//===- TestPatterns.cpp - Test dialect pattern driver ---------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "TestDialect.h" #include "mlir/Conversion/StandardToStandard/StandardToStandard.h" #include "mlir/IR/PatternMatch.h" #include "mlir/Pass/Pass.h" #include "mlir/Transforms/DialectConversion.h" using namespace mlir; // Native function for testing NativeCodeCall static Value chooseOperand(Value input1, Value input2, BoolAttr choice) { return choice.getValue() ? input1 : input2; } static void createOpI(PatternRewriter &rewriter, Value input) { rewriter.create<OpI>(rewriter.getUnknownLoc(), input); } static void handleNoResultOp(PatternRewriter &rewriter, OpSymbolBindingNoResult op) { // Turn the no result op to a one-result op. rewriter.create<OpSymbolBindingB>(op.getLoc(), op.operand().getType(), op.operand()); } namespace { #include "TestPatterns.inc" } // end anonymous namespace //===----------------------------------------------------------------------===// // Canonicalizer Driver. //===----------------------------------------------------------------------===// namespace { struct TestPatternDriver : public FunctionPass<TestPatternDriver> { void runOnFunction() override { mlir::OwningRewritePatternList patterns; populateWithGenerated(&getContext(), &patterns); // Verify named pattern is generated with expected name. patterns.insert<TestNamedPatternRule>(&getContext()); applyPatternsGreedily(getFunction(), patterns); } }; } // end anonymous namespace //===----------------------------------------------------------------------===// // ReturnType Driver. //===----------------------------------------------------------------------===// namespace { // Generate ops for each instance where the type can be successfully inferred. template <typename OpTy> static void invokeCreateWithInferredReturnType(Operation *op) { auto *context = op->getContext(); auto fop = op->getParentOfType<FuncOp>(); auto location = UnknownLoc::get(context); OpBuilder b(op); b.setInsertionPointAfter(op); // Use permutations of 2 args as operands. assert(fop.getNumArguments() >= 2); for (int i = 0, e = fop.getNumArguments(); i < e; ++i) { for (int j = 0; j < e; ++j) { std::array<Value, 2> values = {{fop.getArgument(i), fop.getArgument(j)}}; SmallVector<Type, 2> inferredReturnTypes; if (succeeded(OpTy::inferReturnTypes(context, llvm::None, values, op->getAttrs(), op->getRegions(), inferredReturnTypes))) { OperationState state(location, OpTy::getOperationName()); // TODO(jpienaar): Expand to regions. OpTy::build(&b, state, values, op->getAttrs()); (void)b.createOperation(state); } } } } static void reifyReturnShape(Operation *op) { OpBuilder b(op); // Use permutations of 2 args as operands. auto shapedOp = cast<OpWithShapedTypeInferTypeInterfaceOp>(op); SmallVector<Value, 2> shapes; if (failed(shapedOp.reifyReturnTypeShapes(b, shapes))) return; for (auto it : llvm::enumerate(shapes)) op->emitRemark() << "value " << it.index() << ": " << it.value().getDefiningOp(); } struct TestReturnTypeDriver : public FunctionPass<TestReturnTypeDriver> { void runOnFunction() override { if (getFunction().getName() == "testCreateFunctions") { std::vector<Operation *> ops; // Collect ops to avoid triggering on inserted ops. for (auto &op : getFunction().getBody().front()) ops.push_back(&op); // Generate test patterns for each, but skip terminator. for (auto *op : llvm::makeArrayRef(ops).drop_back()) { // Test create method of each of the Op classes below. The resultant // output would be in reverse order underneath `op` from which // the attributes and regions are used. invokeCreateWithInferredReturnType<OpWithInferTypeInterfaceOp>(op); invokeCreateWithInferredReturnType< OpWithShapedTypeInferTypeInterfaceOp>(op); }; return; } if (getFunction().getName() == "testReifyFunctions") { std::vector<Operation *> ops; // Collect ops to avoid triggering on inserted ops. for (auto &op : getFunction().getBody().front()) if (isa<OpWithShapedTypeInferTypeInterfaceOp>(op)) ops.push_back(&op); // Generate test patterns for each, but skip terminator. for (auto *op : ops) reifyReturnShape(op); } } }; } // end anonymous namespace //===----------------------------------------------------------------------===// // Legalization Driver. //===----------------------------------------------------------------------===// namespace { //===----------------------------------------------------------------------===// // Region-Block Rewrite Testing /// This pattern is a simple pattern that inlines the first region of a given /// operation into the parent region. struct TestRegionRewriteBlockMovement : public ConversionPattern { TestRegionRewriteBlockMovement(MLIRContext *ctx) : ConversionPattern("test.region", 1, ctx) {} LogicalResult matchAndRewrite(Operation *op, ArrayRef<Value> operands, ConversionPatternRewriter &rewriter) const final { // Inline this region into the parent region. auto &parentRegion = *op->getParentRegion(); if (op->getAttr("legalizer.should_clone")) rewriter.cloneRegionBefore(op->getRegion(0), parentRegion, parentRegion.end()); else rewriter.inlineRegionBefore(op->getRegion(0), parentRegion, parentRegion.end()); // Drop this operation. rewriter.eraseOp(op); return success(); } }; /// This pattern is a simple pattern that generates a region containing an /// illegal operation. struct TestRegionRewriteUndo : public RewritePattern { TestRegionRewriteUndo(MLIRContext *ctx) : RewritePattern("test.region_builder", 1, ctx) {} LogicalResult matchAndRewrite(Operation *op, PatternRewriter &rewriter) const final { // Create the region operation with an entry block containing arguments. OperationState newRegion(op->getLoc(), "test.region"); newRegion.addRegion(); auto *regionOp = rewriter.createOperation(newRegion); auto *entryBlock = rewriter.createBlock(®ionOp->getRegion(0)); entryBlock->addArgument(rewriter.getIntegerType(64)); // Add an explicitly illegal operation to ensure the conversion fails. rewriter.create<ILLegalOpF>(op->getLoc(), rewriter.getIntegerType(32)); rewriter.create<TestValidOp>(op->getLoc(), ArrayRef<Value>()); // Drop this operation. rewriter.eraseOp(op); return success(); } }; /// A simple pattern that creates a block at the end of the parent region of the /// matched operation. struct TestCreateBlock : public RewritePattern { TestCreateBlock(MLIRContext *ctx) : RewritePattern("test.create_block", /*benefit=*/1, ctx) {} LogicalResult matchAndRewrite(Operation *op, PatternRewriter &rewriter) const final { Region ®ion = *op->getParentRegion(); Type i32Type = rewriter.getIntegerType(32); rewriter.createBlock(®ion, region.end(), {i32Type, i32Type}); rewriter.create<TerminatorOp>(op->getLoc()); rewriter.replaceOp(op, {}); return success(); } }; /// A simple pattern that creates a block containing an invalid operaiton in /// order to trigger the block creation undo mechanism. struct TestCreateIllegalBlock : public RewritePattern { TestCreateIllegalBlock(MLIRContext *ctx) : RewritePattern("test.create_illegal_block", /*benefit=*/1, ctx) {} LogicalResult matchAndRewrite(Operation *op, PatternRewriter &rewriter) const final { Region ®ion = *op->getParentRegion(); Type i32Type = rewriter.getIntegerType(32); rewriter.createBlock(®ion, region.end(), {i32Type, i32Type}); // Create an illegal op to ensure the conversion fails. rewriter.create<ILLegalOpF>(op->getLoc(), i32Type); rewriter.create<TerminatorOp>(op->getLoc()); rewriter.replaceOp(op, {}); return success(); } }; //===----------------------------------------------------------------------===// // Type-Conversion Rewrite Testing /// This patterns erases a region operation that has had a type conversion. struct TestDropOpSignatureConversion : public ConversionPattern { TestDropOpSignatureConversion(MLIRContext *ctx, TypeConverter &converter) : ConversionPattern("test.drop_region_op", 1, ctx), converter(converter) { } LogicalResult matchAndRewrite(Operation *op, ArrayRef<Value> operands, ConversionPatternRewriter &rewriter) const override { Region ®ion = op->getRegion(0); Block *entry = ®ion.front(); // Convert the original entry arguments. TypeConverter::SignatureConversion result(entry->getNumArguments()); for (unsigned i = 0, e = entry->getNumArguments(); i != e; ++i) if (failed(converter.convertSignatureArg( i, entry->getArgument(i).getType(), result))) return failure(); // Convert the region signature and just drop the operation. rewriter.applySignatureConversion(®ion, result); rewriter.eraseOp(op); return success(); } /// The type converter to use when rewriting the signature. TypeConverter &converter; }; /// This pattern simply updates the operands of the given operation. struct TestPassthroughInvalidOp : public ConversionPattern { TestPassthroughInvalidOp(MLIRContext *ctx) : ConversionPattern("test.invalid", 1, ctx) {} LogicalResult matchAndRewrite(Operation *op, ArrayRef<Value> operands, ConversionPatternRewriter &rewriter) const final { rewriter.replaceOpWithNewOp<TestValidOp>(op, llvm::None, operands, llvm::None); return success(); } }; /// This pattern handles the case of a split return value. struct TestSplitReturnType : public ConversionPattern { TestSplitReturnType(MLIRContext *ctx) : ConversionPattern("test.return", 1, ctx) {} LogicalResult matchAndRewrite(Operation *op, ArrayRef<Value> operands, ConversionPatternRewriter &rewriter) const final { // Check for a return of F32. if (op->getNumOperands() != 1 || !op->getOperand(0).getType().isF32()) return failure(); // Check if the first operation is a cast operation, if it is we use the // results directly. auto *defOp = operands[0].getDefiningOp(); if (auto packerOp = llvm::dyn_cast_or_null<TestCastOp>(defOp)) { rewriter.replaceOpWithNewOp<TestReturnOp>(op, packerOp.getOperands()); return success(); } // Otherwise, fail to match. return failure(); } }; //===----------------------------------------------------------------------===// // Multi-Level Type-Conversion Rewrite Testing struct TestChangeProducerTypeI32ToF32 : public ConversionPattern { TestChangeProducerTypeI32ToF32(MLIRContext *ctx) : ConversionPattern("test.type_producer", 1, ctx) {} LogicalResult matchAndRewrite(Operation *op, ArrayRef<Value> operands, ConversionPatternRewriter &rewriter) const final { // If the type is I32, change the type to F32. if (!Type(*op->result_type_begin()).isSignlessInteger(32)) return failure(); rewriter.replaceOpWithNewOp<TestTypeProducerOp>(op, rewriter.getF32Type()); return success(); } }; struct TestChangeProducerTypeF32ToF64 : public ConversionPattern { TestChangeProducerTypeF32ToF64(MLIRContext *ctx) : ConversionPattern("test.type_producer", 1, ctx) {} LogicalResult matchAndRewrite(Operation *op, ArrayRef<Value> operands, ConversionPatternRewriter &rewriter) const final { // If the type is F32, change the type to F64. if (!Type(*op->result_type_begin()).isF32()) return rewriter.notifyMatchFailure(op, "expected single f32 operand"); rewriter.replaceOpWithNewOp<TestTypeProducerOp>(op, rewriter.getF64Type()); return success(); } }; struct TestChangeProducerTypeF32ToInvalid : public ConversionPattern { TestChangeProducerTypeF32ToInvalid(MLIRContext *ctx) : ConversionPattern("test.type_producer", 10, ctx) {} LogicalResult matchAndRewrite(Operation *op, ArrayRef<Value> operands, ConversionPatternRewriter &rewriter) const final { // Always convert to B16, even though it is not a legal type. This tests // that values are unmapped correctly. rewriter.replaceOpWithNewOp<TestTypeProducerOp>(op, rewriter.getBF16Type()); return success(); } }; struct TestUpdateConsumerType : public ConversionPattern { TestUpdateConsumerType(MLIRContext *ctx) : ConversionPattern("test.type_consumer", 1, ctx) {} LogicalResult matchAndRewrite(Operation *op, ArrayRef<Value> operands, ConversionPatternRewriter &rewriter) const final { // Verify that the incoming operand has been successfully remapped to F64. if (!operands[0].getType().isF64()) return failure(); rewriter.replaceOpWithNewOp<TestTypeConsumerOp>(op, operands[0]); return success(); } }; //===----------------------------------------------------------------------===// // Non-Root Replacement Rewrite Testing /// This pattern generates an invalid operation, but replaces it before the /// pattern is finished. This checks that we don't need to legalize the /// temporary op. struct TestNonRootReplacement : public RewritePattern { TestNonRootReplacement(MLIRContext *ctx) : RewritePattern("test.replace_non_root", 1, ctx) {} LogicalResult matchAndRewrite(Operation *op, PatternRewriter &rewriter) const final { auto resultType = *op->result_type_begin(); auto illegalOp = rewriter.create<ILLegalOpF>(op->getLoc(), resultType); auto legalOp = rewriter.create<LegalOpB>(op->getLoc(), resultType); rewriter.replaceOp(illegalOp, {legalOp}); rewriter.replaceOp(op, {illegalOp}); return success(); } }; } // namespace namespace { struct TestTypeConverter : public TypeConverter { using TypeConverter::TypeConverter; TestTypeConverter() { addConversion(convertType); } static LogicalResult convertType(Type t, SmallVectorImpl<Type> &results) { // Drop I16 types. if (t.isSignlessInteger(16)) return success(); // Convert I64 to F64. if (t.isSignlessInteger(64)) { results.push_back(FloatType::getF64(t.getContext())); return success(); } // Split F32 into F16,F16. if (t.isF32()) { results.assign(2, FloatType::getF16(t.getContext())); return success(); } // Otherwise, convert the type directly. results.push_back(t); return success(); } /// Override the hook to materialize a conversion. This is necessary because /// we generate 1->N type mappings. Operation *materializeConversion(PatternRewriter &rewriter, Type resultType, ArrayRef<Value> inputs, Location loc) override { return rewriter.create<TestCastOp>(loc, resultType, inputs); } }; struct TestLegalizePatternDriver : public ModulePass<TestLegalizePatternDriver> { /// The mode of conversion to use with the driver. enum class ConversionMode { Analysis, Full, Partial }; TestLegalizePatternDriver(ConversionMode mode) : mode(mode) {} void runOnModule() override { TestTypeConverter converter; mlir::OwningRewritePatternList patterns; populateWithGenerated(&getContext(), &patterns); patterns.insert< TestRegionRewriteBlockMovement, TestRegionRewriteUndo, TestCreateBlock, TestCreateIllegalBlock, TestPassthroughInvalidOp, TestSplitReturnType, TestChangeProducerTypeI32ToF32, TestChangeProducerTypeF32ToF64, TestChangeProducerTypeF32ToInvalid, TestUpdateConsumerType, TestNonRootReplacement>(&getContext()); patterns.insert<TestDropOpSignatureConversion>(&getContext(), converter); mlir::populateFuncOpTypeConversionPattern(patterns, &getContext(), converter); mlir::populateCallOpTypeConversionPattern(patterns, &getContext(), converter); // Define the conversion target used for the test. ConversionTarget target(getContext()); target.addLegalOp<ModuleOp, ModuleTerminatorOp>(); target.addLegalOp<LegalOpA, LegalOpB, TestCastOp, TestValidOp, TerminatorOp>(); target .addIllegalOp<ILLegalOpF, TestRegionBuilderOp, TestOpWithRegionFold>(); target.addDynamicallyLegalOp<TestReturnOp>([](TestReturnOp op) { // Don't allow F32 operands. return llvm::none_of(op.getOperandTypes(), [](Type type) { return type.isF32(); }); }); target.addDynamicallyLegalOp<FuncOp>( [&](FuncOp op) { return converter.isSignatureLegal(op.getType()); }); // Expect the type_producer/type_consumer operations to only operate on f64. target.addDynamicallyLegalOp<TestTypeProducerOp>( [](TestTypeProducerOp op) { return op.getType().isF64(); }); target.addDynamicallyLegalOp<TestTypeConsumerOp>([](TestTypeConsumerOp op) { return op.getOperand().getType().isF64(); }); // Check support for marking certain operations as recursively legal. target.markOpRecursivelyLegal<FuncOp, ModuleOp>([](Operation *op) { return static_cast<bool>( op->getAttrOfType<UnitAttr>("test.recursively_legal")); }); // Handle a partial conversion. if (mode == ConversionMode::Partial) { (void)applyPartialConversion(getModule(), target, patterns, &converter); return; } // Handle a full conversion. if (mode == ConversionMode::Full) { // Check support for marking unknown operations as dynamically legal. target.markUnknownOpDynamicallyLegal([](Operation *op) { return (bool)op->getAttrOfType<UnitAttr>("test.dynamically_legal"); }); (void)applyFullConversion(getModule(), target, patterns, &converter); return; } // Otherwise, handle an analysis conversion. assert(mode == ConversionMode::Analysis); // Analyze the convertible operations. DenseSet<Operation *> legalizedOps; if (failed(applyAnalysisConversion(getModule(), target, patterns, legalizedOps, &converter))) return signalPassFailure(); // Emit remarks for each legalizable operation. for (auto *op : legalizedOps) op->emitRemark() << "op '" << op->getName() << "' is legalizable"; } /// The mode of conversion to use. ConversionMode mode; }; } // end anonymous namespace static llvm::cl::opt<TestLegalizePatternDriver::ConversionMode> legalizerConversionMode( "test-legalize-mode", llvm::cl::desc("The legalization mode to use with the test driver"), llvm::cl::init(TestLegalizePatternDriver::ConversionMode::Partial), llvm::cl::values( clEnumValN(TestLegalizePatternDriver::ConversionMode::Analysis, "analysis", "Perform an analysis conversion"), clEnumValN(TestLegalizePatternDriver::ConversionMode::Full, "full", "Perform a full conversion"), clEnumValN(TestLegalizePatternDriver::ConversionMode::Partial, "partial", "Perform a partial conversion"))); //===----------------------------------------------------------------------===// // ConversionPatternRewriter::getRemappedValue testing. This method is used // to get the remapped value of an original value that was replaced using // ConversionPatternRewriter. namespace { /// Converter that replaces a one-result one-operand OneVResOneVOperandOp1 with /// a one-operand two-result OneVResOneVOperandOp1 by replicating its original /// operand twice. /// /// Example: /// %1 = test.one_variadic_out_one_variadic_in1"(%0) /// is replaced with: /// %1 = test.one_variadic_out_one_variadic_in1"(%0, %0) struct OneVResOneVOperandOp1Converter : public OpConversionPattern<OneVResOneVOperandOp1> { using OpConversionPattern<OneVResOneVOperandOp1>::OpConversionPattern; LogicalResult matchAndRewrite(OneVResOneVOperandOp1 op, ArrayRef<Value> operands, ConversionPatternRewriter &rewriter) const override { auto origOps = op.getOperands(); assert(std::distance(origOps.begin(), origOps.end()) == 1 && "One operand expected"); Value origOp = *origOps.begin(); SmallVector<Value, 2> remappedOperands; // Replicate the remapped original operand twice. Note that we don't used // the remapped 'operand' since the goal is testing 'getRemappedValue'. remappedOperands.push_back(rewriter.getRemappedValue(origOp)); remappedOperands.push_back(rewriter.getRemappedValue(origOp)); rewriter.replaceOpWithNewOp<OneVResOneVOperandOp1>(op, op.getResultTypes(), remappedOperands); return success(); } }; struct TestRemappedValue : public mlir::FunctionPass<TestRemappedValue> { void runOnFunction() override { mlir::OwningRewritePatternList patterns; patterns.insert<OneVResOneVOperandOp1Converter>(&getContext()); mlir::ConversionTarget target(getContext()); target.addLegalOp<ModuleOp, ModuleTerminatorOp, FuncOp, TestReturnOp>(); // We make OneVResOneVOperandOp1 legal only when it has more that one // operand. This will trigger the conversion that will replace one-operand // OneVResOneVOperandOp1 with two-operand OneVResOneVOperandOp1. target.addDynamicallyLegalOp<OneVResOneVOperandOp1>( [](Operation *op) -> bool { return std::distance(op->operand_begin(), op->operand_end()) > 1; }); if (failed(mlir::applyFullConversion(getFunction(), target, patterns))) { signalPassFailure(); } } }; } // end anonymous namespace namespace mlir { void registerPatternsTestPass() { mlir::PassRegistration<TestReturnTypeDriver>("test-return-type", "Run return type functions"); mlir::PassRegistration<TestPatternDriver>("test-patterns", "Run test dialect patterns"); mlir::PassRegistration<TestLegalizePatternDriver>( "test-legalize-patterns", "Run test dialect legalization patterns", [] { return std::make_unique<TestLegalizePatternDriver>( legalizerConversionMode); }); PassRegistration<TestRemappedValue>( "test-remapped-value", "Test public remapped value mechanism in ConversionPatternRewriter"); } } // namespace mlir