//===- CRunnerUtils.cpp - Utils for MLIR execution ------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file implements basic functions to manipulate structured MLIR types at // runtime. Entities in this file are meant to be retargetable, including on // targets without a C++ runtime, and must be kept C compatible. // //===----------------------------------------------------------------------===// #include "mlir/ExecutionEngine/CRunnerUtils.h" #include "mlir/ExecutionEngine/Msan.h" #ifndef _WIN32 #if defined(__FreeBSD__) || defined(__NetBSD__) || defined(__OpenBSD__) #include #else #include #endif #include #else #include "malloc.h" #endif // _WIN32 #include #include #include #include #include #include #ifdef MLIR_CRUNNERUTILS_DEFINE_FUNCTIONS namespace { template void stdSort(uint64_t n, V *p) { std::sort(p, p + n); } } // namespace // Small runtime support "lib" for vector.print lowering. // By providing elementary printing methods only, this // library can remain fully unaware of low-level implementation // details of our vectors. Also useful for direct LLVM IR output. extern "C" void printI64(int64_t i) { fprintf(stdout, "%" PRId64, i); } extern "C" void printU64(uint64_t u) { fprintf(stdout, "%" PRIu64, u); } extern "C" void printF32(float f) { fprintf(stdout, "%g", f); } extern "C" void printF64(double d) { fprintf(stdout, "%lg", d); } extern "C" void printOpen() { fputs("( ", stdout); } extern "C" void printClose() { fputs(" )", stdout); } extern "C" void printComma() { fputs(", ", stdout); } extern "C" void printNewline() { fputc('\n', stdout); } extern "C" void memrefCopy(int64_t elemSize, UnrankedMemRefType *srcArg, UnrankedMemRefType *dstArg) { DynamicMemRefType src(*srcArg); DynamicMemRefType dst(*dstArg); int64_t rank = src.rank; MLIR_MSAN_MEMORY_IS_INITIALIZED(src.sizes, rank * sizeof(int64_t)); // Handle empty shapes -> nothing to copy. for (int rankp = 0; rankp < rank; ++rankp) if (src.sizes[rankp] == 0) return; char *srcPtr = src.data + src.offset * elemSize; char *dstPtr = dst.data + dst.offset * elemSize; if (rank == 0) { memcpy(dstPtr, srcPtr, elemSize); return; } int64_t *indices = static_cast(alloca(sizeof(int64_t) * rank)); int64_t *srcStrides = static_cast(alloca(sizeof(int64_t) * rank)); int64_t *dstStrides = static_cast(alloca(sizeof(int64_t) * rank)); // Initialize index and scale strides. for (int rankp = 0; rankp < rank; ++rankp) { indices[rankp] = 0; srcStrides[rankp] = src.strides[rankp] * elemSize; dstStrides[rankp] = dst.strides[rankp] * elemSize; } int64_t readIndex = 0, writeIndex = 0; for (;;) { // Copy over the element, byte by byte. memcpy(dstPtr + writeIndex, srcPtr + readIndex, elemSize); // Advance index and read position. for (int64_t axis = rank - 1; axis >= 0; --axis) { // Advance at current axis. auto newIndex = ++indices[axis]; readIndex += srcStrides[axis]; writeIndex += dstStrides[axis]; // If this is a valid index, we have our next index, so continue copying. if (src.sizes[axis] != newIndex) break; // We reached the end of this axis. If this is axis 0, we are done. if (axis == 0) return; // Else, reset to 0 and undo the advancement of the linear index that // this axis had. Then continue with the axis one outer. indices[axis] = 0; readIndex -= src.sizes[axis] * srcStrides[axis]; writeIndex -= dst.sizes[axis] * dstStrides[axis]; } } } /// Prints GFLOPS rating. extern "C" void printFlops(double flops) { fprintf(stderr, "%lf GFLOPS\n", flops / 1.0E9); } /// Returns the number of seconds since Epoch 1970-01-01 00:00:00 +0000 (UTC). extern "C" double rtclock() { #ifndef _WIN32 struct timeval tp; int stat = gettimeofday(&tp, nullptr); if (stat != 0) fprintf(stderr, "Error returning time from gettimeofday: %d\n", stat); return (tp.tv_sec + tp.tv_usec * 1.0e-6); #else fprintf(stderr, "Timing utility not implemented on Windows\n"); return 0.0; #endif // _WIN32 } extern "C" void *mlirAlloc(uint64_t size) { return malloc(size); } extern "C" void *mlirAlignedAlloc(uint64_t alignment, uint64_t size) { #ifdef _WIN32 return _aligned_malloc(size, alignment); #elif defined(__APPLE__) // aligned_alloc was added in MacOS 10.15. Fall back to posix_memalign to also // support older versions. void *result = nullptr; (void)::posix_memalign(&result, alignment, size); return result; #else return aligned_alloc(alignment, size); #endif } extern "C" void mlirFree(void *ptr) { free(ptr); } extern "C" void mlirAlignedFree(void *ptr) { #ifdef _WIN32 _aligned_free(ptr); #else free(ptr); #endif } extern "C" void *rtsrand(uint64_t s) { // Standard mersenne_twister_engine seeded with s. return new std::mt19937(s); } extern "C" uint64_t rtrand(void *g, uint64_t m) { std::mt19937 *generator = static_cast(g); std::uniform_int_distribution distrib(0, m); return distrib(*generator); } extern "C" void rtdrand(void *g) { std::mt19937 *generator = static_cast(g); delete generator; } #define IMPL_STDSORT(VNAME, V) \ extern "C" void _mlir_ciface_stdSort##VNAME(uint64_t n, \ StridedMemRefType *vref) { \ assert(vref); \ assert(vref->strides[0] == 1); \ V *values = vref->data + vref->offset; \ stdSort(n, values); \ } IMPL_STDSORT(I64, int64_t) IMPL_STDSORT(F64, double) IMPL_STDSORT(F32, float) #undef IMPL_STDSORT #endif // MLIR_CRUNNERUTILS_DEFINE_FUNCTIONS