//===- OutputSections.cpp -------------------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "OutputSections.h" #include "Config.h" #include "LinkerScript.h" #include "SymbolTable.h" #include "SyntheticSections.h" #include "Target.h" #include "lld/Common/Memory.h" #include "lld/Common/Strings.h" #include "lld/Common/Threads.h" #include "llvm/BinaryFormat/Dwarf.h" #include "llvm/Support/Compression.h" #include "llvm/Support/MD5.h" #include "llvm/Support/MathExtras.h" #include "llvm/Support/SHA1.h" #include using namespace llvm; using namespace llvm::dwarf; using namespace llvm::object; using namespace llvm::support::endian; using namespace llvm::ELF; namespace lld { namespace elf { uint8_t *Out::bufferStart; uint8_t Out::first; PhdrEntry *Out::tlsPhdr; OutputSection *Out::elfHeader; OutputSection *Out::programHeaders; OutputSection *Out::preinitArray; OutputSection *Out::initArray; OutputSection *Out::finiArray; std::vector outputSections; uint32_t OutputSection::getPhdrFlags() const { uint32_t ret = 0; if (config->emachine != EM_ARM || !(flags & SHF_ARM_PURECODE)) ret |= PF_R; if (flags & SHF_WRITE) ret |= PF_W; if (flags & SHF_EXECINSTR) ret |= PF_X; return ret; } template void OutputSection::writeHeaderTo(typename ELFT::Shdr *shdr) { shdr->sh_entsize = entsize; shdr->sh_addralign = alignment; shdr->sh_type = type; shdr->sh_offset = offset; shdr->sh_flags = flags; shdr->sh_info = info; shdr->sh_link = link; shdr->sh_addr = addr; shdr->sh_size = size; shdr->sh_name = shName; } OutputSection::OutputSection(StringRef name, uint32_t type, uint64_t flags) : BaseCommand(OutputSectionKind), SectionBase(Output, name, flags, /*Entsize*/ 0, /*Alignment*/ 1, type, /*Info*/ 0, /*Link*/ 0) {} // We allow sections of types listed below to merged into a // single progbits section. This is typically done by linker // scripts. Merging nobits and progbits will force disk space // to be allocated for nobits sections. Other ones don't require // any special treatment on top of progbits, so there doesn't // seem to be a harm in merging them. static bool canMergeToProgbits(unsigned type) { return type == SHT_NOBITS || type == SHT_PROGBITS || type == SHT_INIT_ARRAY || type == SHT_PREINIT_ARRAY || type == SHT_FINI_ARRAY || type == SHT_NOTE; } // Record that isec will be placed in the OutputSection. isec does not become // permanent until finalizeInputSections() is called. The function should not be // used after finalizeInputSections() is called. If you need to add an // InputSection post finalizeInputSections(), then you must do the following: // // 1. Find or create an InputSectionDescription to hold InputSection. // 2. Add the InputSection to the InputSectionDescription::sections. // 3. Call commitSection(isec). void OutputSection::recordSection(InputSectionBase *isec) { partition = isec->partition; isec->parent = this; if (sectionCommands.empty() || !isa(sectionCommands.back())) sectionCommands.push_back(make("")); auto *isd = cast(sectionCommands.back()); isd->sectionBases.push_back(isec); } // Update fields (type, flags, alignment, etc) according to the InputSection // isec. Also check whether the InputSection flags and type are consistent with // other InputSections. void OutputSection::commitSection(InputSection *isec) { if (!hasInputSections) { // If IS is the first section to be added to this section, // initialize type, entsize and flags from isec. hasInputSections = true; type = isec->type; entsize = isec->entsize; flags = isec->flags; } else { // Otherwise, check if new type or flags are compatible with existing ones. if ((flags ^ isec->flags) & SHF_TLS) error("incompatible section flags for " + name + "\n>>> " + toString(isec) + ": 0x" + utohexstr(isec->flags) + "\n>>> output section " + name + ": 0x" + utohexstr(flags)); if (type != isec->type) { if (!canMergeToProgbits(type) || !canMergeToProgbits(isec->type)) error("section type mismatch for " + isec->name + "\n>>> " + toString(isec) + ": " + getELFSectionTypeName(config->emachine, isec->type) + "\n>>> output section " + name + ": " + getELFSectionTypeName(config->emachine, type)); type = SHT_PROGBITS; } } if (noload) type = SHT_NOBITS; isec->parent = this; uint64_t andMask = config->emachine == EM_ARM ? (uint64_t)SHF_ARM_PURECODE : 0; uint64_t orMask = ~andMask; uint64_t andFlags = (flags & isec->flags) & andMask; uint64_t orFlags = (flags | isec->flags) & orMask; flags = andFlags | orFlags; if (nonAlloc) flags &= ~(uint64_t)SHF_ALLOC; alignment = std::max(alignment, isec->alignment); // If this section contains a table of fixed-size entries, sh_entsize // holds the element size. If it contains elements of different size we // set sh_entsize to 0. if (entsize != isec->entsize) entsize = 0; } // This function scans over the InputSectionBase list sectionBases to create // InputSectionDescription::sections. // // It removes MergeInputSections from the input section array and adds // new synthetic sections at the location of the first input section // that it replaces. It then finalizes each synthetic section in order // to compute an output offset for each piece of each input section. void OutputSection::finalizeInputSections() { std::vector mergeSections; for (BaseCommand *base : sectionCommands) { auto *cmd = dyn_cast(base); if (!cmd) continue; cmd->sections.reserve(cmd->sectionBases.size()); for (InputSectionBase *s : cmd->sectionBases) { MergeInputSection *ms = dyn_cast(s); if (!ms) { cmd->sections.push_back(cast(s)); continue; } // We do not want to handle sections that are not alive, so just remove // them instead of trying to merge. if (!ms->isLive()) continue; auto i = llvm::find_if(mergeSections, [=](MergeSyntheticSection *sec) { // While we could create a single synthetic section for two different // values of Entsize, it is better to take Entsize into consideration. // // With a single synthetic section no two pieces with different Entsize // could be equal, so we may as well have two sections. // // Using Entsize in here also allows us to propagate it to the synthetic // section. // // SHF_STRINGS section with different alignments should not be merged. return sec->flags == ms->flags && sec->entsize == ms->entsize && (sec->alignment == ms->alignment || !(sec->flags & SHF_STRINGS)); }); if (i == mergeSections.end()) { MergeSyntheticSection *syn = createMergeSynthetic(name, ms->type, ms->flags, ms->alignment); mergeSections.push_back(syn); i = std::prev(mergeSections.end()); syn->entsize = ms->entsize; cmd->sections.push_back(syn); } (*i)->addSection(ms); } // sectionBases should not be used from this point onwards. Clear it to // catch misuses. cmd->sectionBases.clear(); // Some input sections may be removed from the list after ICF. for (InputSection *s : cmd->sections) commitSection(s); } for (auto *ms : mergeSections) ms->finalizeContents(); } static void sortByOrder(MutableArrayRef in, llvm::function_ref order) { std::vector> v; for (InputSection *s : in) v.push_back({order(s), s}); llvm::stable_sort(v, less_first()); for (size_t i = 0; i < v.size(); ++i) in[i] = v[i].second; } uint64_t getHeaderSize() { if (config->oFormatBinary) return 0; return Out::elfHeader->size + Out::programHeaders->size; } bool OutputSection::classof(const BaseCommand *c) { return c->kind == OutputSectionKind; } void OutputSection::sort(llvm::function_ref order) { assert(isLive()); for (BaseCommand *b : sectionCommands) if (auto *isd = dyn_cast(b)) sortByOrder(isd->sections, order); } // Fill [Buf, Buf + Size) with Filler. // This is used for linker script "=fillexp" command. static void fill(uint8_t *buf, size_t size, const std::array &filler) { size_t i = 0; for (; i + 4 < size; i += 4) memcpy(buf + i, filler.data(), 4); memcpy(buf + i, filler.data(), size - i); } // Compress section contents if this section contains debug info. template void OutputSection::maybeCompress() { using Elf_Chdr = typename ELFT::Chdr; // Compress only DWARF debug sections. if (!config->compressDebugSections || (flags & SHF_ALLOC) || !name.startswith(".debug_")) return; // Create a section header. zDebugHeader.resize(sizeof(Elf_Chdr)); auto *hdr = reinterpret_cast(zDebugHeader.data()); hdr->ch_type = ELFCOMPRESS_ZLIB; hdr->ch_size = size; hdr->ch_addralign = alignment; // Write section contents to a temporary buffer and compress it. std::vector buf(size); writeTo(buf.data()); // We chose 1 as the default compression level because it is the fastest. If // -O2 is given, we use level 6 to compress debug info more by ~15%. We found // that level 7 to 9 doesn't make much difference (~1% more compression) while // they take significant amount of time (~2x), so level 6 seems enough. if (Error e = zlib::compress(toStringRef(buf), compressedData, config->optimize >= 2 ? 6 : 1)) fatal("compress failed: " + llvm::toString(std::move(e))); // Update section headers. size = sizeof(Elf_Chdr) + compressedData.size(); flags |= SHF_COMPRESSED; } static void writeInt(uint8_t *buf, uint64_t data, uint64_t size) { if (size == 1) *buf = data; else if (size == 2) write16(buf, data); else if (size == 4) write32(buf, data); else if (size == 8) write64(buf, data); else llvm_unreachable("unsupported Size argument"); } template void OutputSection::writeTo(uint8_t *buf) { if (type == SHT_NOBITS) return; // If -compress-debug-section is specified and if this is a debug section, // we've already compressed section contents. If that's the case, // just write it down. if (!compressedData.empty()) { memcpy(buf, zDebugHeader.data(), zDebugHeader.size()); memcpy(buf + zDebugHeader.size(), compressedData.data(), compressedData.size()); return; } // Write leading padding. std::vector sections = getInputSections(this); std::array filler = getFiller(); bool nonZeroFiller = read32(filler.data()) != 0; if (nonZeroFiller) fill(buf, sections.empty() ? size : sections[0]->outSecOff, filler); parallelForEachN(0, sections.size(), [&](size_t i) { InputSection *isec = sections[i]; isec->writeTo(buf); // Fill gaps between sections. if (nonZeroFiller) { uint8_t *start = buf + isec->outSecOff + isec->getSize(); uint8_t *end; if (i + 1 == sections.size()) end = buf + size; else end = buf + sections[i + 1]->outSecOff; fill(start, end - start, filler); } }); // Linker scripts may have BYTE()-family commands with which you // can write arbitrary bytes to the output. Process them if any. for (BaseCommand *base : sectionCommands) if (auto *data = dyn_cast(base)) writeInt(buf + data->offset, data->expression().getValue(), data->size); } static void finalizeShtGroup(OutputSection *os, InputSection *section) { assert(config->relocatable); // sh_link field for SHT_GROUP sections should contain the section index of // the symbol table. os->link = in.symTab->getParent()->sectionIndex; // sh_info then contain index of an entry in symbol table section which // provides signature of the section group. ArrayRef symbols = section->file->getSymbols(); os->info = in.symTab->getSymbolIndex(symbols[section->info]); } void OutputSection::finalize() { InputSection *first = getFirstInputSection(this); if (flags & SHF_LINK_ORDER) { // We must preserve the link order dependency of sections with the // SHF_LINK_ORDER flag. The dependency is indicated by the sh_link field. We // need to translate the InputSection sh_link to the OutputSection sh_link, // all InputSections in the OutputSection have the same dependency. if (auto *ex = dyn_cast(first)) link = ex->getLinkOrderDep()->getParent()->sectionIndex; else if (first->flags & SHF_LINK_ORDER) if (auto *d = first->getLinkOrderDep()) link = d->getParent()->sectionIndex; } if (type == SHT_GROUP) { finalizeShtGroup(this, first); return; } if (!config->copyRelocs || (type != SHT_RELA && type != SHT_REL)) return; if (isa(first)) return; link = in.symTab->getParent()->sectionIndex; // sh_info for SHT_REL[A] sections should contain the section header index of // the section to which the relocation applies. InputSectionBase *s = first->getRelocatedSection(); info = s->getOutputSection()->sectionIndex; flags |= SHF_INFO_LINK; } // Returns true if S is in one of the many forms the compiler driver may pass // crtbegin files. // // Gcc uses any of crtbegin[|S|T].o. // Clang uses Gcc's plus clang_rt.crtbegin[|S|T][-|].o. static bool isCrtbegin(StringRef s) { static std::regex re(R"((clang_rt\.)?crtbegin[ST]?(-.*)?\.o)"); s = sys::path::filename(s); return std::regex_match(s.begin(), s.end(), re); } static bool isCrtend(StringRef s) { static std::regex re(R"((clang_rt\.)?crtend[ST]?(-.*)?\.o)"); s = sys::path::filename(s); return std::regex_match(s.begin(), s.end(), re); } // .ctors and .dtors are sorted by this priority from highest to lowest. // // 1. The section was contained in crtbegin (crtbegin contains // some sentinel value in its .ctors and .dtors so that the runtime // can find the beginning of the sections.) // // 2. The section has an optional priority value in the form of ".ctors.N" // or ".dtors.N" where N is a number. Unlike .{init,fini}_array, // they are compared as string rather than number. // // 3. The section is just ".ctors" or ".dtors". // // 4. The section was contained in crtend, which contains an end marker. // // In an ideal world, we don't need this function because .init_array and // .ctors are duplicate features (and .init_array is newer.) However, there // are too many real-world use cases of .ctors, so we had no choice to // support that with this rather ad-hoc semantics. static bool compCtors(const InputSection *a, const InputSection *b) { bool beginA = isCrtbegin(a->file->getName()); bool beginB = isCrtbegin(b->file->getName()); if (beginA != beginB) return beginA; bool endA = isCrtend(a->file->getName()); bool endB = isCrtend(b->file->getName()); if (endA != endB) return endB; StringRef x = a->name; StringRef y = b->name; assert(x.startswith(".ctors") || x.startswith(".dtors")); assert(y.startswith(".ctors") || y.startswith(".dtors")); x = x.substr(6); y = y.substr(6); return x < y; } // Sorts input sections by the special rules for .ctors and .dtors. // Unfortunately, the rules are different from the one for .{init,fini}_array. // Read the comment above. void OutputSection::sortCtorsDtors() { assert(sectionCommands.size() == 1); auto *isd = cast(sectionCommands[0]); llvm::stable_sort(isd->sections, compCtors); } // If an input string is in the form of "foo.N" where N is a number, // return N. Otherwise, returns 65536, which is one greater than the // lowest priority. int getPriority(StringRef s) { size_t pos = s.rfind('.'); if (pos == StringRef::npos) return 65536; int v; if (!to_integer(s.substr(pos + 1), v, 10)) return 65536; return v; } InputSection *getFirstInputSection(const OutputSection *os) { for (BaseCommand *base : os->sectionCommands) if (auto *isd = dyn_cast(base)) if (!isd->sections.empty()) return isd->sections[0]; return nullptr; } std::vector getInputSections(const OutputSection *os) { std::vector ret; for (BaseCommand *base : os->sectionCommands) if (auto *isd = dyn_cast(base)) ret.insert(ret.end(), isd->sections.begin(), isd->sections.end()); return ret; } // Sorts input sections by section name suffixes, so that .foo.N comes // before .foo.M if N < M. Used to sort .{init,fini}_array.N sections. // We want to keep the original order if the priorities are the same // because the compiler keeps the original initialization order in a // translation unit and we need to respect that. // For more detail, read the section of the GCC's manual about init_priority. void OutputSection::sortInitFini() { // Sort sections by priority. sort([](InputSectionBase *s) { return getPriority(s->name); }); } std::array OutputSection::getFiller() { if (filler) return *filler; if (flags & SHF_EXECINSTR) return target->trapInstr; return {0, 0, 0, 0}; } template void OutputSection::writeHeaderTo(ELF32LE::Shdr *Shdr); template void OutputSection::writeHeaderTo(ELF32BE::Shdr *Shdr); template void OutputSection::writeHeaderTo(ELF64LE::Shdr *Shdr); template void OutputSection::writeHeaderTo(ELF64BE::Shdr *Shdr); template void OutputSection::writeTo(uint8_t *Buf); template void OutputSection::writeTo(uint8_t *Buf); template void OutputSection::writeTo(uint8_t *Buf); template void OutputSection::writeTo(uint8_t *Buf); template void OutputSection::maybeCompress(); template void OutputSection::maybeCompress(); template void OutputSection::maybeCompress(); template void OutputSection::maybeCompress(); } // namespace elf } // namespace lld