true, // Size is valid 0); // Symbol flags. symbol_table->AddSymbol(jump_symbol); } return i; } unsigned ObjectFileELF::ParseTrampolineSymbols(Symtab *symbol_table, user_id_t start_id, const ELFSectionHeader *rel_hdr, user_id_t rel_id) { assert(rel_hdr->sh_type == SHT_RELA || rel_hdr->sh_type == SHT_REL); // The link field points to the asscoiated symbol table. The info field // points to the section holding the plt. user_id_t symtab_id = rel_hdr->sh_link; user_id_t plt_id = rel_hdr->sh_info; if (!symtab_id || !plt_id) return 0; // Section ID's are ones based; symtab_id++; plt_id++; const ELFSectionHeader *plt_hdr = GetSectionHeaderByIndex(plt_id); if (!plt_hdr) return 0; const ELFSectionHeader *sym_hdr = GetSectionHeaderByIndex(symtab_id); if (!sym_hdr) return 0; SectionList *section_list = GetSectionList(); if (!section_list) return 0; Section *rel_section = section_list->FindSectionByID(rel_id).get(); if (!rel_section) return 0; SectionSP plt_section_sp (section_list->FindSectionByID(plt_id)); if (!plt_section_sp) return 0; Section *symtab = section_list->FindSectionByID(symtab_id).get(); if (!symtab) return 0; Section *strtab = section_list->FindSectionByID(sym_hdr->sh_link + 1).get(); if (!strtab) return 0; DataExtractor rel_data; if (!ReadSectionData(rel_section, rel_data)) return 0; DataExtractor symtab_data; if (!ReadSectionData(symtab, symtab_data)) return 0; DataExtractor strtab_data; if (!ReadSectionData(strtab, strtab_data)) return 0; unsigned rel_type = PLTRelocationType(); if (!rel_type) return 0; return ParsePLTRelocations (symbol_table, start_id, rel_type, &m_header, rel_hdr, plt_hdr, sym_hdr, plt_section_sp, rel_data, symtab_data, strtab_data); } Symtab * ObjectFileELF::GetSymtab() { if (m_symtab_ap.get()) return m_symtab_ap.get(); Symtab *symbol_table = new Symtab(this); m_symtab_ap.reset(symbol_table); Mutex::Locker locker(symbol_table->GetMutex()); if (!(ParseSectionHeaders() && GetSectionHeaderStringTable())) return symbol_table; // Locate and parse all linker symbol tables. uint64_t symbol_id = 0; for (SectionHeaderCollIter I = m_section_headers.begin(); I != m_section_headers.end(); ++I) { if (I->sh_type == SHT_SYMTAB || I->sh_type == SHT_DYNSYM) { const ELFSectionHeader &symtab_header = *I; user_id_t section_id = SectionIndex(I); symbol_id += ParseSymbolTable(symbol_table, symbol_id, &symtab_header, section_id); } } // Synthesize trampoline symbols to help navigate the PLT. Section *reloc_section = PLTSection(); if (reloc_section) { user_id_t reloc_id = reloc_section->GetID(); const ELFSectionHeader *reloc_header = GetSectionHeaderByIndex(reloc_id); assert(reloc_header); ParseTrampolineSymbols(symbol_table, symbol_id, reloc_header, reloc_id); } return symbol_table; } //===----------------------------------------------------------------------===// // Dump // // Dump the specifics of the runtime file container (such as any headers // segments, sections, etc). //---------------------------------------------------------------------- void ObjectFileELF::Dump(Stream *s) { DumpELFHeader(s, m_header); s->EOL(); DumpELFProgramHeaders(s); s->EOL(); DumpELFSectionHeaders(s); s->EOL(); SectionList *section_list = GetSectionList(); if (section_list) section_list->Dump(s, NULL, true, UINT32_MAX); Symtab *symtab = GetSymtab(); if (symtab) symtab->Dump(s, NULL, eSortOrderNone); s->EOL(); DumpDependentModules(s); s->EOL(); } //---------------------------------------------------------------------- // DumpELFHeader // // Dump the ELF header to the specified output stream //---------------------------------------------------------------------- void ObjectFileELF::DumpELFHeader(Stream *s, const ELFHeader &header) { s->PutCString("ELF Header\n"); s->Printf("e_ident[EI_MAG0 ] = 0x%2.2x\n", header.e_ident[EI_MAG0]); s->Printf("e_ident[EI_MAG1 ] = 0x%2.2x '%c'\n", header.e_ident[EI_MAG1], header.e_ident[EI_MAG1]); s->Printf("e_ident[EI_MAG2 ] = 0x%2.2x '%c'\n", header.e_ident[EI_MAG2], header.e_ident[EI_MAG2]); s->Printf("e_ident[EI_MAG3 ] = 0x%2.2x '%c'\n", header.e_ident[EI_MAG3], header.e_ident[EI_MAG3]); s->Printf("e_ident[EI_CLASS ] = 0x%2.2x\n", header.e_ident[EI_CLASS]); s->Printf("e_ident[EI_DATA ] = 0x%2.2x ", header.e_ident[EI_DATA]); DumpELFHeader_e_ident_EI_DATA(s, header.e_ident[EI_DATA]); s->Printf ("\ne_ident[EI_VERSION] = 0x%2.2x\n", header.e_ident[EI_VERSION]); s->Printf ("e_ident[EI_PAD ] = 0x%2.2x\n", header.e_ident[EI_PAD]); s->Printf("e_type = 0x%4.4x ", header.e_type); DumpELFHeader_e_type(s, header.e_type); s->Printf("\ne_machine = 0x%4.4x\n", header.e_machine); s->Printf("e_version = 0x%8.8x\n", header.e_version); s->Printf("e_entry = 0x%8.8" PRIx64 "\n", header.e_entry); s->Printf("e_phoff = 0x%8.8" PRIx64 "\n", header.e_phoff); s->Printf("e_shoff = 0x%8.8" PRIx64 "\n", header.e_shoff); s->Printf("e_flags = 0x%8.8x\n", header.e_flags); s->Printf("e_ehsize = 0x%4.4x\n", header.e_ehsize); s->Printf("e_phentsize = 0x%4.4x\n", header.e_phentsize); s->Printf("e_phnum = 0x%4.4x\n", header.e_phnum); s->Printf("e_shentsize = 0x%4.4x\n", header.e_shentsize); s->Printf("e_shnum = 0x%4.4x\n", header.e_shnum); s->Printf("e_shstrndx = 0x%4.4x\n", header.e_shstrndx); } //---------------------------------------------------------------------- // DumpELFHeader_e_type // // Dump an token value for the ELF header member e_type //---------------------------------------------------------------------- void ObjectFileELF::DumpELFHeader_e_type(Stream *s, elf_half e_type) { switch (e_type) { case ET_NONE: *s << "ET_NONE"; break; case ET_REL: *s << "ET_REL"; break; case ET_EXEC: *s << "ET_EXEC"; break; case ET_DYN: *s << "ET_DYN"; break; case ET_CORE: *s << "ET_CORE"; break; default: break; } } //---------------------------------------------------------------------- // DumpELFHeader_e_ident_EI_DATA // // Dump an token value for the ELF header member e_ident[EI_DATA] //---------------------------------------------------------------------- void ObjectFileELF::DumpELFHeader_e_ident_EI_DATA(Stream *s, unsigned char ei_data) { switch (ei_data) { case ELFDATANONE: *s << "ELFDATANONE"; break; case ELFDATA2LSB: *s << "ELFDATA2LSB - Little Endian"; break; case ELFDATA2MSB: *s << "ELFDATA2MSB - Big Endian"; break; default: break; } } //---------------------------------------------------------------------- // DumpELFProgramHeader // // Dump a single ELF program header to the specified output stream //---------------------------------------------------------------------- void ObjectFileELF::DumpELFProgramHeader(Stream *s, const ELFProgramHeader &ph) { DumpELFProgramHeader_p_type(s, ph.p_type); s->Printf(" %8.8" PRIx64 " %8.8" PRIx64 " %8.8" PRIx64, ph.p_offset, ph.p_vaddr, ph.p_paddr); s->Printf(" %8.8" PRIx64 " %8.8" PRIx64 " %8.8x (", ph.p_filesz, ph.p_memsz, ph.p_flags); DumpELFProgramHeader_p_flags(s, ph.p_flags); s->Printf(") %8.8" PRIx64, ph.p_align); } //---------------------------------------------------------------------- // DumpELFProgramHeader_p_type // // Dump an token value for the ELF program header member p_type which // describes the type of the program header // ---------------------------------------------------------------------- void ObjectFileELF::DumpELFProgramHeader_p_type(Stream *s, elf_word p_type) { const int kStrWidth = 15; switch (p_type) { CASE_AND_STREAM(s, PT_NULL , kStrWidth); CASE_AND_STREAM(s, PT_LOAD , kStrWidth); CASE_AND_STREAM(s, PT_DYNAMIC , kStrWidth); CASE_AND_STREAM(s, PT_INTERP , kStrWidth); CASE_AND_STREAM(s, PT_NOTE , kStrWidth); CASE_AND_STREAM(s, PT_SHLIB , kStrWidth); CASE_AND_STREAM(s, PT_PHDR , kStrWidth); CASE_AND_STREAM(s, PT_TLS , kStrWidth); CASE_AND_STREAM(s, PT_GNU_EH_FRAME, kStrWidth); default: s->Printf("0x%8.8x%*s", p_type, kStrWidth - 10, ""); break; } } //---------------------------------------------------------------------- // DumpELFProgramHeader_p_flags // // Dump an token value for the ELF program header member p_flags //---------------------------------------------------------------------- void ObjectFileELF::DumpELFProgramHeader_p_flags(Stream *s, elf_word p_flags) { *s << ((p_flags & PF_X) ? "PF_X" : " ") << (((p_flags & PF_X) && (p_flags & PF_W)) ? '+' : ' ') << ((p_flags & PF_W) ? "PF_W" : " ") << (((p_flags & PF_W) && (p_flags & PF_R)) ? '+' : ' ') << ((p_flags & PF_R) ? "PF_R" : " "); } //---------------------------------------------------------------------- // DumpELFProgramHeaders // // Dump all of the ELF program header to the specified output stream //---------------------------------------------------------------------- void ObjectFileELF::DumpELFProgramHeaders(Stream *s) { if (ParseProgramHeaders()) { s->PutCString("Program Headers\n"); s->PutCString("IDX p_type p_offset p_vaddr p_paddr " "p_filesz p_memsz p_flags p_align\n"); s->PutCString("==== --------------- -------- -------- -------- " "-------- -------- ------------------------- --------\n"); uint32_t idx = 0; for (ProgramHeaderCollConstIter I = m_program_headers.begin(); I != m_program_headers.end(); ++I, ++idx) { s->Printf("[%2u] ", idx); ObjectFileELF::DumpELFProgramHeader(s, *I); s->EOL(); } } } //---------------------------------------------------------------------- // DumpELFSectionHeader // // Dump a single ELF section header to the specified output stream //---------------------------------------------------------------------- void ObjectFileELF::DumpELFSectionHeader(Stream *s, const ELFSectionHeader &sh) { s->Printf("%8.8x ", sh.sh_name); DumpELFSectionHeader_sh_type(s, sh.sh_type); s->Printf(" %8.8" PRIx64 " (", sh.sh_flags); DumpELFSectionHeader_sh_flags(s, sh.sh_flags); s->Printf(") %8.8" PRIx64 " %8.8" PRIx64 " %8.8" PRIx64, sh.sh_addr, sh.sh_offset, sh.sh_size); s->Printf(" %8.8x %8.8x", sh.sh_link, sh.sh_info); s->Printf(" %8.8" PRIx64 " %8.8" PRIx64, sh.sh_addralign, sh.sh_entsize); } //---------------------------------------------------------------------- // DumpELFSectionHeader_sh_type // // Dump an token value for the ELF section header member sh_type which // describes the type of the section //---------------------------------------------------------------------- void ObjectFileELF::DumpELFSectionHeader_sh_type(Stream *s, elf_word sh_type) { const int kStrWidth = 12; switch (sh_type) { CASE_AND_STREAM(s, SHT_NULL , kStrWidth); CASE_AND_STREAM(s, SHT_PROGBITS , kStrWidth); CASE_AND_STREAM(s, SHT_SYMTAB , kStrWidth); CASE_AND_STREAM(s, SHT_STRTAB , kStrWidth); CASE_AND_STREAM(s, SHT_RELA , kStrWidth); CASE_AND_STREAM(s, SHT_HASH , kStrWidth); CASE_AND_STREAM(s, SHT_DYNAMIC , kStrWidth); CASE_AND_STREAM(s, SHT_NOTE , kStrWidth); CASE_AND_STREAM(s, SHT_NOBITS , kStrWidth); CASE_AND_STREAM(s, SHT_REL , kStrWidth); CASE_AND_STREAM(s, SHT_SHLIB , kStrWidth); CASE_AND_STREAM(s, SHT_DYNSYM , kStrWidth); CASE_AND_STREAM(s, SHT_LOPROC , kStrWidth); CASE_AND_STREAM(s, SHT_HIPROC , kStrWidth); CASE_AND_STREAM(s, SHT_LOUSER , kStrWidth); CASE_AND_STREAM(s, SHT_HIUSER , kStrWidth); default: s->Printf("0x%8.8x%*s", sh_type, kStrWidth - 10, ""); break; } } //---------------------------------------------------------------------- // DumpELFSectionHeader_sh_flags // // Dump an token value for the ELF section header member sh_flags //---------------------------------------------------------------------- void ObjectFileELF::DumpELFSectionHeader_sh_flags(Stream *s, elf_xword sh_flags) { *s << ((sh_flags & SHF_WRITE) ? "WRITE" : " ") << (((sh_flags & SHF_WRITE) && (sh_flags & SHF_ALLOC)) ? '+' : ' ') << ((sh_flags & SHF_ALLOC) ? "ALLOC" : " ") << (((sh_flags & SHF_ALLOC) && (sh_flags & SHF_EXECINSTR)) ? '+' : ' ') << ((sh_flags & SHF_EXECINSTR) ? "EXECINSTR" : " "); } //---------------------------------------------------------------------- // DumpELFSectionHeaders // // Dump all of the ELF section header to the specified output stream //---------------------------------------------------------------------- void ObjectFileELF::DumpELFSectionHeaders(Stream *s) { if (!(ParseSectionHeaders() && GetSectionHeaderStringTable())) return; s->PutCString("Section Headers\n"); s->PutCString("IDX name type flags " "addr offset size link info addralgn " "entsize Name\n"); s->PutCString("==== -------- ------------ -------------------------------- " "-------- -------- -------- -------- -------- -------- " "-------- ====================\n"); uint32_t idx = 0; for (SectionHeaderCollConstIter I = m_section_headers.begin(); I != m_section_headers.end(); ++I, ++idx) { s->Printf("[%2u] ", idx); ObjectFileELF::DumpELFSectionHeader(s, *I); const char* section_name = m_shstr_data.PeekCStr(I->sh_name); if (section_name) *s << ' ' << section_name << "\n"; } } void ObjectFileELF::DumpDependentModules(lldb_private::Stream *s) { size_t num_modules = ParseDependentModules(); if (num_modules > 0) { s->PutCString("Dependent Modules:\n"); for (unsigned i = 0; i < num_modules; ++i) { const FileSpec &spec = m_filespec_ap->GetFileSpecAtIndex(i); s->Printf(" %s\n", spec.GetFilename().GetCString()); } } } bool ObjectFileELF::GetArchitecture (ArchSpec &arch) { if (!ParseHeader()) return false; arch.SetArchitecture (eArchTypeELF, m_header.e_machine, LLDB_INVALID_CPUTYPE); arch.GetTriple().setOSName (Host::GetOSString().GetCString()); arch.GetTriple().setVendorName(Host::GetVendorString().GetCString()); return true; } ObjectFile::Type ObjectFileELF::CalculateType() { switch (m_header.e_type) { case llvm::ELF::ET_NONE: // 0 - No file type return eTypeUnknown; case llvm::ELF::ET_REL: // 1 - Relocatable file return eTypeObjectFile; case llvm::ELF::ET_EXEC: // 2 - Executable file return eTypeExecutable; case llvm::ELF::ET_DYN: // 3 - Shared object file return eTypeSharedLibrary; case ET_CORE: // 4 - Core file return eTypeCoreFile; default: break; } return eTypeUnknown; } ObjectFile::Strata ObjectFileELF::CalculateStrata() { switch (m_header.e_type) { case llvm::ELF::ET_NONE: // 0 - No file type return eStrataUnknown; case llvm::ELF::ET_REL: // 1 - Relocatable file return eStrataUnknown; case llvm::ELF::ET_EXEC: // 2 - Executable file // TODO: is there any way to detect that an executable is a kernel // related executable by inspecting the program headers, section // headers, symbols, or any other flag bits??? return eStrataUser; case llvm::ELF::ET_DYN: // 3 - Shared object file // TODO: is there any way to detect that an shared library is a kernel // related executable by inspecting the program headers, section // headers, symbols, or any other flag bits??? return eStrataUnknown; case ET_CORE: // 4 - Core file // TODO: is there any way to detect that an core file is a kernel // related executable by inspecting the program headers, section // headers, symbols, or any other flag bits??? return eStrataUnknown; default: break; } return eStrataUnknown; }