//===- VectorToLLVM.cpp - Conversion from Vector to the LLVM dialect ------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "mlir/Conversion/VectorToLLVM/ConvertVectorToLLVM.h" #include "mlir/Conversion/StandardToLLVM/ConvertStandardToLLVM.h" #include "mlir/Conversion/StandardToLLVM/ConvertStandardToLLVMPass.h" #include "mlir/Dialect/LLVMIR/LLVMDialect.h" #include "mlir/Dialect/StandardOps/IR/Ops.h" #include "mlir/Dialect/VectorOps/VectorOps.h" #include "mlir/IR/Attributes.h" #include "mlir/IR/Builders.h" #include "mlir/IR/MLIRContext.h" #include "mlir/IR/Module.h" #include "mlir/IR/Operation.h" #include "mlir/IR/PatternMatch.h" #include "mlir/IR/StandardTypes.h" #include "mlir/IR/Types.h" #include "mlir/Pass/Pass.h" #include "mlir/Pass/PassManager.h" #include "mlir/Transforms/DialectConversion.h" #include "mlir/Transforms/Passes.h" #include "llvm/IR/DerivedTypes.h" #include "llvm/IR/Module.h" #include "llvm/IR/Type.h" #include "llvm/Support/Allocator.h" #include "llvm/Support/ErrorHandling.h" using namespace mlir; using namespace mlir::vector; template <typename T> static LLVM::LLVMType getPtrToElementType(T containerType, LLVMTypeConverter &typeConverter) { return typeConverter.convertType(containerType.getElementType()) .template cast<LLVM::LLVMType>() .getPointerTo(); } // Helper to reduce vector type by one rank at front. static VectorType reducedVectorTypeFront(VectorType tp) { assert((tp.getRank() > 1) && "unlowerable vector type"); return VectorType::get(tp.getShape().drop_front(), tp.getElementType()); } // Helper to reduce vector type by *all* but one rank at back. static VectorType reducedVectorTypeBack(VectorType tp) { assert((tp.getRank() > 1) && "unlowerable vector type"); return VectorType::get(tp.getShape().take_back(), tp.getElementType()); } // Helper that picks the proper sequence for inserting. static Value insertOne(ConversionPatternRewriter &rewriter, LLVMTypeConverter &typeConverter, Location loc, Value val1, Value val2, Type llvmType, int64_t rank, int64_t pos) { if (rank == 1) { auto idxType = rewriter.getIndexType(); auto constant = rewriter.create<LLVM::ConstantOp>( loc, typeConverter.convertType(idxType), rewriter.getIntegerAttr(idxType, pos)); return rewriter.create<LLVM::InsertElementOp>(loc, llvmType, val1, val2, constant); } return rewriter.create<LLVM::InsertValueOp>(loc, llvmType, val1, val2, rewriter.getI64ArrayAttr(pos)); } // Helper that picks the proper sequence for inserting. static Value insertOne(PatternRewriter &rewriter, Location loc, Value from, Value into, int64_t offset) { auto vectorType = into.getType().cast<VectorType>(); if (vectorType.getRank() > 1) return rewriter.create<InsertOp>(loc, from, into, offset); return rewriter.create<vector::InsertElementOp>( loc, vectorType, from, into, rewriter.create<ConstantIndexOp>(loc, offset)); } // Helper that picks the proper sequence for extracting. static Value extractOne(ConversionPatternRewriter &rewriter, LLVMTypeConverter &typeConverter, Location loc, Value val, Type llvmType, int64_t rank, int64_t pos) { if (rank == 1) { auto idxType = rewriter.getIndexType(); auto constant = rewriter.create<LLVM::ConstantOp>( loc, typeConverter.convertType(idxType), rewriter.getIntegerAttr(idxType, pos)); return rewriter.create<LLVM::ExtractElementOp>(loc, llvmType, val, constant); } return rewriter.create<LLVM::ExtractValueOp>(loc, llvmType, val, rewriter.getI64ArrayAttr(pos)); } // Helper that picks the proper sequence for extracting. static Value extractOne(PatternRewriter &rewriter, Location loc, Value vector, int64_t offset) { auto vectorType = vector.getType().cast<VectorType>(); if (vectorType.getRank() > 1) return rewriter.create<ExtractOp>(loc, vector, offset); return rewriter.create<vector::ExtractElementOp>( loc, vectorType.getElementType(), vector, rewriter.create<ConstantIndexOp>(loc, offset)); } // Helper that returns a subset of `arrayAttr` as a vector of int64_t. // TODO(rriddle): Better support for attribute subtype forwarding + slicing. static SmallVector<int64_t, 4> getI64SubArray(ArrayAttr arrayAttr, unsigned dropFront = 0, unsigned dropBack = 0) { assert(arrayAttr.size() > dropFront + dropBack && "Out of bounds"); auto range = arrayAttr.getAsRange<IntegerAttr>(); SmallVector<int64_t, 4> res; res.reserve(arrayAttr.size() - dropFront - dropBack); for (auto it = range.begin() + dropFront, eit = range.end() - dropBack; it != eit; ++it) res.push_back((*it).getValue().getSExtValue()); return res; } namespace { class VectorBroadcastOpConversion : public ConvertToLLVMPattern { public: explicit VectorBroadcastOpConversion(MLIRContext *context, LLVMTypeConverter &typeConverter) : ConvertToLLVMPattern(vector::BroadcastOp::getOperationName(), context, typeConverter) {} PatternMatchResult matchAndRewrite(Operation *op, ArrayRef<Value> operands, ConversionPatternRewriter &rewriter) const override { auto broadcastOp = cast<vector::BroadcastOp>(op); VectorType dstVectorType = broadcastOp.getVectorType(); if (typeConverter.convertType(dstVectorType) == nullptr) return matchFailure(); // Rewrite when the full vector type can be lowered (which // implies all 'reduced' types can be lowered too). auto adaptor = vector::BroadcastOpOperandAdaptor(operands); VectorType srcVectorType = broadcastOp.getSourceType().dyn_cast<VectorType>(); rewriter.replaceOp( op, expandRanks(adaptor.source(), // source value to be expanded op->getLoc(), // location of original broadcast srcVectorType, dstVectorType, rewriter)); return matchSuccess(); } private: // Expands the given source value over all the ranks, as defined // by the source and destination type (a null source type denotes // expansion from a scalar value into a vector). // // TODO(ajcbik): consider replacing this one-pattern lowering // with a two-pattern lowering using other vector // ops once all insert/extract/shuffle operations // are available with lowering implementation. // Value expandRanks(Value value, Location loc, VectorType srcVectorType, VectorType dstVectorType, ConversionPatternRewriter &rewriter) const { assert((dstVectorType != nullptr) && "invalid result type in broadcast"); // Determine rank of source and destination. int64_t srcRank = srcVectorType ? srcVectorType.getRank() : 0; int64_t dstRank = dstVectorType.getRank(); int64_t curDim = dstVectorType.getDimSize(0); if (srcRank < dstRank) // Duplicate this rank. return duplicateOneRank(value, loc, srcVectorType, dstVectorType, dstRank, curDim, rewriter); // If all trailing dimensions are the same, the broadcast consists of // simply passing through the source value and we are done. Otherwise, // any non-matching dimension forces a stretch along this rank. assert((srcVectorType != nullptr) && (srcRank > 0) && (srcRank == dstRank) && "invalid rank in broadcast"); for (int64_t r = 0; r < dstRank; r++) { if (srcVectorType.getDimSize(r) != dstVectorType.getDimSize(r)) { return stretchOneRank(value, loc, srcVectorType, dstVectorType, dstRank, curDim, rewriter); } } return value; } // Picks the best way to duplicate a single rank. For the 1-D case, a // single insert-elt/shuffle is the most efficient expansion. For higher // dimensions, however, we need dim x insert-values on a new broadcast // with one less leading dimension, which will be lowered "recursively" // to matching LLVM IR. // For example: // v = broadcast s : f32 to vector<4x2xf32> // becomes: // x = broadcast s : f32 to vector<2xf32> // v = [x,x,x,x] // becomes: // x = [s,s] // v = [x,x,x,x] Value duplicateOneRank(Value value, Location loc, VectorType srcVectorType, VectorType dstVectorType, int64_t rank, int64_t dim, ConversionPatternRewriter &rewriter) const { Type llvmType = typeConverter.convertType(dstVectorType); assert((llvmType != nullptr) && "unlowerable vector type"); if (rank == 1) { Value undef = rewriter.create<LLVM::UndefOp>(loc, llvmType); Value expand = insertOne(rewriter, typeConverter, loc, undef, value, llvmType, rank, 0); SmallVector<int32_t, 4> zeroValues(dim, 0); return rewriter.create<LLVM::ShuffleVectorOp>( loc, expand, undef, rewriter.getI32ArrayAttr(zeroValues)); } Value expand = expandRanks(value, loc, srcVectorType, reducedVectorTypeFront(dstVectorType), rewriter); Value result = rewriter.create<LLVM::UndefOp>(loc, llvmType); for (int64_t d = 0; d < dim; ++d) { result = insertOne(rewriter, typeConverter, loc, result, expand, llvmType, rank, d); } return result; } // Picks the best way to stretch a single rank. For the 1-D case, a // single insert-elt/shuffle is the most efficient expansion when at // a stretch. Otherwise, every dimension needs to be expanded // individually and individually inserted in the resulting vector. // For example: // v = broadcast w : vector<4x1x2xf32> to vector<4x2x2xf32> // becomes: // a = broadcast w[0] : vector<1x2xf32> to vector<2x2xf32> // b = broadcast w[1] : vector<1x2xf32> to vector<2x2xf32> // c = broadcast w[2] : vector<1x2xf32> to vector<2x2xf32> // d = broadcast w[3] : vector<1x2xf32> to vector<2x2xf32> // v = [a,b,c,d] // becomes: // x = broadcast w[0][0] : vector<2xf32> to vector <2x2xf32> // y = broadcast w[1][0] : vector<2xf32> to vector <2x2xf32> // a = [x, y] // etc. Value stretchOneRank(Value value, Location loc, VectorType srcVectorType, VectorType dstVectorType, int64_t rank, int64_t dim, ConversionPatternRewriter &rewriter) const { Type llvmType = typeConverter.convertType(dstVectorType); assert((llvmType != nullptr) && "unlowerable vector type"); Value result = rewriter.create<LLVM::UndefOp>(loc, llvmType); bool atStretch = dim != srcVectorType.getDimSize(0); if (rank == 1) { assert(atStretch); Type redLlvmType = typeConverter.convertType(dstVectorType.getElementType()); Value one = extractOne(rewriter, typeConverter, loc, value, redLlvmType, rank, 0); Value expand = insertOne(rewriter, typeConverter, loc, result, one, llvmType, rank, 0); SmallVector<int32_t, 4> zeroValues(dim, 0); return rewriter.create<LLVM::ShuffleVectorOp>( loc, expand, result, rewriter.getI32ArrayAttr(zeroValues)); } VectorType redSrcType = reducedVectorTypeFront(srcVectorType); VectorType redDstType = reducedVectorTypeFront(dstVectorType); Type redLlvmType = typeConverter.convertType(redSrcType); for (int64_t d = 0; d < dim; ++d) { int64_t pos = atStretch ? 0 : d; Value one = extractOne(rewriter, typeConverter, loc, value, redLlvmType, rank, pos); Value expand = expandRanks(one, loc, redSrcType, redDstType, rewriter); result = insertOne(rewriter, typeConverter, loc, result, expand, llvmType, rank, d); } return result; } }; class VectorReductionOpConversion : public ConvertToLLVMPattern { public: explicit VectorReductionOpConversion(MLIRContext *context, LLVMTypeConverter &typeConverter) : ConvertToLLVMPattern(vector::ReductionOp::getOperationName(), context, typeConverter) {} PatternMatchResult matchAndRewrite(Operation *op, ArrayRef<Value> operands, ConversionPatternRewriter &rewriter) const override { auto reductionOp = cast<vector::ReductionOp>(op); auto kind = reductionOp.kind(); Type eltType = reductionOp.dest().getType(); Type llvmType = typeConverter.convertType(eltType); if (eltType.isSignlessInteger(32) || eltType.isSignlessInteger(64)) { // Integer reductions: add/mul/min/max/and/or/xor. if (kind == "add") rewriter.replaceOpWithNewOp<LLVM::experimental_vector_reduce_add>( op, llvmType, operands[0]); else if (kind == "mul") rewriter.replaceOpWithNewOp<LLVM::experimental_vector_reduce_mul>( op, llvmType, operands[0]); else if (kind == "min") rewriter.replaceOpWithNewOp<LLVM::experimental_vector_reduce_smin>( op, llvmType, operands[0]); else if (kind == "max") rewriter.replaceOpWithNewOp<LLVM::experimental_vector_reduce_smax>( op, llvmType, operands[0]); else if (kind == "and") rewriter.replaceOpWithNewOp<LLVM::experimental_vector_reduce_and>( op, llvmType, operands[0]); else if (kind == "or") rewriter.replaceOpWithNewOp<LLVM::experimental_vector_reduce_or>( op, llvmType, operands[0]); else if (kind == "xor") rewriter.replaceOpWithNewOp<LLVM::experimental_vector_reduce_xor>( op, llvmType, operands[0]); else return matchFailure(); return matchSuccess(); } else if (eltType.isF32() || eltType.isF64()) { // Floating-point reductions: add/mul/min/max if (kind == "add") { Value zero = rewriter.create<LLVM::ConstantOp>( op->getLoc(), llvmType, rewriter.getZeroAttr(eltType)); rewriter.replaceOpWithNewOp<LLVM::experimental_vector_reduce_v2_fadd>( op, llvmType, zero, operands[0]); } else if (kind == "mul") { Value one = rewriter.create<LLVM::ConstantOp>( op->getLoc(), llvmType, rewriter.getFloatAttr(eltType, 1.0)); rewriter.replaceOpWithNewOp<LLVM::experimental_vector_reduce_v2_fmul>( op, llvmType, one, operands[0]); } else if (kind == "min") rewriter.replaceOpWithNewOp<LLVM::experimental_vector_reduce_fmin>( op, llvmType, operands[0]); else if (kind == "max") rewriter.replaceOpWithNewOp<LLVM::experimental_vector_reduce_fmax>( op, llvmType, operands[0]); else return matchFailure(); return matchSuccess(); } return matchFailure(); } }; // TODO(ajcbik): merge Reduction and ReductionV2 class VectorReductionV2OpConversion : public ConvertToLLVMPattern { public: explicit VectorReductionV2OpConversion(MLIRContext *context, LLVMTypeConverter &typeConverter) : ConvertToLLVMPattern(vector::ReductionV2Op::getOperationName(), context, typeConverter) {} PatternMatchResult matchAndRewrite(Operation *op, ArrayRef<Value> operands, ConversionPatternRewriter &rewriter) const override { auto reductionOp = cast<vector::ReductionV2Op>(op); auto kind = reductionOp.kind(); Type eltType = reductionOp.dest().getType(); Type llvmType = typeConverter.convertType(eltType); if (kind == "add") { rewriter.replaceOpWithNewOp<LLVM::experimental_vector_reduce_v2_fadd>( op, llvmType, operands[1], operands[0]); return matchSuccess(); } else if (kind == "mul") { rewriter.replaceOpWithNewOp<LLVM::experimental_vector_reduce_v2_fmul>( op, llvmType, operands[1], operands[0]); return matchSuccess(); } return matchFailure(); } }; class VectorShuffleOpConversion : public ConvertToLLVMPattern { public: explicit VectorShuffleOpConversion(MLIRContext *context, LLVMTypeConverter &typeConverter) : ConvertToLLVMPattern(vector::ShuffleOp::getOperationName(), context, typeConverter) {} PatternMatchResult matchAndRewrite(Operation *op, ArrayRef<Value> operands, ConversionPatternRewriter &rewriter) const override { auto loc = op->getLoc(); auto adaptor = vector::ShuffleOpOperandAdaptor(operands); auto shuffleOp = cast<vector::ShuffleOp>(op); auto v1Type = shuffleOp.getV1VectorType(); auto v2Type = shuffleOp.getV2VectorType(); auto vectorType = shuffleOp.getVectorType(); Type llvmType = typeConverter.convertType(vectorType); auto maskArrayAttr = shuffleOp.mask(); // Bail if result type cannot be lowered. if (!llvmType) return matchFailure(); // Get rank and dimension sizes. int64_t rank = vectorType.getRank(); assert(v1Type.getRank() == rank); assert(v2Type.getRank() == rank); int64_t v1Dim = v1Type.getDimSize(0); // For rank 1, where both operands have *exactly* the same vector type, // there is direct shuffle support in LLVM. Use it! if (rank == 1 && v1Type == v2Type) { Value shuffle = rewriter.create<LLVM::ShuffleVectorOp>( loc, adaptor.v1(), adaptor.v2(), maskArrayAttr); rewriter.replaceOp(op, shuffle); return matchSuccess(); } // For all other cases, insert the individual values individually. Value insert = rewriter.create<LLVM::UndefOp>(loc, llvmType); int64_t insPos = 0; for (auto en : llvm::enumerate(maskArrayAttr)) { int64_t extPos = en.value().cast<IntegerAttr>().getInt(); Value value = adaptor.v1(); if (extPos >= v1Dim) { extPos -= v1Dim; value = adaptor.v2(); } Value extract = extractOne(rewriter, typeConverter, loc, value, llvmType, rank, extPos); insert = insertOne(rewriter, typeConverter, loc, insert, extract, llvmType, rank, insPos++); } rewriter.replaceOp(op, insert); return matchSuccess(); } }; class VectorExtractElementOpConversion : public ConvertToLLVMPattern { public: explicit VectorExtractElementOpConversion(MLIRContext *context, LLVMTypeConverter &typeConverter) : ConvertToLLVMPattern(vector::ExtractElementOp::getOperationName(), context, typeConverter) {} PatternMatchResult matchAndRewrite(Operation *op, ArrayRef<Value> operands, ConversionPatternRewriter &rewriter) const override { auto adaptor = vector::ExtractElementOpOperandAdaptor(operands); auto extractEltOp = cast<vector::ExtractElementOp>(op); auto vectorType = extractEltOp.getVectorType(); auto llvmType = typeConverter.convertType(vectorType.getElementType()); // Bail if result type cannot be lowered. if (!llvmType) return matchFailure(); rewriter.replaceOpWithNewOp<LLVM::ExtractElementOp>( op, llvmType, adaptor.vector(), adaptor.position()); return matchSuccess(); } }; class VectorExtractOpConversion : public ConvertToLLVMPattern { public: explicit VectorExtractOpConversion(MLIRContext *context, LLVMTypeConverter &typeConverter) : ConvertToLLVMPattern(vector::ExtractOp::getOperationName(), context, typeConverter) {} PatternMatchResult matchAndRewrite(Operation *op, ArrayRef<Value> operands, ConversionPatternRewriter &rewriter) const override { auto loc = op->getLoc(); auto adaptor = vector::ExtractOpOperandAdaptor(operands); auto extractOp = cast<vector::ExtractOp>(op); auto vectorType = extractOp.getVectorType(); auto resultType = extractOp.getResult().getType(); auto llvmResultType = typeConverter.convertType(resultType); auto positionArrayAttr = extractOp.position(); // Bail if result type cannot be lowered. if (!llvmResultType) return matchFailure(); // One-shot extraction of vector from array (only requires extractvalue). if (resultType.isa<VectorType>()) { Value extracted = rewriter.create<LLVM::ExtractValueOp>( loc, llvmResultType, adaptor.vector(), positionArrayAttr); rewriter.replaceOp(op, extracted); return matchSuccess(); } // Potential extraction of 1-D vector from array. auto *context = op->getContext(); Value extracted = adaptor.vector(); auto positionAttrs = positionArrayAttr.getValue(); if (positionAttrs.size() > 1) { auto oneDVectorType = reducedVectorTypeBack(vectorType); auto nMinusOnePositionAttrs = ArrayAttr::get(positionAttrs.drop_back(), context); extracted = rewriter.create<LLVM::ExtractValueOp>( loc, typeConverter.convertType(oneDVectorType), extracted, nMinusOnePositionAttrs); } // Remaining extraction of element from 1-D LLVM vector auto position = positionAttrs.back().cast<IntegerAttr>(); auto i64Type = LLVM::LLVMType::getInt64Ty(typeConverter.getDialect()); auto constant = rewriter.create<LLVM::ConstantOp>(loc, i64Type, position); extracted = rewriter.create<LLVM::ExtractElementOp>(loc, extracted, constant); rewriter.replaceOp(op, extracted); return matchSuccess(); } }; /// Conversion pattern that turns a vector.fma on a 1-D vector /// into an llvm.intr.fmuladd. This is a trivial 1-1 conversion. /// This does not match vectors of n >= 2 rank. /// /// Example: /// ``` /// vector.fma %a, %a, %a : vector<8xf32> /// ``` /// is converted to: /// ``` /// llvm.intr.fma %va, %va, %va: /// (!llvm<"<8 x float>">, !llvm<"<8 x float>">, !llvm<"<8 x float>">) /// -> !llvm<"<8 x float>"> /// ``` class VectorFMAOp1DConversion : public ConvertToLLVMPattern { public: explicit VectorFMAOp1DConversion(MLIRContext *context, LLVMTypeConverter &typeConverter) : ConvertToLLVMPattern(vector::FMAOp::getOperationName(), context, typeConverter) {} PatternMatchResult matchAndRewrite(Operation *op, ArrayRef<Value> operands, ConversionPatternRewriter &rewriter) const override { auto adaptor = vector::FMAOpOperandAdaptor(operands); vector::FMAOp fmaOp = cast<vector::FMAOp>(op); VectorType vType = fmaOp.getVectorType(); if (vType.getRank() != 1) return matchFailure(); rewriter.replaceOpWithNewOp<LLVM::FMAOp>(op, adaptor.lhs(), adaptor.rhs(), adaptor.acc()); return matchSuccess(); } }; class VectorInsertElementOpConversion : public ConvertToLLVMPattern { public: explicit VectorInsertElementOpConversion(MLIRContext *context, LLVMTypeConverter &typeConverter) : ConvertToLLVMPattern(vector::InsertElementOp::getOperationName(), context, typeConverter) {} PatternMatchResult matchAndRewrite(Operation *op, ArrayRef<Value> operands, ConversionPatternRewriter &rewriter) const override { auto adaptor = vector::InsertElementOpOperandAdaptor(operands); auto insertEltOp = cast<vector::InsertElementOp>(op); auto vectorType = insertEltOp.getDestVectorType(); auto llvmType = typeConverter.convertType(vectorType); // Bail if result type cannot be lowered. if (!llvmType) return matchFailure(); rewriter.replaceOpWithNewOp<LLVM::InsertElementOp>( op, llvmType, adaptor.dest(), adaptor.source(), adaptor.position()); return matchSuccess(); } }; class VectorInsertOpConversion : public ConvertToLLVMPattern { public: explicit VectorInsertOpConversion(MLIRContext *context, LLVMTypeConverter &typeConverter) : ConvertToLLVMPattern(vector::InsertOp::getOperationName(), context, typeConverter) {} PatternMatchResult matchAndRewrite(Operation *op, ArrayRef<Value> operands, ConversionPatternRewriter &rewriter) const override { auto loc = op->getLoc(); auto adaptor = vector::InsertOpOperandAdaptor(operands); auto insertOp = cast<vector::InsertOp>(op); auto sourceType = insertOp.getSourceType(); auto destVectorType = insertOp.getDestVectorType(); auto llvmResultType = typeConverter.convertType(destVectorType); auto positionArrayAttr = insertOp.position(); // Bail if result type cannot be lowered. if (!llvmResultType) return matchFailure(); // One-shot insertion of a vector into an array (only requires insertvalue). if (sourceType.isa<VectorType>()) { Value inserted = rewriter.create<LLVM::InsertValueOp>( loc, llvmResultType, adaptor.dest(), adaptor.source(), positionArrayAttr); rewriter.replaceOp(op, inserted); return matchSuccess(); } // Potential extraction of 1-D vector from array. auto *context = op->getContext(); Value extracted = adaptor.dest(); auto positionAttrs = positionArrayAttr.getValue(); auto position = positionAttrs.back().cast<IntegerAttr>(); auto oneDVectorType = destVectorType; if (positionAttrs.size() > 1) { oneDVectorType = reducedVectorTypeBack(destVectorType); auto nMinusOnePositionAttrs = ArrayAttr::get(positionAttrs.drop_back(), context); extracted = rewriter.create<LLVM::ExtractValueOp>( loc, typeConverter.convertType(oneDVectorType), extracted, nMinusOnePositionAttrs); } // Insertion of an element into a 1-D LLVM vector. auto i64Type = LLVM::LLVMType::getInt64Ty(typeConverter.getDialect()); auto constant = rewriter.create<LLVM::ConstantOp>(loc, i64Type, position); Value inserted = rewriter.create<LLVM::InsertElementOp>( loc, typeConverter.convertType(oneDVectorType), extracted, adaptor.source(), constant); // Potential insertion of resulting 1-D vector into array. if (positionAttrs.size() > 1) { auto nMinusOnePositionAttrs = ArrayAttr::get(positionAttrs.drop_back(), context); inserted = rewriter.create<LLVM::InsertValueOp>(loc, llvmResultType, adaptor.dest(), inserted, nMinusOnePositionAttrs); } rewriter.replaceOp(op, inserted); return matchSuccess(); } }; /// Rank reducing rewrite for n-D FMA into (n-1)-D FMA where n > 1. /// /// Example: /// ``` /// %d = vector.fma %a, %b, %c : vector<2x4xf32> /// ``` /// is rewritten into: /// ``` /// %r = splat %f0: vector<2x4xf32> /// %va = vector.extractvalue %a[0] : vector<2x4xf32> /// %vb = vector.extractvalue %b[0] : vector<2x4xf32> /// %vc = vector.extractvalue %c[0] : vector<2x4xf32> /// %vd = vector.fma %va, %vb, %vc : vector<4xf32> /// %r2 = vector.insertvalue %vd, %r[0] : vector<4xf32> into vector<2x4xf32> /// %va2 = vector.extractvalue %a2[1] : vector<2x4xf32> /// %vb2 = vector.extractvalue %b2[1] : vector<2x4xf32> /// %vc2 = vector.extractvalue %c2[1] : vector<2x4xf32> /// %vd2 = vector.fma %va2, %vb2, %vc2 : vector<4xf32> /// %r3 = vector.insertvalue %vd2, %r2[1] : vector<4xf32> into vector<2x4xf32> /// // %r3 holds the final value. /// ``` class VectorFMAOpNDRewritePattern : public OpRewritePattern<FMAOp> { public: using OpRewritePattern<FMAOp>::OpRewritePattern; PatternMatchResult matchAndRewrite(FMAOp op, PatternRewriter &rewriter) const override { auto vType = op.getVectorType(); if (vType.getRank() < 2) return matchFailure(); auto loc = op.getLoc(); auto elemType = vType.getElementType(); Value zero = rewriter.create<ConstantOp>(loc, elemType, rewriter.getZeroAttr(elemType)); Value desc = rewriter.create<SplatOp>(loc, vType, zero); for (int64_t i = 0, e = vType.getShape().front(); i != e; ++i) { Value extrLHS = rewriter.create<ExtractOp>(loc, op.lhs(), i); Value extrRHS = rewriter.create<ExtractOp>(loc, op.rhs(), i); Value extrACC = rewriter.create<ExtractOp>(loc, op.acc(), i); Value fma = rewriter.create<FMAOp>(loc, extrLHS, extrRHS, extrACC); desc = rewriter.create<InsertOp>(loc, fma, desc, i); } rewriter.replaceOp(op, desc); return matchSuccess(); } }; // When ranks are different, InsertStridedSlice needs to extract a properly // ranked vector from the destination vector into which to insert. This pattern // only takes care of this part and forwards the rest of the conversion to // another pattern that converts InsertStridedSlice for operands of the same // rank. // // RewritePattern for InsertStridedSliceOp where source and destination vectors // have different ranks. In this case: // 1. the proper subvector is extracted from the destination vector // 2. a new InsertStridedSlice op is created to insert the source in the // destination subvector // 3. the destination subvector is inserted back in the proper place // 4. the op is replaced by the result of step 3. // The new InsertStridedSlice from step 2. will be picked up by a // `VectorInsertStridedSliceOpSameRankRewritePattern`. class VectorInsertStridedSliceOpDifferentRankRewritePattern : public OpRewritePattern<InsertStridedSliceOp> { public: using OpRewritePattern<InsertStridedSliceOp>::OpRewritePattern; PatternMatchResult matchAndRewrite(InsertStridedSliceOp op, PatternRewriter &rewriter) const override { auto srcType = op.getSourceVectorType(); auto dstType = op.getDestVectorType(); if (op.offsets().getValue().empty()) return matchFailure(); auto loc = op.getLoc(); int64_t rankDiff = dstType.getRank() - srcType.getRank(); assert(rankDiff >= 0); if (rankDiff == 0) return matchFailure(); int64_t rankRest = dstType.getRank() - rankDiff; // Extract / insert the subvector of matching rank and InsertStridedSlice // on it. Value extracted = rewriter.create<ExtractOp>(loc, op.dest(), getI64SubArray(op.offsets(), /*dropFront=*/0, /*dropFront=*/rankRest)); // A different pattern will kick in for InsertStridedSlice with matching // ranks. auto stridedSliceInnerOp = rewriter.create<InsertStridedSliceOp>( loc, op.source(), extracted, getI64SubArray(op.offsets(), /*dropFront=*/rankDiff), getI64SubArray(op.strides(), /*dropFront=*/0)); rewriter.replaceOpWithNewOp<InsertOp>( op, stridedSliceInnerOp.getResult(), op.dest(), getI64SubArray(op.offsets(), /*dropFront=*/0, /*dropFront=*/rankRest)); return matchSuccess(); } }; // RewritePattern for InsertStridedSliceOp where source and destination vectors // have the same rank. In this case, we reduce // 1. the proper subvector is extracted from the destination vector // 2. a new InsertStridedSlice op is created to insert the source in the // destination subvector // 3. the destination subvector is inserted back in the proper place // 4. the op is replaced by the result of step 3. // The new InsertStridedSlice from step 2. will be picked up by a // `VectorInsertStridedSliceOpSameRankRewritePattern`. class VectorInsertStridedSliceOpSameRankRewritePattern : public OpRewritePattern<InsertStridedSliceOp> { public: using OpRewritePattern<InsertStridedSliceOp>::OpRewritePattern; PatternMatchResult matchAndRewrite(InsertStridedSliceOp op, PatternRewriter &rewriter) const override { auto srcType = op.getSourceVectorType(); auto dstType = op.getDestVectorType(); if (op.offsets().getValue().empty()) return matchFailure(); int64_t rankDiff = dstType.getRank() - srcType.getRank(); assert(rankDiff >= 0); if (rankDiff != 0) return matchFailure(); if (srcType == dstType) { rewriter.replaceOp(op, op.source()); return matchSuccess(); } int64_t offset = op.offsets().getValue().front().cast<IntegerAttr>().getInt(); int64_t size = srcType.getShape().front(); int64_t stride = op.strides().getValue().front().cast<IntegerAttr>().getInt(); auto loc = op.getLoc(); Value res = op.dest(); // For each slice of the source vector along the most major dimension. for (int64_t off = offset, e = offset + size * stride, idx = 0; off < e; off += stride, ++idx) { // 1. extract the proper subvector (or element) from source Value extractedSource = extractOne(rewriter, loc, op.source(), idx); if (extractedSource.getType().isa<VectorType>()) { // 2. If we have a vector, extract the proper subvector from destination // Otherwise we are at the element level and no need to recurse. Value extractedDest = extractOne(rewriter, loc, op.dest(), off); // 3. Reduce the problem to lowering a new InsertStridedSlice op with // smaller rank. InsertStridedSliceOp insertStridedSliceOp = rewriter.create<InsertStridedSliceOp>( loc, extractedSource, extractedDest, getI64SubArray(op.offsets(), /* dropFront=*/1), getI64SubArray(op.strides(), /* dropFront=*/1)); // Call matchAndRewrite recursively from within the pattern. This // circumvents the current limitation that a given pattern cannot // be called multiple times by the PatternRewrite infrastructure (to // avoid infinite recursion, but in this case, infinite recursion // cannot happen because the rank is strictly decreasing). // TODO(rriddle, nicolasvasilache) Implement something like a hook for // a potential function that must decrease and allow the same pattern // multiple times. auto success = matchAndRewrite(insertStridedSliceOp, rewriter); (void)success; assert(success && "Unexpected failure"); extractedSource = insertStridedSliceOp; } // 4. Insert the extractedSource into the res vector. res = insertOne(rewriter, loc, extractedSource, res, off); } rewriter.replaceOp(op, res); return matchSuccess(); } }; class VectorOuterProductOpConversion : public ConvertToLLVMPattern { public: explicit VectorOuterProductOpConversion(MLIRContext *context, LLVMTypeConverter &typeConverter) : ConvertToLLVMPattern(vector::OuterProductOp::getOperationName(), context, typeConverter) {} PatternMatchResult matchAndRewrite(Operation *op, ArrayRef<Value> operands, ConversionPatternRewriter &rewriter) const override { auto loc = op->getLoc(); auto adaptor = vector::OuterProductOpOperandAdaptor(operands); auto *ctx = op->getContext(); auto vLHS = adaptor.lhs().getType().cast<LLVM::LLVMType>(); auto vRHS = adaptor.rhs().getType().cast<LLVM::LLVMType>(); auto rankLHS = vLHS.getUnderlyingType()->getVectorNumElements(); auto rankRHS = vRHS.getUnderlyingType()->getVectorNumElements(); auto llvmArrayOfVectType = typeConverter.convertType( cast<vector::OuterProductOp>(op).getResult().getType()); Value desc = rewriter.create<LLVM::UndefOp>(loc, llvmArrayOfVectType); Value a = adaptor.lhs(), b = adaptor.rhs(); Value acc = adaptor.acc().empty() ? nullptr : adaptor.acc().front(); SmallVector<Value, 8> lhs, accs; lhs.reserve(rankLHS); accs.reserve(rankLHS); for (unsigned d = 0, e = rankLHS; d < e; ++d) { // shufflevector explicitly requires i32. auto attr = rewriter.getI32IntegerAttr(d); SmallVector<Attribute, 4> bcastAttr(rankRHS, attr); auto bcastArrayAttr = ArrayAttr::get(bcastAttr, ctx); Value aD = nullptr, accD = nullptr; // 1. Broadcast the element a[d] into vector aD. aD = rewriter.create<LLVM::ShuffleVectorOp>(loc, a, a, bcastArrayAttr); // 2. If acc is present, extract 1-d vector acc[d] into accD. if (acc) accD = rewriter.create<LLVM::ExtractValueOp>( loc, vRHS, acc, rewriter.getI64ArrayAttr(d)); // 3. Compute aD outer b (plus accD, if relevant). Value aOuterbD = accD ? rewriter.create<LLVM::FMAOp>(loc, vRHS, aD, b, accD).getResult() : rewriter.create<LLVM::FMulOp>(loc, aD, b).getResult(); // 4. Insert as value `d` in the descriptor. desc = rewriter.create<LLVM::InsertValueOp>(loc, llvmArrayOfVectType, desc, aOuterbD, rewriter.getI64ArrayAttr(d)); } rewriter.replaceOp(op, desc); return matchSuccess(); } }; class VectorTypeCastOpConversion : public ConvertToLLVMPattern { public: explicit VectorTypeCastOpConversion(MLIRContext *context, LLVMTypeConverter &typeConverter) : ConvertToLLVMPattern(vector::TypeCastOp::getOperationName(), context, typeConverter) {} PatternMatchResult matchAndRewrite(Operation *op, ArrayRef<Value> operands, ConversionPatternRewriter &rewriter) const override { auto loc = op->getLoc(); vector::TypeCastOp castOp = cast<vector::TypeCastOp>(op); MemRefType sourceMemRefType = castOp.getOperand().getType().cast<MemRefType>(); MemRefType targetMemRefType = castOp.getResult().getType().cast<MemRefType>(); // Only static shape casts supported atm. if (!sourceMemRefType.hasStaticShape() || !targetMemRefType.hasStaticShape()) return matchFailure(); auto llvmSourceDescriptorTy = operands[0].getType().dyn_cast<LLVM::LLVMType>(); if (!llvmSourceDescriptorTy || !llvmSourceDescriptorTy.isStructTy()) return matchFailure(); MemRefDescriptor sourceMemRef(operands[0]); auto llvmTargetDescriptorTy = typeConverter.convertType(targetMemRefType) .dyn_cast_or_null<LLVM::LLVMType>(); if (!llvmTargetDescriptorTy || !llvmTargetDescriptorTy.isStructTy()) return matchFailure(); int64_t offset; SmallVector<int64_t, 4> strides; auto successStrides = getStridesAndOffset(sourceMemRefType, strides, offset); bool isContiguous = (strides.back() == 1); if (isContiguous) { auto sizes = sourceMemRefType.getShape(); for (int index = 0, e = strides.size() - 2; index < e; ++index) { if (strides[index] != strides[index + 1] * sizes[index + 1]) { isContiguous = false; break; } } } // Only contiguous source tensors supported atm. if (failed(successStrides) || !isContiguous) return matchFailure(); auto int64Ty = LLVM::LLVMType::getInt64Ty(typeConverter.getDialect()); // Create descriptor. auto desc = MemRefDescriptor::undef(rewriter, loc, llvmTargetDescriptorTy); Type llvmTargetElementTy = desc.getElementType(); // Set allocated ptr. Value allocated = sourceMemRef.allocatedPtr(rewriter, loc); allocated = rewriter.create<LLVM::BitcastOp>(loc, llvmTargetElementTy, allocated); desc.setAllocatedPtr(rewriter, loc, allocated); // Set aligned ptr. Value ptr = sourceMemRef.alignedPtr(rewriter, loc); ptr = rewriter.create<LLVM::BitcastOp>(loc, llvmTargetElementTy, ptr); desc.setAlignedPtr(rewriter, loc, ptr); // Fill offset 0. auto attr = rewriter.getIntegerAttr(rewriter.getIndexType(), 0); auto zero = rewriter.create<LLVM::ConstantOp>(loc, int64Ty, attr); desc.setOffset(rewriter, loc, zero); // Fill size and stride descriptors in memref. for (auto indexedSize : llvm::enumerate(targetMemRefType.getShape())) { int64_t index = indexedSize.index(); auto sizeAttr = rewriter.getIntegerAttr(rewriter.getIndexType(), indexedSize.value()); auto size = rewriter.create<LLVM::ConstantOp>(loc, int64Ty, sizeAttr); desc.setSize(rewriter, loc, index, size); auto strideAttr = rewriter.getIntegerAttr(rewriter.getIndexType(), strides[index]); auto stride = rewriter.create<LLVM::ConstantOp>(loc, int64Ty, strideAttr); desc.setStride(rewriter, loc, index, stride); } rewriter.replaceOp(op, {desc}); return matchSuccess(); } }; class VectorPrintOpConversion : public ConvertToLLVMPattern { public: explicit VectorPrintOpConversion(MLIRContext *context, LLVMTypeConverter &typeConverter) : ConvertToLLVMPattern(vector::PrintOp::getOperationName(), context, typeConverter) {} // Proof-of-concept lowering implementation that relies on a small // runtime support library, which only needs to provide a few // printing methods (single value for all data types, opening/closing // bracket, comma, newline). The lowering fully unrolls a vector // in terms of these elementary printing operations. The advantage // of this approach is that the library can remain unaware of all // low-level implementation details of vectors while still supporting // output of any shaped and dimensioned vector. Due to full unrolling, // this approach is less suited for very large vectors though. // // TODO(ajcbik): rely solely on libc in future? something else? // PatternMatchResult matchAndRewrite(Operation *op, ArrayRef<Value> operands, ConversionPatternRewriter &rewriter) const override { auto printOp = cast<vector::PrintOp>(op); auto adaptor = vector::PrintOpOperandAdaptor(operands); Type printType = printOp.getPrintType(); if (typeConverter.convertType(printType) == nullptr) return matchFailure(); // Make sure element type has runtime support (currently just Float/Double). VectorType vectorType = printType.dyn_cast<VectorType>(); Type eltType = vectorType ? vectorType.getElementType() : printType; int64_t rank = vectorType ? vectorType.getRank() : 0; Operation *printer; if (eltType.isSignlessInteger(32)) printer = getPrintI32(op); else if (eltType.isSignlessInteger(64)) printer = getPrintI64(op); else if (eltType.isF32()) printer = getPrintFloat(op); else if (eltType.isF64()) printer = getPrintDouble(op); else return matchFailure(); // Unroll vector into elementary print calls. emitRanks(rewriter, op, adaptor.source(), vectorType, printer, rank); emitCall(rewriter, op->getLoc(), getPrintNewline(op)); rewriter.eraseOp(op); return matchSuccess(); } private: void emitRanks(ConversionPatternRewriter &rewriter, Operation *op, Value value, VectorType vectorType, Operation *printer, int64_t rank) const { Location loc = op->getLoc(); if (rank == 0) { emitCall(rewriter, loc, printer, value); return; } emitCall(rewriter, loc, getPrintOpen(op)); Operation *printComma = getPrintComma(op); int64_t dim = vectorType.getDimSize(0); for (int64_t d = 0; d < dim; ++d) { auto reducedType = rank > 1 ? reducedVectorTypeFront(vectorType) : nullptr; auto llvmType = typeConverter.convertType( rank > 1 ? reducedType : vectorType.getElementType()); Value nestedVal = extractOne(rewriter, typeConverter, loc, value, llvmType, rank, d); emitRanks(rewriter, op, nestedVal, reducedType, printer, rank - 1); if (d != dim - 1) emitCall(rewriter, loc, printComma); } emitCall(rewriter, loc, getPrintClose(op)); } // Helper to emit a call. static void emitCall(ConversionPatternRewriter &rewriter, Location loc, Operation *ref, ValueRange params = ValueRange()) { rewriter.create<LLVM::CallOp>(loc, ArrayRef<Type>{}, rewriter.getSymbolRefAttr(ref), params); } // Helper for printer method declaration (first hit) and lookup. static Operation *getPrint(Operation *op, LLVM::LLVMDialect *dialect, StringRef name, ArrayRef<LLVM::LLVMType> params) { auto module = op->getParentOfType<ModuleOp>(); auto func = module.lookupSymbol<LLVM::LLVMFuncOp>(name); if (func) return func; OpBuilder moduleBuilder(module.getBodyRegion()); return moduleBuilder.create<LLVM::LLVMFuncOp>( op->getLoc(), name, LLVM::LLVMType::getFunctionTy(LLVM::LLVMType::getVoidTy(dialect), params, /*isVarArg=*/false)); } // Helpers for method names. Operation *getPrintI32(Operation *op) const { LLVM::LLVMDialect *dialect = typeConverter.getDialect(); return getPrint(op, dialect, "print_i32", LLVM::LLVMType::getInt32Ty(dialect)); } Operation *getPrintI64(Operation *op) const { LLVM::LLVMDialect *dialect = typeConverter.getDialect(); return getPrint(op, dialect, "print_i64", LLVM::LLVMType::getInt64Ty(dialect)); } Operation *getPrintFloat(Operation *op) const { LLVM::LLVMDialect *dialect = typeConverter.getDialect(); return getPrint(op, dialect, "print_f32", LLVM::LLVMType::getFloatTy(dialect)); } Operation *getPrintDouble(Operation *op) const { LLVM::LLVMDialect *dialect = typeConverter.getDialect(); return getPrint(op, dialect, "print_f64", LLVM::LLVMType::getDoubleTy(dialect)); } Operation *getPrintOpen(Operation *op) const { return getPrint(op, typeConverter.getDialect(), "print_open", {}); } Operation *getPrintClose(Operation *op) const { return getPrint(op, typeConverter.getDialect(), "print_close", {}); } Operation *getPrintComma(Operation *op) const { return getPrint(op, typeConverter.getDialect(), "print_comma", {}); } Operation *getPrintNewline(Operation *op) const { return getPrint(op, typeConverter.getDialect(), "print_newline", {}); } }; /// Progressive lowering of StridedSliceOp to either: /// 1. extractelement + insertelement for the 1-D case /// 2. extract + optional strided_slice + insert for the n-D case. class VectorStridedSliceOpConversion : public OpRewritePattern<StridedSliceOp> { public: using OpRewritePattern<StridedSliceOp>::OpRewritePattern; PatternMatchResult matchAndRewrite(StridedSliceOp op, PatternRewriter &rewriter) const override { auto dstType = op.getResult().getType().cast<VectorType>(); assert(!op.offsets().getValue().empty() && "Unexpected empty offsets"); int64_t offset = op.offsets().getValue().front().cast<IntegerAttr>().getInt(); int64_t size = op.sizes().getValue().front().cast<IntegerAttr>().getInt(); int64_t stride = op.strides().getValue().front().cast<IntegerAttr>().getInt(); auto loc = op.getLoc(); auto elemType = dstType.getElementType(); assert(elemType.isSignlessIntOrIndexOrFloat()); Value zero = rewriter.create<ConstantOp>(loc, elemType, rewriter.getZeroAttr(elemType)); Value res = rewriter.create<SplatOp>(loc, dstType, zero); for (int64_t off = offset, e = offset + size * stride, idx = 0; off < e; off += stride, ++idx) { Value extracted = extractOne(rewriter, loc, op.vector(), off); if (op.offsets().getValue().size() > 1) { StridedSliceOp stridedSliceOp = rewriter.create<StridedSliceOp>( loc, extracted, getI64SubArray(op.offsets(), /* dropFront=*/1), getI64SubArray(op.sizes(), /* dropFront=*/1), getI64SubArray(op.strides(), /* dropFront=*/1)); // Call matchAndRewrite recursively from within the pattern. This // circumvents the current limitation that a given pattern cannot // be called multiple times by the PatternRewrite infrastructure (to // avoid infinite recursion, but in this case, infinite recursion // cannot happen because the rank is strictly decreasing). // TODO(rriddle, nicolasvasilache) Implement something like a hook for // a potential function that must decrease and allow the same pattern // multiple times. auto success = matchAndRewrite(stridedSliceOp, rewriter); (void)success; assert(success && "Unexpected failure"); extracted = stridedSliceOp; } res = insertOne(rewriter, loc, extracted, res, idx); } rewriter.replaceOp(op, {res}); return matchSuccess(); } }; } // namespace /// Populate the given list with patterns that convert from Vector to LLVM. void mlir::populateVectorToLLVMConversionPatterns( LLVMTypeConverter &converter, OwningRewritePatternList &patterns) { MLIRContext *ctx = converter.getDialect()->getContext(); patterns.insert<VectorFMAOpNDRewritePattern, VectorInsertStridedSliceOpDifferentRankRewritePattern, VectorInsertStridedSliceOpSameRankRewritePattern, VectorStridedSliceOpConversion>(ctx); patterns.insert<VectorBroadcastOpConversion, VectorReductionOpConversion, VectorReductionV2OpConversion, VectorShuffleOpConversion, VectorExtractElementOpConversion, VectorExtractOpConversion, VectorFMAOp1DConversion, VectorInsertElementOpConversion, VectorInsertOpConversion, VectorOuterProductOpConversion, VectorTypeCastOpConversion, VectorPrintOpConversion>( ctx, converter); } namespace { struct LowerVectorToLLVMPass : public ModulePass<LowerVectorToLLVMPass> { void runOnModule() override; }; } // namespace void LowerVectorToLLVMPass::runOnModule() { // Perform progressive lowering of operations on "slices" and // all contraction operations. Also applies folding and DCE. { OwningRewritePatternList patterns; populateVectorSlicesLoweringPatterns(patterns, &getContext()); populateVectorContractLoweringPatterns(patterns, &getContext()); applyPatternsGreedily(getModule(), patterns); } // Convert to the LLVM IR dialect. LLVMTypeConverter converter(&getContext()); OwningRewritePatternList patterns; populateVectorToLLVMConversionPatterns(converter, patterns); populateStdToLLVMConversionPatterns(converter, patterns); ConversionTarget target(getContext()); target.addLegalDialect<LLVM::LLVMDialect>(); target.addDynamicallyLegalOp<FuncOp>( [&](FuncOp op) { return converter.isSignatureLegal(op.getType()); }); if (failed( applyPartialConversion(getModule(), target, patterns, &converter))) { signalPassFailure(); } } OpPassBase<ModuleOp> *mlir::createLowerVectorToLLVMPass() { return new LowerVectorToLLVMPass(); } static PassRegistration<LowerVectorToLLVMPass> pass("convert-vector-to-llvm", "Lower the operations from the vector dialect into the LLVM dialect");