//===- bolt/Rewrite/RewriteInstance.cpp - ELF rewriter --------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "bolt/Rewrite/RewriteInstance.h" #include "bolt/Core/BinaryContext.h" #include "bolt/Core/BinaryEmitter.h" #include "bolt/Core/BinaryFunction.h" #include "bolt/Core/DebugData.h" #include "bolt/Core/Exceptions.h" #include "bolt/Core/MCPlusBuilder.h" #include "bolt/Core/ParallelUtilities.h" #include "bolt/Core/Relocation.h" #include "bolt/Passes/CacheMetrics.h" #include "bolt/Passes/ReorderFunctions.h" #include "bolt/Profile/BoltAddressTranslation.h" #include "bolt/Profile/DataAggregator.h" #include "bolt/Profile/DataReader.h" #include "bolt/Profile/YAMLProfileReader.h" #include "bolt/Profile/YAMLProfileWriter.h" #include "bolt/Rewrite/BinaryPassManager.h" #include "bolt/Rewrite/DWARFRewriter.h" #include "bolt/Rewrite/ExecutableFileMemoryManager.h" #include "bolt/RuntimeLibs/HugifyRuntimeLibrary.h" #include "bolt/RuntimeLibs/InstrumentationRuntimeLibrary.h" #include "bolt/Utils/CommandLineOpts.h" #include "bolt/Utils/Utils.h" #include "llvm/ADT/Optional.h" #include "llvm/DebugInfo/DWARF/DWARFContext.h" #include "llvm/DebugInfo/DWARF/DWARFDebugFrame.h" #include "llvm/ExecutionEngine/RuntimeDyld.h" #include "llvm/MC/MCAsmBackend.h" #include "llvm/MC/MCAsmInfo.h" #include "llvm/MC/MCAsmLayout.h" #include "llvm/MC/MCDisassembler/MCDisassembler.h" #include "llvm/MC/MCObjectStreamer.h" #include "llvm/MC/MCStreamer.h" #include "llvm/MC/MCSymbol.h" #include "llvm/MC/TargetRegistry.h" #include "llvm/Object/ObjectFile.h" #include "llvm/Support/Alignment.h" #include "llvm/Support/Casting.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/DataExtractor.h" #include "llvm/Support/Errc.h" #include "llvm/Support/Error.h" #include "llvm/Support/FileSystem.h" #include "llvm/Support/LEB128.h" #include "llvm/Support/ManagedStatic.h" #include "llvm/Support/Timer.h" #include "llvm/Support/ToolOutputFile.h" #include "llvm/Support/raw_ostream.h" #include #include #include #include #undef DEBUG_TYPE #define DEBUG_TYPE "bolt" using namespace llvm; using namespace object; using namespace bolt; extern cl::opt X86AlignBranchBoundary; extern cl::opt X86AlignBranchWithin32BBoundaries; namespace opts { extern cl::opt AlignMacroOpFusion; extern cl::list HotTextMoveSections; extern cl::opt Hugify; extern cl::opt Instrument; extern cl::opt JumpTables; extern cl::list ReorderData; extern cl::opt ReorderFunctions; extern cl::opt TimeBuild; static cl::opt ForceToDataRelocations("force-data-relocations", cl::desc("force relocations to data sections to always be processed"), cl::init(false), cl::Hidden, cl::ZeroOrMore, cl::cat(BoltCategory)); cl::opt BoltID("bolt-id", cl::desc("add any string to tag this execution in the " "output binary via bolt info section"), cl::ZeroOrMore, cl::cat(BoltCategory)); cl::opt AllowStripped("allow-stripped", cl::desc("allow processing of stripped binaries"), cl::Hidden, cl::cat(BoltCategory)); cl::opt DumpDotAll("dump-dot-all", cl::desc("dump function CFGs to graphviz format after each stage"), cl::ZeroOrMore, cl::Hidden, cl::cat(BoltCategory)); static cl::list ForceFunctionNames("funcs", cl::CommaSeparated, cl::desc("limit optimizations to functions from the list"), cl::value_desc("func1,func2,func3,..."), cl::Hidden, cl::cat(BoltCategory)); static cl::opt FunctionNamesFile("funcs-file", cl::desc("file with list of functions to optimize"), cl::Hidden, cl::cat(BoltCategory)); static cl::list ForceFunctionNamesNR( "funcs-no-regex", cl::CommaSeparated, cl::desc("limit optimizations to functions from the list (non-regex)"), cl::value_desc("func1,func2,func3,..."), cl::Hidden, cl::cat(BoltCategory)); static cl::opt FunctionNamesFileNR( "funcs-file-no-regex", cl::desc("file with list of functions to optimize (non-regex)"), cl::Hidden, cl::cat(BoltCategory)); cl::opt KeepTmp("keep-tmp", cl::desc("preserve intermediate .o file"), cl::Hidden, cl::cat(BoltCategory)); cl::opt Lite("lite", cl::desc("skip processing of cold functions"), cl::init(false), cl::ZeroOrMore, cl::cat(BoltCategory)); static cl::opt LiteThresholdPct("lite-threshold-pct", cl::desc("threshold (in percent) for selecting functions to process in lite " "mode. Higher threshold means fewer functions to process. E.g " "threshold of 90 means only top 10 percent of functions with " "profile will be processed."), cl::init(0), cl::ZeroOrMore, cl::Hidden, cl::cat(BoltOptCategory)); static cl::opt LiteThresholdCount("lite-threshold-count", cl::desc("similar to '-lite-threshold-pct' but specify threshold using " "absolute function call count. I.e. limit processing to functions " "executed at least the specified number of times."), cl::init(0), cl::ZeroOrMore, cl::Hidden, cl::cat(BoltOptCategory)); static cl::opt MaxFunctions("max-funcs", cl::desc("maximum number of functions to process"), cl::ZeroOrMore, cl::Hidden, cl::cat(BoltCategory)); static cl::opt MaxDataRelocations("max-data-relocations", cl::desc("maximum number of data relocations to process"), cl::ZeroOrMore, cl::Hidden, cl::cat(BoltCategory)); cl::opt PrintAll("print-all", cl::desc("print functions after each stage"), cl::ZeroOrMore, cl::Hidden, cl::cat(BoltCategory)); cl::opt PrintCFG("print-cfg", cl::desc("print functions after CFG construction"), cl::ZeroOrMore, cl::Hidden, cl::cat(BoltCategory)); cl::opt PrintDisasm("print-disasm", cl::desc("print function after disassembly"), cl::ZeroOrMore, cl::Hidden, cl::cat(BoltCategory)); static cl::opt PrintGlobals("print-globals", cl::desc("print global symbols after disassembly"), cl::ZeroOrMore, cl::Hidden, cl::cat(BoltCategory)); extern cl::opt PrintSections; static cl::opt PrintLoopInfo("print-loops", cl::desc("print loop related information"), cl::ZeroOrMore, cl::Hidden, cl::cat(BoltCategory)); static cl::opt PrintSDTMarkers("print-sdt", cl::desc("print all SDT markers"), cl::ZeroOrMore, cl::Hidden, cl::cat(BoltCategory)); enum PrintPseudoProbesOptions { PPP_None = 0, PPP_Probes_Section_Decode = 0x1, PPP_Probes_Address_Conversion = 0x2, PPP_Encoded_Probes = 0x3, PPP_All = 0xf }; cl::opt PrintPseudoProbes( "print-pseudo-probes", cl::desc("print pseudo probe info"), cl::init(PPP_None), cl::values(clEnumValN(PPP_Probes_Section_Decode, "decode", "decode probes section from binary"), clEnumValN(PPP_Probes_Address_Conversion, "address_conversion", "update address2ProbesMap with output block address"), clEnumValN(PPP_Encoded_Probes, "encoded_probes", "display the encoded probes in binary section"), clEnumValN(PPP_All, "all", "enable all debugging printout")), cl::ZeroOrMore, cl::Hidden, cl::cat(BoltCategory)); static cl::opt RelocationMode("relocs", cl::desc("use relocations in the binary (default=autodetect)"), cl::ZeroOrMore, cl::cat(BoltCategory)); static cl::opt SaveProfile("w", cl::desc("save recorded profile to a file"), cl::cat(BoltOutputCategory)); static cl::list SkipFunctionNames("skip-funcs", cl::CommaSeparated, cl::desc("list of functions to skip"), cl::value_desc("func1,func2,func3,..."), cl::Hidden, cl::cat(BoltCategory)); static cl::opt SkipFunctionNamesFile("skip-funcs-file", cl::desc("file with list of functions to skip"), cl::Hidden, cl::cat(BoltCategory)); cl::opt TrapOldCode("trap-old-code", cl::desc("insert traps in old function bodies (relocation mode)"), cl::Hidden, cl::cat(BoltCategory)); static cl::opt DWPPathName("dwp", cl::desc("Path and name to DWP file."), cl::Hidden, cl::ZeroOrMore, cl::init(""), cl::cat(BoltCategory)); static cl::opt UseGnuStack("use-gnu-stack", cl::desc("use GNU_STACK program header for new segment (workaround for " "issues with strip/objcopy)"), cl::ZeroOrMore, cl::cat(BoltCategory)); static cl::opt TimeRewrite("time-rewrite", cl::desc("print time spent in rewriting passes"), cl::ZeroOrMore, cl::Hidden, cl::cat(BoltCategory)); static cl::opt SequentialDisassembly("sequential-disassembly", cl::desc("performs disassembly sequentially"), cl::init(false), cl::cat(BoltOptCategory)); static cl::opt WriteBoltInfoSection("bolt-info", cl::desc("write bolt info section in the output binary"), cl::init(true), cl::ZeroOrMore, cl::Hidden, cl::cat(BoltOutputCategory)); } // namespace opts constexpr const char *RewriteInstance::SectionsToOverwrite[]; std::vector RewriteInstance::DebugSectionsToOverwrite = { ".debug_abbrev", ".debug_aranges", ".debug_line", ".debug_loc", ".debug_ranges", ".gdb_index", ".debug_addr"}; const char RewriteInstance::TimerGroupName[] = "rewrite"; const char RewriteInstance::TimerGroupDesc[] = "Rewrite passes"; namespace llvm { namespace bolt { extern const char *BoltRevision; MCPlusBuilder *createMCPlusBuilder(const Triple::ArchType Arch, const MCInstrAnalysis *Analysis, const MCInstrInfo *Info, const MCRegisterInfo *RegInfo) { #ifdef X86_AVAILABLE if (Arch == Triple::x86_64) return createX86MCPlusBuilder(Analysis, Info, RegInfo); #endif #ifdef AARCH64_AVAILABLE if (Arch == Triple::aarch64) return createAArch64MCPlusBuilder(Analysis, Info, RegInfo); #endif llvm_unreachable("architecture unsupported by MCPlusBuilder"); } } // namespace bolt } // namespace llvm namespace { bool refersToReorderedSection(ErrorOr Section) { auto Itr = std::find_if(opts::ReorderData.begin(), opts::ReorderData.end(), [&](const std::string &SectionName) { return (Section && Section->getName() == SectionName); }); return Itr != opts::ReorderData.end(); } } // anonymous namespace Expected> RewriteInstance::createRewriteInstance(ELFObjectFileBase *File, const int Argc, const char *const *Argv, StringRef ToolPath) { Error Err = Error::success(); auto RI = std::make_unique(File, Argc, Argv, ToolPath, Err); if (Err) return std::move(Err); return RI; } RewriteInstance::RewriteInstance(ELFObjectFileBase *File, const int Argc, const char *const *Argv, StringRef ToolPath, Error &Err) : InputFile(File), Argc(Argc), Argv(Argv), ToolPath(ToolPath), SHStrTab(StringTableBuilder::ELF) { ErrorAsOutParameter EAO(&Err); auto ELF64LEFile = dyn_cast(InputFile); if (!ELF64LEFile) { Err = createStringError(errc::not_supported, "Only 64-bit LE ELF binaries are supported"); return; } bool IsPIC = false; const ELFFile &Obj = ELF64LEFile->getELFFile(); if (Obj.getHeader().e_type != ELF::ET_EXEC) { outs() << "BOLT-INFO: shared object or position-independent executable " "detected\n"; IsPIC = true; } auto BCOrErr = BinaryContext::createBinaryContext( File, IsPIC, DWARFContext::create(*File, DWARFContext::ProcessDebugRelocations::Ignore, nullptr, opts::DWPPathName, WithColor::defaultErrorHandler, WithColor::defaultWarningHandler)); if (Error E = BCOrErr.takeError()) { Err = std::move(E); return; } BC = std::move(BCOrErr.get()); BC->initializeTarget(std::unique_ptr(createMCPlusBuilder( BC->TheTriple->getArch(), BC->MIA.get(), BC->MII.get(), BC->MRI.get()))); BAT = std::make_unique(*BC); if (opts::UpdateDebugSections) DebugInfoRewriter = std::make_unique(*BC); if (opts::Instrument) BC->setRuntimeLibrary(std::make_unique()); else if (opts::Hugify) BC->setRuntimeLibrary(std::make_unique()); } RewriteInstance::~RewriteInstance() {} Error RewriteInstance::setProfile(StringRef Filename) { if (!sys::fs::exists(Filename)) return errorCodeToError(make_error_code(errc::no_such_file_or_directory)); if (ProfileReader) { // Already exists return make_error(Twine("multiple profiles specified: ") + ProfileReader->getFilename() + " and " + Filename, inconvertibleErrorCode()); } // Spawn a profile reader based on file contents. if (DataAggregator::checkPerfDataMagic(Filename)) ProfileReader = std::make_unique(Filename); else if (YAMLProfileReader::isYAML(Filename)) ProfileReader = std::make_unique(Filename); else ProfileReader = std::make_unique(Filename); return Error::success(); } /// Return true if the function \p BF should be disassembled. static bool shouldDisassemble(const BinaryFunction &BF) { if (BF.isPseudo()) return false; if (opts::processAllFunctions()) return true; return !BF.isIgnored(); } Error RewriteInstance::discoverStorage() { NamedRegionTimer T("discoverStorage", "discover storage", TimerGroupName, TimerGroupDesc, opts::TimeRewrite); // Stubs are harmful because RuntimeDyld may try to increase the size of // sections accounting for stubs when we need those sections to match the // same size seen in the input binary, in case this section is a copy // of the original one seen in the binary. BC->EFMM.reset(new ExecutableFileMemoryManager(*BC, /*AllowStubs*/ false)); auto ELF64LEFile = dyn_cast(InputFile); const ELFFile &Obj = ELF64LEFile->getELFFile(); BC->StartFunctionAddress = Obj.getHeader().e_entry; NextAvailableAddress = 0; uint64_t NextAvailableOffset = 0; Expected PHsOrErr = Obj.program_headers(); if (Error E = PHsOrErr.takeError()) return E; ELF64LE::PhdrRange PHs = PHsOrErr.get(); for (const ELF64LE::Phdr &Phdr : PHs) { switch (Phdr.p_type) { case ELF::PT_LOAD: BC->FirstAllocAddress = std::min(BC->FirstAllocAddress, static_cast(Phdr.p_vaddr)); NextAvailableAddress = std::max(NextAvailableAddress, Phdr.p_vaddr + Phdr.p_memsz); NextAvailableOffset = std::max(NextAvailableOffset, Phdr.p_offset + Phdr.p_filesz); BC->SegmentMapInfo[Phdr.p_vaddr] = SegmentInfo{Phdr.p_vaddr, Phdr.p_memsz, Phdr.p_offset, Phdr.p_filesz, Phdr.p_align}; break; case ELF::PT_INTERP: BC->HasInterpHeader = true; break; } } for (const SectionRef &Section : InputFile->sections()) { Expected SectionNameOrErr = Section.getName(); if (Error E = SectionNameOrErr.takeError()) return E; StringRef SectionName = SectionNameOrErr.get(); if (SectionName == ".text") { BC->OldTextSectionAddress = Section.getAddress(); BC->OldTextSectionSize = Section.getSize(); Expected SectionContentsOrErr = Section.getContents(); if (Error E = SectionContentsOrErr.takeError()) return E; StringRef SectionContents = SectionContentsOrErr.get(); BC->OldTextSectionOffset = SectionContents.data() - InputFile->getData().data(); } if (!opts::HeatmapMode && !(opts::AggregateOnly && BAT->enabledFor(InputFile)) && (SectionName.startswith(getOrgSecPrefix()) || SectionName == getBOLTTextSectionName())) return createStringError( errc::function_not_supported, "BOLT-ERROR: input file was processed by BOLT. Cannot re-optimize"); } if (!NextAvailableAddress || !NextAvailableOffset) return createStringError(errc::executable_format_error, "no PT_LOAD pheader seen"); outs() << "BOLT-INFO: first alloc address is 0x" << Twine::utohexstr(BC->FirstAllocAddress) << '\n'; FirstNonAllocatableOffset = NextAvailableOffset; NextAvailableAddress = alignTo(NextAvailableAddress, BC->PageAlign); NextAvailableOffset = alignTo(NextAvailableOffset, BC->PageAlign); if (!opts::UseGnuStack) { // This is where the black magic happens. Creating PHDR table in a segment // other than that containing ELF header is tricky. Some loaders and/or // parts of loaders will apply e_phoff from ELF header assuming both are in // the same segment, while others will do the proper calculation. // We create the new PHDR table in such a way that both of the methods // of loading and locating the table work. There's a slight file size // overhead because of that. // // NB: bfd's strip command cannot do the above and will corrupt the // binary during the process of stripping non-allocatable sections. if (NextAvailableOffset <= NextAvailableAddress - BC->FirstAllocAddress) NextAvailableOffset = NextAvailableAddress - BC->FirstAllocAddress; else NextAvailableAddress = NextAvailableOffset + BC->FirstAllocAddress; assert(NextAvailableOffset == NextAvailableAddress - BC->FirstAllocAddress && "PHDR table address calculation error"); outs() << "BOLT-INFO: creating new program header table at address 0x" << Twine::utohexstr(NextAvailableAddress) << ", offset 0x" << Twine::utohexstr(NextAvailableOffset) << '\n'; PHDRTableAddress = NextAvailableAddress; PHDRTableOffset = NextAvailableOffset; // Reserve space for 3 extra pheaders. unsigned Phnum = Obj.getHeader().e_phnum; Phnum += 3; NextAvailableAddress += Phnum * sizeof(ELF64LEPhdrTy); NextAvailableOffset += Phnum * sizeof(ELF64LEPhdrTy); } // Align at cache line. NextAvailableAddress = alignTo(NextAvailableAddress, 64); NextAvailableOffset = alignTo(NextAvailableOffset, 64); NewTextSegmentAddress = NextAvailableAddress; NewTextSegmentOffset = NextAvailableOffset; BC->LayoutStartAddress = NextAvailableAddress; // Tools such as objcopy can strip section contents but leave header // entries. Check that at least .text is mapped in the file. if (!getFileOffsetForAddress(BC->OldTextSectionAddress)) return createStringError(errc::executable_format_error, "BOLT-ERROR: input binary is not a valid ELF " "executable as its text section is not " "mapped to a valid segment"); return Error::success(); } void RewriteInstance::parseSDTNotes() { if (!SDTSection) return; StringRef Buf = SDTSection->getContents(); DataExtractor DE = DataExtractor(Buf, BC->AsmInfo->isLittleEndian(), BC->AsmInfo->getCodePointerSize()); uint64_t Offset = 0; while (DE.isValidOffset(Offset)) { uint32_t NameSz = DE.getU32(&Offset); DE.getU32(&Offset); // skip over DescSz uint32_t Type = DE.getU32(&Offset); Offset = alignTo(Offset, 4); if (Type != 3) errs() << "BOLT-WARNING: SDT note type \"" << Type << "\" is not expected\n"; if (NameSz == 0) errs() << "BOLT-WARNING: SDT note has empty name\n"; StringRef Name = DE.getCStr(&Offset); if (!Name.equals("stapsdt")) errs() << "BOLT-WARNING: SDT note name \"" << Name << "\" is not expected\n"; // Parse description SDTMarkerInfo Marker; Marker.PCOffset = Offset; Marker.PC = DE.getU64(&Offset); Marker.Base = DE.getU64(&Offset); Marker.Semaphore = DE.getU64(&Offset); Marker.Provider = DE.getCStr(&Offset); Marker.Name = DE.getCStr(&Offset); Marker.Args = DE.getCStr(&Offset); Offset = alignTo(Offset, 4); BC->SDTMarkers[Marker.PC] = Marker; } if (opts::PrintSDTMarkers) printSDTMarkers(); } void RewriteInstance::parsePseudoProbe() { if (!PseudoProbeDescSection && !PseudoProbeSection) { // pesudo probe is not added to binary. It is normal and no warning needed. return; } // If only one section is found, it might mean the ELF is corrupted. if (!PseudoProbeDescSection) { errs() << "BOLT-WARNING: fail in reading .pseudo_probe_desc binary\n"; return; } else if (!PseudoProbeSection) { errs() << "BOLT-WARNING: fail in reading .pseudo_probe binary\n"; return; } StringRef Contents = PseudoProbeDescSection->getContents(); if (!BC->ProbeDecoder.buildGUID2FuncDescMap( reinterpret_cast(Contents.data()), Contents.size())) { errs() << "BOLT-WARNING: fail in building GUID2FuncDescMap\n"; return; } Contents = PseudoProbeSection->getContents(); if (!BC->ProbeDecoder.buildAddress2ProbeMap( reinterpret_cast(Contents.data()), Contents.size())) { BC->ProbeDecoder.getAddress2ProbesMap().clear(); errs() << "BOLT-WARNING: fail in building Address2ProbeMap\n"; return; } if (opts::PrintPseudoProbes == opts::PrintPseudoProbesOptions::PPP_All || opts::PrintPseudoProbes == opts::PrintPseudoProbesOptions::PPP_Probes_Section_Decode) { outs() << "Report of decoding input pseudo probe binaries \n"; BC->ProbeDecoder.printGUID2FuncDescMap(outs()); BC->ProbeDecoder.printProbesForAllAddresses(outs()); } } void RewriteInstance::printSDTMarkers() { outs() << "BOLT-INFO: Number of SDT markers is " << BC->SDTMarkers.size() << "\n"; for (auto It : BC->SDTMarkers) { SDTMarkerInfo &Marker = It.second; outs() << "BOLT-INFO: PC: " << utohexstr(Marker.PC) << ", Base: " << utohexstr(Marker.Base) << ", Semaphore: " << utohexstr(Marker.Semaphore) << ", Provider: " << Marker.Provider << ", Name: " << Marker.Name << ", Args: " << Marker.Args << "\n"; } } void RewriteInstance::parseBuildID() { if (!BuildIDSection) return; StringRef Buf = BuildIDSection->getContents(); // Reading notes section (see Portable Formats Specification, Version 1.1, // pg 2-5, section "Note Section"). DataExtractor DE = DataExtractor(Buf, true, 8); uint64_t Offset = 0; if (!DE.isValidOffset(Offset)) return; uint32_t NameSz = DE.getU32(&Offset); if (!DE.isValidOffset(Offset)) return; uint32_t DescSz = DE.getU32(&Offset); if (!DE.isValidOffset(Offset)) return; uint32_t Type = DE.getU32(&Offset); LLVM_DEBUG(dbgs() << "NameSz = " << NameSz << "; DescSz = " << DescSz << "; Type = " << Type << "\n"); // Type 3 is a GNU build-id note section if (Type != 3) return; StringRef Name = Buf.slice(Offset, Offset + NameSz); Offset = alignTo(Offset + NameSz, 4); if (Name.substr(0, 3) != "GNU") return; BuildID = Buf.slice(Offset, Offset + DescSz); } Optional RewriteInstance::getPrintableBuildID() const { if (BuildID.empty()) return NoneType(); std::string Str; raw_string_ostream OS(Str); const unsigned char *CharIter = BuildID.bytes_begin(); while (CharIter != BuildID.bytes_end()) { if (*CharIter < 0x10) OS << "0"; OS << Twine::utohexstr(*CharIter); ++CharIter; } return OS.str(); } void RewriteInstance::patchBuildID() { raw_fd_ostream &OS = Out->os(); if (BuildID.empty()) return; size_t IDOffset = BuildIDSection->getContents().rfind(BuildID); assert(IDOffset != StringRef::npos && "failed to patch build-id"); uint64_t FileOffset = getFileOffsetForAddress(BuildIDSection->getAddress()); if (!FileOffset) { errs() << "BOLT-WARNING: Non-allocatable build-id will not be updated.\n"; return; } char LastIDByte = BuildID[BuildID.size() - 1]; LastIDByte ^= 1; OS.pwrite(&LastIDByte, 1, FileOffset + IDOffset + BuildID.size() - 1); outs() << "BOLT-INFO: patched build-id (flipped last bit)\n"; } Error RewriteInstance::run() { assert(BC && "failed to create a binary context"); outs() << "BOLT-INFO: Target architecture: " << Triple::getArchTypeName( (llvm::Triple::ArchType)InputFile->getArch()) << "\n"; outs() << "BOLT-INFO: BOLT version: " << BoltRevision << "\n"; if (Error E = discoverStorage()) return E; if (Error E = readSpecialSections()) return E; adjustCommandLineOptions(); discoverFileObjects(); preprocessProfileData(); // Skip disassembling if we have a translation table and we are running an // aggregation job. if (opts::AggregateOnly && BAT->enabledFor(InputFile)) { processProfileData(); return Error::success(); } selectFunctionsToProcess(); readDebugInfo(); disassembleFunctions(); processProfileDataPreCFG(); buildFunctionsCFG(); processProfileData(); postProcessFunctions(); if (opts::DiffOnly) return Error::success(); runOptimizationPasses(); emitAndLink(); updateMetadata(); if (opts::LinuxKernelMode) { errs() << "BOLT-WARNING: not writing the output file for Linux Kernel\n"; return Error::success(); } else if (opts::OutputFilename == "/dev/null") { outs() << "BOLT-INFO: skipping writing final binary to disk\n"; return Error::success(); } // Rewrite allocatable contents and copy non-allocatable parts with mods. rewriteFile(); return Error::success(); } void RewriteInstance::discoverFileObjects() { NamedRegionTimer T("discoverFileObjects", "discover file objects", TimerGroupName, TimerGroupDesc, opts::TimeRewrite); FileSymRefs.clear(); BC->getBinaryFunctions().clear(); BC->clearBinaryData(); // For local symbols we want to keep track of associated FILE symbol name for // disambiguation by combined name. StringRef FileSymbolName; bool SeenFileName = false; struct SymbolRefHash { size_t operator()(SymbolRef const &S) const { return std::hash{}(S.getRawDataRefImpl().p); } }; std::unordered_map SymbolToFileName; for (const ELFSymbolRef &Symbol : InputFile->symbols()) { Expected NameOrError = Symbol.getName(); if (NameOrError && NameOrError->startswith("__asan_init")) { errs() << "BOLT-ERROR: input file was compiled or linked with sanitizer " "support. Cannot optimize.\n"; exit(1); } if (NameOrError && NameOrError->startswith("__llvm_coverage_mapping")) { errs() << "BOLT-ERROR: input file was compiled or linked with coverage " "support. Cannot optimize.\n"; exit(1); } if (cantFail(Symbol.getFlags()) & SymbolRef::SF_Undefined) continue; if (cantFail(Symbol.getType()) == SymbolRef::ST_File) { StringRef Name = cantFail(std::move(NameOrError), "cannot get symbol name for file"); // Ignore Clang LTO artificial FILE symbol as it is not always generated, // and this uncertainty is causing havoc in function name matching. if (Name == "ld-temp.o") continue; FileSymbolName = Name; SeenFileName = true; continue; } if (!FileSymbolName.empty() && !(cantFail(Symbol.getFlags()) & SymbolRef::SF_Global)) SymbolToFileName[Symbol] = FileSymbolName; } // Sort symbols in the file by value. Ignore symbols from non-allocatable // sections. auto isSymbolInMemory = [this](const SymbolRef &Sym) { if (cantFail(Sym.getType()) == SymbolRef::ST_File) return false; if (cantFail(Sym.getFlags()) & SymbolRef::SF_Absolute) return true; if (cantFail(Sym.getFlags()) & SymbolRef::SF_Undefined) return false; BinarySection Section(*BC, *cantFail(Sym.getSection())); return Section.isAllocatable(); }; std::vector SortedFileSymbols; std::copy_if(InputFile->symbol_begin(), InputFile->symbol_end(), std::back_inserter(SortedFileSymbols), isSymbolInMemory); std::stable_sort( SortedFileSymbols.begin(), SortedFileSymbols.end(), [](const SymbolRef &A, const SymbolRef &B) { // FUNC symbols have the highest precedence, while SECTIONs // have the lowest. uint64_t AddressA = cantFail(A.getAddress()); uint64_t AddressB = cantFail(B.getAddress()); if (AddressA != AddressB) return AddressA < AddressB; SymbolRef::Type AType = cantFail(A.getType()); SymbolRef::Type BType = cantFail(B.getType()); if (AType == SymbolRef::ST_Function && BType != SymbolRef::ST_Function) return true; if (BType == SymbolRef::ST_Debug && AType != SymbolRef::ST_Debug) return true; return false; }); // For aarch64, the ABI defines mapping symbols so we identify data in the // code section (see IHI0056B). $d identifies data contents. auto LastSymbol = SortedFileSymbols.end() - 1; if (BC->isAArch64()) { LastSymbol = std::stable_partition( SortedFileSymbols.begin(), SortedFileSymbols.end(), [](const SymbolRef &Symbol) { StringRef Name = cantFail(Symbol.getName()); return !(cantFail(Symbol.getType()) == SymbolRef::ST_Unknown && (Name == "$d" || Name.startswith("$d.") || Name == "$x" || Name.startswith("$x."))); }); --LastSymbol; } BinaryFunction *PreviousFunction = nullptr; unsigned AnonymousId = 0; const auto MarkersBegin = std::next(LastSymbol); for (auto ISym = SortedFileSymbols.begin(); ISym != MarkersBegin; ++ISym) { const SymbolRef &Symbol = *ISym; // Keep undefined symbols for pretty printing? if (cantFail(Symbol.getFlags()) & SymbolRef::SF_Undefined) continue; const SymbolRef::Type SymbolType = cantFail(Symbol.getType()); if (SymbolType == SymbolRef::ST_File) continue; StringRef SymName = cantFail(Symbol.getName(), "cannot get symbol name"); uint64_t Address = cantFail(Symbol.getAddress(), "cannot get symbol address"); if (Address == 0) { if (opts::Verbosity >= 1 && SymbolType == SymbolRef::ST_Function) errs() << "BOLT-WARNING: function with 0 address seen\n"; continue; } // Ignore input hot markers if (SymName == "__hot_start" || SymName == "__hot_end") continue; FileSymRefs[Address] = Symbol; // Skip section symbols that will be registered by disassemblePLT(). if ((cantFail(Symbol.getType()) == SymbolRef::ST_Debug)) { ErrorOr BSection = BC->getSectionForAddress(Address); if (BSection && getPLTSectionInfo(BSection->getName())) continue; } /// It is possible we are seeing a globalized local. LLVM might treat it as /// a local if it has a "private global" prefix, e.g. ".L". Thus we have to /// change the prefix to enforce global scope of the symbol. std::string Name = SymName.startswith(BC->AsmInfo->getPrivateGlobalPrefix()) ? "PG" + std::string(SymName) : std::string(SymName); // Disambiguate all local symbols before adding to symbol table. // Since we don't know if we will see a global with the same name, // always modify the local name. // // NOTE: the naming convention for local symbols should match // the one we use for profile data. std::string UniqueName; std::string AlternativeName; if (Name.empty()) { UniqueName = "ANONYMOUS." + std::to_string(AnonymousId++); } else if (cantFail(Symbol.getFlags()) & SymbolRef::SF_Global) { assert(!BC->getBinaryDataByName(Name) && "global name not unique"); UniqueName = Name; } else { // If we have a local file name, we should create 2 variants for the // function name. The reason is that perf profile might have been // collected on a binary that did not have the local file name (e.g. as // a side effect of stripping debug info from the binary): // // primary: / // alternative: // // // The field is used for disambiguation of local symbols since there // could be identical function names coming from identical file names // (e.g. from different directories). std::string AltPrefix; auto SFI = SymbolToFileName.find(Symbol); if (SymbolType == SymbolRef::ST_Function && SFI != SymbolToFileName.end()) AltPrefix = Name + "/" + std::string(SFI->second); UniqueName = NR.uniquify(Name); if (!AltPrefix.empty()) AlternativeName = NR.uniquify(AltPrefix); } uint64_t SymbolSize = ELFSymbolRef(Symbol).getSize(); uint64_t SymbolAlignment = Symbol.getAlignment(); unsigned SymbolFlags = cantFail(Symbol.getFlags()); auto registerName = [&](uint64_t FinalSize) { // Register names even if it's not a function, e.g. for an entry point. BC->registerNameAtAddress(UniqueName, Address, FinalSize, SymbolAlignment, SymbolFlags); if (!AlternativeName.empty()) BC->registerNameAtAddress(AlternativeName, Address, FinalSize, SymbolAlignment, SymbolFlags); }; section_iterator Section = cantFail(Symbol.getSection(), "cannot get symbol section"); if (Section == InputFile->section_end()) { // Could be an absolute symbol. Could record for pretty printing. LLVM_DEBUG(if (opts::Verbosity > 1) { dbgs() << "BOLT-INFO: absolute sym " << UniqueName << "\n"; }); registerName(SymbolSize); continue; } LLVM_DEBUG(dbgs() << "BOLT-DEBUG: considering symbol " << UniqueName << " for function\n"); if (!Section->isText()) { assert(SymbolType != SymbolRef::ST_Function && "unexpected function inside non-code section"); LLVM_DEBUG(dbgs() << "BOLT-DEBUG: rejecting as symbol is not in code\n"); registerName(SymbolSize); continue; } // Assembly functions could be ST_NONE with 0 size. Check that the // corresponding section is a code section and they are not inside any // other known function to consider them. // // Sometimes assembly functions are not marked as functions and neither are // their local labels. The only way to tell them apart is to look at // symbol scope - global vs local. if (PreviousFunction && SymbolType != SymbolRef::ST_Function) { if (PreviousFunction->containsAddress(Address)) { if (PreviousFunction->isSymbolValidInScope(Symbol, SymbolSize)) { LLVM_DEBUG(dbgs() << "BOLT-DEBUG: symbol is a function local symbol\n"); } else if (Address == PreviousFunction->getAddress() && !SymbolSize) { LLVM_DEBUG(dbgs() << "BOLT-DEBUG: ignoring symbol as a marker\n"); } else if (opts::Verbosity > 1) { errs() << "BOLT-WARNING: symbol " << UniqueName << " seen in the middle of function " << *PreviousFunction << ". Could be a new entry.\n"; } registerName(SymbolSize); continue; } else if (PreviousFunction->getSize() == 0 && PreviousFunction->isSymbolValidInScope(Symbol, SymbolSize)) { LLVM_DEBUG(dbgs() << "BOLT-DEBUG: symbol is a function local symbol\n"); registerName(SymbolSize); continue; } } if (PreviousFunction && PreviousFunction->containsAddress(Address) && PreviousFunction->getAddress() != Address) { if (PreviousFunction->isSymbolValidInScope(Symbol, SymbolSize)) { if (opts::Verbosity >= 1) outs() << "BOLT-INFO: skipping possibly another entry for function " << *PreviousFunction << " : " << UniqueName << '\n'; } else { outs() << "BOLT-INFO: using " << UniqueName << " as another entry to " << "function " << *PreviousFunction << '\n'; registerName(0); PreviousFunction->addEntryPointAtOffset(Address - PreviousFunction->getAddress()); // Remove the symbol from FileSymRefs so that we can skip it from // in the future. auto SI = FileSymRefs.find(Address); assert(SI != FileSymRefs.end() && "symbol expected to be present"); assert(SI->second == Symbol && "wrong symbol found"); FileSymRefs.erase(SI); } registerName(SymbolSize); continue; } // Checkout for conflicts with function data from FDEs. bool IsSimple = true; auto FDEI = CFIRdWrt->getFDEs().lower_bound(Address); if (FDEI != CFIRdWrt->getFDEs().end()) { const dwarf::FDE &FDE = *FDEI->second; if (FDEI->first != Address) { // There's no matching starting address in FDE. Make sure the previous // FDE does not contain this address. if (FDEI != CFIRdWrt->getFDEs().begin()) { --FDEI; const dwarf::FDE &PrevFDE = *FDEI->second; uint64_t PrevStart = PrevFDE.getInitialLocation(); uint64_t PrevLength = PrevFDE.getAddressRange(); if (Address > PrevStart && Address < PrevStart + PrevLength) { errs() << "BOLT-ERROR: function " << UniqueName << " is in conflict with FDE [" << Twine::utohexstr(PrevStart) << ", " << Twine::utohexstr(PrevStart + PrevLength) << "). Skipping.\n"; IsSimple = false; } } } else if (FDE.getAddressRange() != SymbolSize) { if (SymbolSize) { // Function addresses match but sizes differ. errs() << "BOLT-WARNING: sizes differ for function " << UniqueName << ". FDE : " << FDE.getAddressRange() << "; symbol table : " << SymbolSize << ". Using max size.\n"; } SymbolSize = std::max(SymbolSize, FDE.getAddressRange()); if (BC->getBinaryDataAtAddress(Address)) { BC->setBinaryDataSize(Address, SymbolSize); } else { LLVM_DEBUG(dbgs() << "BOLT-DEBUG: No BD @ 0x" << Twine::utohexstr(Address) << "\n"); } } } BinaryFunction *BF = nullptr; // Since function may not have yet obtained its real size, do a search // using the list of registered functions instead of calling // getBinaryFunctionAtAddress(). auto BFI = BC->getBinaryFunctions().find(Address); if (BFI != BC->getBinaryFunctions().end()) { BF = &BFI->second; // Duplicate the function name. Make sure everything matches before we add // an alternative name. if (SymbolSize != BF->getSize()) { if (opts::Verbosity >= 1) { if (SymbolSize && BF->getSize()) errs() << "BOLT-WARNING: size mismatch for duplicate entries " << *BF << " and " << UniqueName << '\n'; outs() << "BOLT-INFO: adjusting size of function " << *BF << " old " << BF->getSize() << " new " << SymbolSize << "\n"; } BF->setSize(std::max(SymbolSize, BF->getSize())); BC->setBinaryDataSize(Address, BF->getSize()); } BF->addAlternativeName(UniqueName); } else { ErrorOr Section = BC->getSectionForAddress(Address); // Skip symbols from invalid sections if (!Section) { errs() << "BOLT-WARNING: " << UniqueName << " (0x" << Twine::utohexstr(Address) << ") does not have any section\n"; continue; } assert(Section && "section for functions must be registered"); // Skip symbols from zero-sized sections. if (!Section->getSize()) continue; BF = BC->createBinaryFunction(UniqueName, *Section, Address, SymbolSize); if (!IsSimple) BF->setSimple(false); } if (!AlternativeName.empty()) BF->addAlternativeName(AlternativeName); registerName(SymbolSize); PreviousFunction = BF; } // Read dynamic relocation first as their presence affects the way we process // static relocations. E.g. we will ignore a static relocation at an address // that is a subject to dynamic relocation processing. processDynamicRelocations(); // Process PLT section. disassemblePLT(); // See if we missed any functions marked by FDE. for (const auto &FDEI : CFIRdWrt->getFDEs()) { const uint64_t Address = FDEI.first; const dwarf::FDE *FDE = FDEI.second; const BinaryFunction *BF = BC->getBinaryFunctionAtAddress(Address); if (BF) continue; BF = BC->getBinaryFunctionContainingAddress(Address); if (BF) { errs() << "BOLT-WARNING: FDE [0x" << Twine::utohexstr(Address) << ", 0x" << Twine::utohexstr(Address + FDE->getAddressRange()) << ") conflicts with function " << *BF << '\n'; continue; } if (opts::Verbosity >= 1) errs() << "BOLT-WARNING: FDE [0x" << Twine::utohexstr(Address) << ", 0x" << Twine::utohexstr(Address + FDE->getAddressRange()) << ") has no corresponding symbol table entry\n"; ErrorOr Section = BC->getSectionForAddress(Address); assert(Section && "cannot get section for address from FDE"); std::string FunctionName = "__BOLT_FDE_FUNCat" + Twine::utohexstr(Address).str(); BC->createBinaryFunction(FunctionName, *Section, Address, FDE->getAddressRange()); } BC->setHasSymbolsWithFileName(SeenFileName); // Now that all the functions were created - adjust their boundaries. adjustFunctionBoundaries(); // Annotate functions with code/data markers in AArch64 for (auto ISym = MarkersBegin; ISym != SortedFileSymbols.end(); ++ISym) { const SymbolRef &Symbol = *ISym; uint64_t Address = cantFail(Symbol.getAddress(), "cannot get symbol address"); uint64_t SymbolSize = ELFSymbolRef(Symbol).getSize(); BinaryFunction *BF = BC->getBinaryFunctionContainingAddress(Address, true, true); if (!BF) { // Stray marker continue; } const uint64_t EntryOffset = Address - BF->getAddress(); if (BF->isCodeMarker(Symbol, SymbolSize)) { BF->markCodeAtOffset(EntryOffset); continue; } if (BF->isDataMarker(Symbol, SymbolSize)) { BF->markDataAtOffset(EntryOffset); BC->AddressToConstantIslandMap[Address] = BF; continue; } llvm_unreachable("Unknown marker"); } if (opts::LinuxKernelMode) { // Read all special linux kernel sections and their relocations processLKSections(); } else { // Read all relocations now that we have binary functions mapped. processRelocations(); } } void RewriteInstance::createPLTBinaryFunction(uint64_t TargetAddress, uint64_t EntryAddress, uint64_t EntrySize) { if (!TargetAddress) return; auto setPLTSymbol = [&](BinaryFunction *BF, StringRef Name) { const unsigned PtrSize = BC->AsmInfo->getCodePointerSize(); MCSymbol *TargetSymbol = BC->registerNameAtAddress( Name.str() + "@GOT", TargetAddress, PtrSize, PtrSize); BF->setPLTSymbol(TargetSymbol); }; BinaryFunction *BF = BC->getBinaryFunctionAtAddress(EntryAddress); if (BF && BC->isAArch64()) { // Handle IFUNC trampoline setPLTSymbol(BF, BF->getOneName()); return; } const Relocation *Rel = BC->getDynamicRelocationAt(TargetAddress); if (!Rel || !Rel->Symbol) return; ErrorOr Section = BC->getSectionForAddress(EntryAddress); assert(Section && "cannot get section for address"); BF = BC->createBinaryFunction(Rel->Symbol->getName().str() + "@PLT", *Section, EntryAddress, 0, EntrySize, Section->getAlignment()); setPLTSymbol(BF, Rel->Symbol->getName()); } void RewriteInstance::disassemblePLTSectionAArch64(BinarySection &Section) { const uint64_t SectionAddress = Section.getAddress(); const uint64_t SectionSize = Section.getSize(); StringRef PLTContents = Section.getContents(); ArrayRef PLTData( reinterpret_cast(PLTContents.data()), SectionSize); auto disassembleInstruction = [&](uint64_t InstrOffset, MCInst &Instruction, uint64_t &InstrSize) { const uint64_t InstrAddr = SectionAddress + InstrOffset; if (!BC->DisAsm->getInstruction(Instruction, InstrSize, PLTData.slice(InstrOffset), InstrAddr, nulls())) { errs() << "BOLT-ERROR: unable to disassemble instruction in PLT section " << Section.getName() << " at offset 0x" << Twine::utohexstr(InstrOffset) << '\n'; exit(1); } }; uint64_t InstrOffset = 0; // Locate new plt entry while (InstrOffset < SectionSize) { InstructionListType Instructions; MCInst Instruction; uint64_t EntryOffset = InstrOffset; uint64_t EntrySize = 0; uint64_t InstrSize; // Loop through entry instructions while (InstrOffset < SectionSize) { disassembleInstruction(InstrOffset, Instruction, InstrSize); EntrySize += InstrSize; if (!BC->MIB->isIndirectBranch(Instruction)) { Instructions.emplace_back(Instruction); InstrOffset += InstrSize; continue; } const uint64_t EntryAddress = SectionAddress + EntryOffset; const uint64_t TargetAddress = BC->MIB->analyzePLTEntry( Instruction, Instructions.begin(), Instructions.end(), EntryAddress); createPLTBinaryFunction(TargetAddress, EntryAddress, EntrySize); break; } // Branch instruction InstrOffset += InstrSize; // Skip nops if any while (InstrOffset < SectionSize) { disassembleInstruction(InstrOffset, Instruction, InstrSize); if (!BC->MIB->isNoop(Instruction)) break; InstrOffset += InstrSize; } } } void RewriteInstance::disassemblePLTSectionX86(BinarySection &Section, uint64_t EntrySize) { const uint64_t SectionAddress = Section.getAddress(); const uint64_t SectionSize = Section.getSize(); StringRef PLTContents = Section.getContents(); ArrayRef PLTData( reinterpret_cast(PLTContents.data()), SectionSize); auto disassembleInstruction = [&](uint64_t InstrOffset, MCInst &Instruction, uint64_t &InstrSize) { const uint64_t InstrAddr = SectionAddress + InstrOffset; if (!BC->DisAsm->getInstruction(Instruction, InstrSize, PLTData.slice(InstrOffset), InstrAddr, nulls())) { errs() << "BOLT-ERROR: unable to disassemble instruction in PLT section " << Section.getName() << " at offset 0x" << Twine::utohexstr(InstrOffset) << '\n'; exit(1); } }; for (uint64_t EntryOffset = 0; EntryOffset + EntrySize <= SectionSize; EntryOffset += EntrySize) { MCInst Instruction; uint64_t InstrSize, InstrOffset = EntryOffset; while (InstrOffset < EntryOffset + EntrySize) { disassembleInstruction(InstrOffset, Instruction, InstrSize); // Check if the entry size needs adjustment. if (EntryOffset == 0 && BC->MIB->isTerminateBranch(Instruction) && EntrySize == 8) EntrySize = 16; if (BC->MIB->isIndirectBranch(Instruction)) break; InstrOffset += InstrSize; } if (InstrOffset + InstrSize > EntryOffset + EntrySize) continue; uint64_t TargetAddress; if (!BC->MIB->evaluateMemOperandTarget(Instruction, TargetAddress, SectionAddress + InstrOffset, InstrSize)) { errs() << "BOLT-ERROR: error evaluating PLT instruction at offset 0x" << Twine::utohexstr(SectionAddress + InstrOffset) << '\n'; exit(1); } createPLTBinaryFunction(TargetAddress, SectionAddress + EntryOffset, EntrySize); } } void RewriteInstance::disassemblePLT() { auto analyzeOnePLTSection = [&](BinarySection &Section, uint64_t EntrySize) { if (BC->isAArch64()) return disassemblePLTSectionAArch64(Section); return disassemblePLTSectionX86(Section, EntrySize); }; for (BinarySection &Section : BC->allocatableSections()) { const PLTSectionInfo *PLTSI = getPLTSectionInfo(Section.getName()); if (!PLTSI) continue; analyzeOnePLTSection(Section, PLTSI->EntrySize); // If we did not register any function at the start of the section, // then it must be a general PLT entry. Add a function at the location. if (BC->getBinaryFunctions().find(Section.getAddress()) == BC->getBinaryFunctions().end()) { BinaryFunction *BF = BC->createBinaryFunction( "__BOLT_PSEUDO_" + Section.getName().str(), Section, Section.getAddress(), 0, PLTSI->EntrySize, Section.getAlignment()); BF->setPseudo(true); } } } void RewriteInstance::adjustFunctionBoundaries() { for (auto BFI = BC->getBinaryFunctions().begin(), BFE = BC->getBinaryFunctions().end(); BFI != BFE; ++BFI) { BinaryFunction &Function = BFI->second; const BinaryFunction *NextFunction = nullptr; if (std::next(BFI) != BFE) NextFunction = &std::next(BFI)->second; // Check if it's a fragment of a function. Optional FragName = Function.hasRestoredNameRegex(".*\\.cold(\\.[0-9]+)?"); if (FragName) { static bool PrintedWarning = false; if (BC->HasRelocations && !PrintedWarning) { errs() << "BOLT-WARNING: split function detected on input : " << *FragName << ". The support is limited in relocation mode.\n"; PrintedWarning = true; } Function.IsFragment = true; } // Check if there's a symbol or a function with a larger address in the // same section. If there is - it determines the maximum size for the // current function. Otherwise, it is the size of a containing section // the defines it. // // NOTE: ignore some symbols that could be tolerated inside the body // of a function. auto NextSymRefI = FileSymRefs.upper_bound(Function.getAddress()); while (NextSymRefI != FileSymRefs.end()) { SymbolRef &Symbol = NextSymRefI->second; const uint64_t SymbolAddress = NextSymRefI->first; const uint64_t SymbolSize = ELFSymbolRef(Symbol).getSize(); if (NextFunction && SymbolAddress >= NextFunction->getAddress()) break; if (!Function.isSymbolValidInScope(Symbol, SymbolSize)) break; // This is potentially another entry point into the function. uint64_t EntryOffset = NextSymRefI->first - Function.getAddress(); LLVM_DEBUG(dbgs() << "BOLT-DEBUG: adding entry point to function " << Function << " at offset 0x" << Twine::utohexstr(EntryOffset) << '\n'); Function.addEntryPointAtOffset(EntryOffset); ++NextSymRefI; } // Function runs at most till the end of the containing section. uint64_t NextObjectAddress = Function.getOriginSection()->getEndAddress(); // Or till the next object marked by a symbol. if (NextSymRefI != FileSymRefs.end()) NextObjectAddress = std::min(NextSymRefI->first, NextObjectAddress); // Or till the next function not marked by a symbol. if (NextFunction) NextObjectAddress = std::min(NextFunction->getAddress(), NextObjectAddress); const uint64_t MaxSize = NextObjectAddress - Function.getAddress(); if (MaxSize < Function.getSize()) { errs() << "BOLT-ERROR: symbol seen in the middle of the function " << Function << ". Skipping.\n"; Function.setSimple(false); Function.setMaxSize(Function.getSize()); continue; } Function.setMaxSize(MaxSize); if (!Function.getSize() && Function.isSimple()) { // Some assembly functions have their size set to 0, use the max // size as their real size. if (opts::Verbosity >= 1) outs() << "BOLT-INFO: setting size of function " << Function << " to " << Function.getMaxSize() << " (was 0)\n"; Function.setSize(Function.getMaxSize()); } } } void RewriteInstance::relocateEHFrameSection() { assert(EHFrameSection && "non-empty .eh_frame section expected"); DWARFDataExtractor DE(EHFrameSection->getContents(), BC->AsmInfo->isLittleEndian(), BC->AsmInfo->getCodePointerSize()); auto createReloc = [&](uint64_t Value, uint64_t Offset, uint64_t DwarfType) { if (DwarfType == dwarf::DW_EH_PE_omit) return; // Only fix references that are relative to other locations. if (!(DwarfType & dwarf::DW_EH_PE_pcrel) && !(DwarfType & dwarf::DW_EH_PE_textrel) && !(DwarfType & dwarf::DW_EH_PE_funcrel) && !(DwarfType & dwarf::DW_EH_PE_datarel)) return; if (!(DwarfType & dwarf::DW_EH_PE_sdata4)) return; uint64_t RelType; switch (DwarfType & 0x0f) { default: llvm_unreachable("unsupported DWARF encoding type"); case dwarf::DW_EH_PE_sdata4: case dwarf::DW_EH_PE_udata4: RelType = Relocation::getPC32(); Offset -= 4; break; case dwarf::DW_EH_PE_sdata8: case dwarf::DW_EH_PE_udata8: RelType = Relocation::getPC64(); Offset -= 8; break; } // Create a relocation against an absolute value since the goal is to // preserve the contents of the section independent of the new values // of referenced symbols. EHFrameSection->addRelocation(Offset, nullptr, RelType, Value); }; Error E = EHFrameParser::parse(DE, EHFrameSection->getAddress(), createReloc); check_error(std::move(E), "failed to patch EH frame"); } ArrayRef RewriteInstance::getLSDAData() { return ArrayRef(LSDASection->getData(), LSDASection->getContents().size()); } uint64_t RewriteInstance::getLSDAAddress() { return LSDASection->getAddress(); } Error RewriteInstance::readSpecialSections() { NamedRegionTimer T("readSpecialSections", "read special sections", TimerGroupName, TimerGroupDesc, opts::TimeRewrite); bool HasTextRelocations = false; bool HasDebugInfo = false; // Process special sections. for (const SectionRef &Section : InputFile->sections()) { Expected SectionNameOrErr = Section.getName(); check_error(SectionNameOrErr.takeError(), "cannot get section name"); StringRef SectionName = *SectionNameOrErr; // Only register sections with names. if (!SectionName.empty()) { if (Error E = Section.getContents().takeError()) return E; BC->registerSection(Section); LLVM_DEBUG( dbgs() << "BOLT-DEBUG: registering section " << SectionName << " @ 0x" << Twine::utohexstr(Section.getAddress()) << ":0x" << Twine::utohexstr(Section.getAddress() + Section.getSize()) << "\n"); if (isDebugSection(SectionName)) HasDebugInfo = true; if (isKSymtabSection(SectionName)) opts::LinuxKernelMode = true; } } if (HasDebugInfo && !opts::UpdateDebugSections && !opts::AggregateOnly) { errs() << "BOLT-WARNING: debug info will be stripped from the binary. " "Use -update-debug-sections to keep it.\n"; } HasTextRelocations = (bool)BC->getUniqueSectionByName(".rela.text"); LSDASection = BC->getUniqueSectionByName(".gcc_except_table"); EHFrameSection = BC->getUniqueSectionByName(".eh_frame"); GOTPLTSection = BC->getUniqueSectionByName(".got.plt"); RelaPLTSection = BC->getUniqueSectionByName(".rela.plt"); RelaDynSection = BC->getUniqueSectionByName(".rela.dyn"); BuildIDSection = BC->getUniqueSectionByName(".note.gnu.build-id"); SDTSection = BC->getUniqueSectionByName(".note.stapsdt"); PseudoProbeDescSection = BC->getUniqueSectionByName(".pseudo_probe_desc"); PseudoProbeSection = BC->getUniqueSectionByName(".pseudo_probe"); if (ErrorOr BATSec = BC->getUniqueSectionByName(BoltAddressTranslation::SECTION_NAME)) { // Do not read BAT when plotting a heatmap if (!opts::HeatmapMode) { if (std::error_code EC = BAT->parse(BATSec->getContents())) { errs() << "BOLT-ERROR: failed to parse BOLT address translation " "table.\n"; exit(1); } } } if (opts::PrintSections) { outs() << "BOLT-INFO: Sections from original binary:\n"; BC->printSections(outs()); } if (opts::RelocationMode == cl::BOU_TRUE && !HasTextRelocations) { errs() << "BOLT-ERROR: relocations against code are missing from the input " "file. Cannot proceed in relocations mode (-relocs).\n"; exit(1); } BC->HasRelocations = HasTextRelocations && (opts::RelocationMode != cl::BOU_FALSE); // Force non-relocation mode for heatmap generation if (opts::HeatmapMode) BC->HasRelocations = false; if (BC->HasRelocations) outs() << "BOLT-INFO: enabling " << (opts::StrictMode ? "strict " : "") << "relocation mode\n"; // Read EH frame for function boundaries info. Expected EHFrameOrError = BC->DwCtx->getEHFrame(); if (!EHFrameOrError) report_error("expected valid eh_frame section", EHFrameOrError.takeError()); CFIRdWrt.reset(new CFIReaderWriter(*EHFrameOrError.get())); // Parse build-id parseBuildID(); if (Optional FileBuildID = getPrintableBuildID()) BC->setFileBuildID(*FileBuildID); parseSDTNotes(); // Read .dynamic/PT_DYNAMIC. return readELFDynamic(); } void RewriteInstance::adjustCommandLineOptions() { if (BC->isAArch64() && !BC->HasRelocations) errs() << "BOLT-WARNING: non-relocation mode for AArch64 is not fully " "supported\n"; if (RuntimeLibrary *RtLibrary = BC->getRuntimeLibrary()) RtLibrary->adjustCommandLineOptions(*BC); if (opts::AlignMacroOpFusion != MFT_NONE && !BC->isX86()) { outs() << "BOLT-INFO: disabling -align-macro-fusion on non-x86 platform\n"; opts::AlignMacroOpFusion = MFT_NONE; } if (BC->isX86() && BC->MAB->allowAutoPadding()) { if (!BC->HasRelocations) { errs() << "BOLT-ERROR: cannot apply mitigations for Intel JCC erratum in " "non-relocation mode\n"; exit(1); } outs() << "BOLT-WARNING: using mitigation for Intel JCC erratum, layout " "may take several minutes\n"; opts::AlignMacroOpFusion = MFT_NONE; } if (opts::AlignMacroOpFusion != MFT_NONE && !BC->HasRelocations) { outs() << "BOLT-INFO: disabling -align-macro-fusion in non-relocation " "mode\n"; opts::AlignMacroOpFusion = MFT_NONE; } if (opts::SplitEH && !BC->HasRelocations) { errs() << "BOLT-WARNING: disabling -split-eh in non-relocation mode\n"; opts::SplitEH = false; } if (opts::SplitEH && !BC->HasFixedLoadAddress) { errs() << "BOLT-WARNING: disabling -split-eh for shared object\n"; opts::SplitEH = false; } if (opts::StrictMode && !BC->HasRelocations) { errs() << "BOLT-WARNING: disabling strict mode (-strict) in non-relocation " "mode\n"; opts::StrictMode = false; } if (BC->HasRelocations && opts::AggregateOnly && !opts::StrictMode.getNumOccurrences()) { outs() << "BOLT-INFO: enabling strict relocation mode for aggregation " "purposes\n"; opts::StrictMode = true; } if (BC->isX86() && BC->HasRelocations && opts::AlignMacroOpFusion == MFT_HOT && !ProfileReader) { outs() << "BOLT-INFO: enabling -align-macro-fusion=all since no profile " "was specified\n"; opts::AlignMacroOpFusion = MFT_ALL; } if (!BC->HasRelocations && opts::ReorderFunctions != ReorderFunctions::RT_NONE) { errs() << "BOLT-ERROR: function reordering only works when " << "relocations are enabled\n"; exit(1); } if (opts::ReorderFunctions != ReorderFunctions::RT_NONE && !opts::HotText.getNumOccurrences()) { opts::HotText = true; } else if (opts::HotText && !BC->HasRelocations) { errs() << "BOLT-WARNING: hot text is disabled in non-relocation mode\n"; opts::HotText = false; } if (opts::HotText && opts::HotTextMoveSections.getNumOccurrences() == 0) { opts::HotTextMoveSections.addValue(".stub"); opts::HotTextMoveSections.addValue(".mover"); opts::HotTextMoveSections.addValue(".never_hugify"); } if (opts::UseOldText && !BC->OldTextSectionAddress) { errs() << "BOLT-WARNING: cannot use old .text as the section was not found" "\n"; opts::UseOldText = false; } if (opts::UseOldText && !BC->HasRelocations) { errs() << "BOLT-WARNING: cannot use old .text in non-relocation mode\n"; opts::UseOldText = false; } if (!opts::AlignText.getNumOccurrences()) opts::AlignText = BC->PageAlign; if (opts::AlignText < opts::AlignFunctions) opts::AlignText = (unsigned)opts::AlignFunctions; if (BC->isX86() && opts::Lite.getNumOccurrences() == 0 && !opts::StrictMode && !opts::UseOldText) opts::Lite = true; if (opts::Lite && opts::UseOldText) { errs() << "BOLT-WARNING: cannot combine -lite with -use-old-text. " "Disabling -use-old-text.\n"; opts::UseOldText = false; } if (opts::Lite && opts::StrictMode) { errs() << "BOLT-ERROR: -strict and -lite cannot be used at the same time\n"; exit(1); } if (opts::Lite) outs() << "BOLT-INFO: enabling lite mode\n"; if (!opts::SaveProfile.empty() && BAT->enabledFor(InputFile)) { errs() << "BOLT-ERROR: unable to save profile in YAML format for input " "file processed by BOLT. Please remove -w option and use branch " "profile.\n"; exit(1); } } namespace { template int64_t getRelocationAddend(const ELFObjectFile *Obj, const RelocationRef &RelRef) { using ELFShdrTy = typename ELFT::Shdr; using Elf_Rela = typename ELFT::Rela; int64_t Addend = 0; const ELFFile &EF = Obj->getELFFile(); DataRefImpl Rel = RelRef.getRawDataRefImpl(); const ELFShdrTy *RelocationSection = cantFail(EF.getSection(Rel.d.a)); switch (RelocationSection->sh_type) { default: llvm_unreachable("unexpected relocation section type"); case ELF::SHT_REL: break; case ELF::SHT_RELA: { const Elf_Rela *RelA = Obj->getRela(Rel); Addend = RelA->r_addend; break; } } return Addend; } int64_t getRelocationAddend(const ELFObjectFileBase *Obj, const RelocationRef &Rel) { if (auto *ELF32LE = dyn_cast(Obj)) return getRelocationAddend(ELF32LE, Rel); if (auto *ELF64LE = dyn_cast(Obj)) return getRelocationAddend(ELF64LE, Rel); if (auto *ELF32BE = dyn_cast(Obj)) return getRelocationAddend(ELF32BE, Rel); auto *ELF64BE = cast(Obj); return getRelocationAddend(ELF64BE, Rel); } template uint32_t getRelocationSymbol(const ELFObjectFile *Obj, const RelocationRef &RelRef) { using ELFShdrTy = typename ELFT::Shdr; uint32_t Symbol = 0; const ELFFile &EF = Obj->getELFFile(); DataRefImpl Rel = RelRef.getRawDataRefImpl(); const ELFShdrTy *RelocationSection = cantFail(EF.getSection(Rel.d.a)); switch (RelocationSection->sh_type) { default: llvm_unreachable("unexpected relocation section type"); case ELF::SHT_REL: Symbol = Obj->getRel(Rel)->getSymbol(EF.isMips64EL()); break; case ELF::SHT_RELA: Symbol = Obj->getRela(Rel)->getSymbol(EF.isMips64EL()); break; } return Symbol; } uint32_t getRelocationSymbol(const ELFObjectFileBase *Obj, const RelocationRef &Rel) { if (auto *ELF32LE = dyn_cast(Obj)) return getRelocationSymbol(ELF32LE, Rel); if (auto *ELF64LE = dyn_cast(Obj)) return getRelocationSymbol(ELF64LE, Rel); if (auto *ELF32BE = dyn_cast(Obj)) return getRelocationSymbol(ELF32BE, Rel); auto *ELF64BE = cast(Obj); return getRelocationSymbol(ELF64BE, Rel); } } // anonymous namespace bool RewriteInstance::analyzeRelocation( const RelocationRef &Rel, uint64_t RType, std::string &SymbolName, bool &IsSectionRelocation, uint64_t &SymbolAddress, int64_t &Addend, uint64_t &ExtractedValue, bool &Skip) const { Skip = false; if (!Relocation::isSupported(RType)) return false; const bool IsAArch64 = BC->isAArch64(); const size_t RelSize = Relocation::getSizeForType(RType); ErrorOr Value = BC->getUnsignedValueAtAddress(Rel.getOffset(), RelSize); assert(Value && "failed to extract relocated value"); if ((Skip = Relocation::skipRelocationProcess(RType, *Value))) return true; ExtractedValue = Relocation::extractValue(RType, *Value, Rel.getOffset()); Addend = getRelocationAddend(InputFile, Rel); const bool IsPCRelative = Relocation::isPCRelative(RType); const uint64_t PCRelOffset = IsPCRelative && !IsAArch64 ? Rel.getOffset() : 0; bool SkipVerification = false; auto SymbolIter = Rel.getSymbol(); if (SymbolIter == InputFile->symbol_end()) { SymbolAddress = ExtractedValue - Addend + PCRelOffset; MCSymbol *RelSymbol = BC->getOrCreateGlobalSymbol(SymbolAddress, "RELSYMat"); SymbolName = std::string(RelSymbol->getName()); IsSectionRelocation = false; } else { const SymbolRef &Symbol = *SymbolIter; SymbolName = std::string(cantFail(Symbol.getName())); SymbolAddress = cantFail(Symbol.getAddress()); SkipVerification = (cantFail(Symbol.getType()) == SymbolRef::ST_Other); // Section symbols are marked as ST_Debug. IsSectionRelocation = (cantFail(Symbol.getType()) == SymbolRef::ST_Debug); // Check for PLT entry registered with symbol name if (!SymbolAddress && IsAArch64) { const BinaryData *BD = BC->getPLTBinaryDataByName(SymbolName); SymbolAddress = BD ? BD->getAddress() : 0; } } // For PIE or dynamic libs, the linker may choose not to put the relocation // result at the address if it is a X86_64_64 one because it will emit a // dynamic relocation (X86_RELATIVE) for the dynamic linker and loader to // resolve it at run time. The static relocation result goes as the addend // of the dynamic relocation in this case. We can't verify these cases. // FIXME: perhaps we can try to find if it really emitted a corresponding // RELATIVE relocation at this offset with the correct value as the addend. if (!BC->HasFixedLoadAddress && RelSize == 8) SkipVerification = true; if (IsSectionRelocation && !IsAArch64) { ErrorOr Section = BC->getSectionForAddress(SymbolAddress); assert(Section && "section expected for section relocation"); SymbolName = "section " + std::string(Section->getName()); // Convert section symbol relocations to regular relocations inside // non-section symbols. if (Section->containsAddress(ExtractedValue) && !IsPCRelative) { SymbolAddress = ExtractedValue; Addend = 0; } else { Addend = ExtractedValue - (SymbolAddress - PCRelOffset); } } // If no symbol has been found or if it is a relocation requiring the // creation of a GOT entry, do not link against the symbol but against // whatever address was extracted from the instruction itself. We are // not creating a GOT entry as this was already processed by the linker. // For GOT relocs, do not subtract addend as the addend does not refer // to this instruction's target, but it refers to the target in the GOT // entry. if (Relocation::isGOT(RType)) { Addend = 0; SymbolAddress = ExtractedValue + PCRelOffset; } else if (Relocation::isTLS(RType)) { SkipVerification = true; } else if (!SymbolAddress) { assert(!IsSectionRelocation); if (ExtractedValue || Addend == 0 || IsPCRelative) { SymbolAddress = truncateToSize(ExtractedValue - Addend + PCRelOffset, RelSize); } else { // This is weird case. The extracted value is zero but the addend is // non-zero and the relocation is not pc-rel. Using the previous logic, // the SymbolAddress would end up as a huge number. Seen in // exceptions_pic.test. LLVM_DEBUG(dbgs() << "BOLT-DEBUG: relocation @ 0x" << Twine::utohexstr(Rel.getOffset()) << " value does not match addend for " << "relocation to undefined symbol.\n"); return true; } } auto verifyExtractedValue = [&]() { if (SkipVerification) return true; if (IsAArch64) return true; if (SymbolName == "__hot_start" || SymbolName == "__hot_end") return true; if (RType == ELF::R_X86_64_PLT32) return true; return truncateToSize(ExtractedValue, RelSize) == truncateToSize(SymbolAddress + Addend - PCRelOffset, RelSize); }; (void)verifyExtractedValue; assert(verifyExtractedValue() && "mismatched extracted relocation value"); return true; } void RewriteInstance::processDynamicRelocations() { // Read relocations for PLT - DT_JMPREL. if (PLTRelocationsSize > 0) { ErrorOr PLTRelSectionOrErr = BC->getSectionForAddress(*PLTRelocationsAddress); if (!PLTRelSectionOrErr) report_error("unable to find section corresponding to DT_JMPREL", PLTRelSectionOrErr.getError()); if (PLTRelSectionOrErr->getSize() != PLTRelocationsSize) report_error("section size mismatch for DT_PLTRELSZ", errc::executable_format_error); readDynamicRelocations(PLTRelSectionOrErr->getSectionRef(), /*IsJmpRel*/ true); } // The rest of dynamic relocations - DT_RELA. if (DynamicRelocationsSize > 0) { ErrorOr DynamicRelSectionOrErr = BC->getSectionForAddress(*DynamicRelocationsAddress); if (!DynamicRelSectionOrErr) report_error("unable to find section corresponding to DT_RELA", DynamicRelSectionOrErr.getError()); if (DynamicRelSectionOrErr->getSize() != DynamicRelocationsSize) report_error("section size mismatch for DT_RELASZ", errc::executable_format_error); readDynamicRelocations(DynamicRelSectionOrErr->getSectionRef(), /*IsJmpRel*/ false); } } void RewriteInstance::processRelocations() { if (!BC->HasRelocations) return; for (const SectionRef &Section : InputFile->sections()) { if (cantFail(Section.getRelocatedSection()) != InputFile->section_end() && !BinarySection(*BC, Section).isAllocatable()) readRelocations(Section); } if (NumFailedRelocations) errs() << "BOLT-WARNING: Failed to analyze " << NumFailedRelocations << " relocations\n"; } void RewriteInstance::insertLKMarker(uint64_t PC, uint64_t SectionOffset, int32_t PCRelativeOffset, bool IsPCRelative, StringRef SectionName) { BC->LKMarkers[PC].emplace_back(LKInstructionMarkerInfo{ SectionOffset, PCRelativeOffset, IsPCRelative, SectionName}); } void RewriteInstance::processLKSections() { assert(opts::LinuxKernelMode && "process Linux Kernel special sections and their relocations only in " "linux kernel mode.\n"); processLKExTable(); processLKPCIFixup(); processLKKSymtab(); processLKKSymtab(true); processLKBugTable(); processLKSMPLocks(); } /// Process __ex_table section of Linux Kernel. /// This section contains information regarding kernel level exception /// handling (https://www.kernel.org/doc/html/latest/x86/exception-tables.html). /// More documentation is in arch/x86/include/asm/extable.h. /// /// The section is the list of the following structures: /// /// struct exception_table_entry { /// int insn; /// int fixup; /// int handler; /// }; /// void RewriteInstance::processLKExTable() { ErrorOr SectionOrError = BC->getUniqueSectionByName("__ex_table"); if (!SectionOrError) return; const uint64_t SectionSize = SectionOrError->getSize(); const uint64_t SectionAddress = SectionOrError->getAddress(); assert((SectionSize % 12) == 0 && "The size of the __ex_table section should be a multiple of 12"); for (uint64_t I = 0; I < SectionSize; I += 4) { const uint64_t EntryAddress = SectionAddress + I; ErrorOr Offset = BC->getSignedValueAtAddress(EntryAddress, 4); assert(Offset && "failed reading PC-relative offset for __ex_table"); int32_t SignedOffset = *Offset; const uint64_t RefAddress = EntryAddress + SignedOffset; BinaryFunction *ContainingBF = BC->getBinaryFunctionContainingAddress(RefAddress); if (!ContainingBF) continue; MCSymbol *ReferencedSymbol = ContainingBF->getSymbol(); const uint64_t FunctionOffset = RefAddress - ContainingBF->getAddress(); switch (I % 12) { default: llvm_unreachable("bad alignment of __ex_table"); break; case 0: // insn insertLKMarker(RefAddress, I, SignedOffset, true, "__ex_table"); break; case 4: // fixup if (FunctionOffset) ReferencedSymbol = ContainingBF->addEntryPointAtOffset(FunctionOffset); BC->addRelocation(EntryAddress, ReferencedSymbol, Relocation::getPC32(), 0, *Offset); break; case 8: // handler assert(!FunctionOffset && "__ex_table handler entry should point to function start"); BC->addRelocation(EntryAddress, ReferencedSymbol, Relocation::getPC32(), 0, *Offset); break; } } } /// Process .pci_fixup section of Linux Kernel. /// This section contains a list of entries for different PCI devices and their /// corresponding hook handler (code pointer where the fixup /// code resides, usually on x86_64 it is an entry PC relative 32 bit offset). /// Documentation is in include/linux/pci.h. void RewriteInstance::processLKPCIFixup() { ErrorOr SectionOrError = BC->getUniqueSectionByName(".pci_fixup"); assert(SectionOrError && ".pci_fixup section not found in Linux Kernel binary"); const uint64_t SectionSize = SectionOrError->getSize(); const uint64_t SectionAddress = SectionOrError->getAddress(); assert((SectionSize % 16) == 0 && ".pci_fixup size is not a multiple of 16"); for (uint64_t I = 12; I + 4 <= SectionSize; I += 16) { const uint64_t PC = SectionAddress + I; ErrorOr Offset = BC->getSignedValueAtAddress(PC, 4); assert(Offset && "cannot read value from .pci_fixup"); const int32_t SignedOffset = *Offset; const uint64_t HookupAddress = PC + SignedOffset; BinaryFunction *HookupFunction = BC->getBinaryFunctionAtAddress(HookupAddress); assert(HookupFunction && "expected function for entry in .pci_fixup"); BC->addRelocation(PC, HookupFunction->getSymbol(), Relocation::getPC32(), 0, *Offset); } } /// Process __ksymtab[_gpl] sections of Linux Kernel. /// This section lists all the vmlinux symbols that kernel modules can access. /// /// All the entries are 4 bytes each and hence we can read them by one by one /// and ignore the ones that are not pointing to the .text section. All pointers /// are PC relative offsets. Always, points to the beginning of the function. void RewriteInstance::processLKKSymtab(bool IsGPL) { StringRef SectionName = "__ksymtab"; if (IsGPL) SectionName = "__ksymtab_gpl"; ErrorOr SectionOrError = BC->getUniqueSectionByName(SectionName); assert(SectionOrError && "__ksymtab[_gpl] section not found in Linux Kernel binary"); const uint64_t SectionSize = SectionOrError->getSize(); const uint64_t SectionAddress = SectionOrError->getAddress(); assert((SectionSize % 4) == 0 && "The size of the __ksymtab[_gpl] section should be a multiple of 4"); for (uint64_t I = 0; I < SectionSize; I += 4) { const uint64_t EntryAddress = SectionAddress + I; ErrorOr Offset = BC->getSignedValueAtAddress(EntryAddress, 4); assert(Offset && "Reading valid PC-relative offset for a ksymtab entry"); const int32_t SignedOffset = *Offset; const uint64_t RefAddress = EntryAddress + SignedOffset; BinaryFunction *BF = BC->getBinaryFunctionAtAddress(RefAddress); if (!BF) continue; BC->addRelocation(EntryAddress, BF->getSymbol(), Relocation::getPC32(), 0, *Offset); } } /// Process __bug_table section. /// This section contains information useful for kernel debugging. /// Each entry in the section is a struct bug_entry that contains a pointer to /// the ud2 instruction corresponding to the bug, corresponding file name (both /// pointers use PC relative offset addressing), line number, and flags. /// The definition of the struct bug_entry can be found in /// `include/asm-generic/bug.h` void RewriteInstance::processLKBugTable() { ErrorOr SectionOrError = BC->getUniqueSectionByName("__bug_table"); if (!SectionOrError) return; const uint64_t SectionSize = SectionOrError->getSize(); const uint64_t SectionAddress = SectionOrError->getAddress(); assert((SectionSize % 12) == 0 && "The size of the __bug_table section should be a multiple of 12"); for (uint64_t I = 0; I < SectionSize; I += 12) { const uint64_t EntryAddress = SectionAddress + I; ErrorOr Offset = BC->getSignedValueAtAddress(EntryAddress, 4); assert(Offset && "Reading valid PC-relative offset for a __bug_table entry"); const int32_t SignedOffset = *Offset; const uint64_t RefAddress = EntryAddress + SignedOffset; assert(BC->getBinaryFunctionContainingAddress(RefAddress) && "__bug_table entries should point to a function"); insertLKMarker(RefAddress, I, SignedOffset, true, "__bug_table"); } } /// .smp_locks section contains PC-relative references to instructions with LOCK /// prefix. The prefix can be converted to NOP at boot time on non-SMP systems. void RewriteInstance::processLKSMPLocks() { ErrorOr SectionOrError = BC->getUniqueSectionByName(".smp_locks"); if (!SectionOrError) return; uint64_t SectionSize = SectionOrError->getSize(); const uint64_t SectionAddress = SectionOrError->getAddress(); assert((SectionSize % 4) == 0 && "The size of the .smp_locks section should be a multiple of 4"); for (uint64_t I = 0; I < SectionSize; I += 4) { const uint64_t EntryAddress = SectionAddress + I; ErrorOr Offset = BC->getSignedValueAtAddress(EntryAddress, 4); assert(Offset && "Reading valid PC-relative offset for a .smp_locks entry"); int32_t SignedOffset = *Offset; uint64_t RefAddress = EntryAddress + SignedOffset; BinaryFunction *ContainingBF = BC->getBinaryFunctionContainingAddress(RefAddress); if (!ContainingBF) continue; insertLKMarker(RefAddress, I, SignedOffset, true, ".smp_locks"); } } void RewriteInstance::readDynamicRelocations(const SectionRef &Section, bool IsJmpRel) { assert(BinarySection(*BC, Section).isAllocatable() && "allocatable expected"); LLVM_DEBUG({ StringRef SectionName = cantFail(Section.getName()); dbgs() << "BOLT-DEBUG: reading relocations for section " << SectionName << ":\n"; }); for (const RelocationRef &Rel : Section.relocations()) { const uint64_t RType = Rel.getType(); if (Relocation::isNone(RType)) continue; StringRef SymbolName = ""; MCSymbol *Symbol = nullptr; uint64_t SymbolAddress = 0; const uint64_t Addend = getRelocationAddend(InputFile, Rel); symbol_iterator SymbolIter = Rel.getSymbol(); if (SymbolIter != InputFile->symbol_end()) { SymbolName = cantFail(SymbolIter->getName()); BinaryData *BD = BC->getBinaryDataByName(SymbolName); Symbol = BD ? BD->getSymbol() : BC->getOrCreateUndefinedGlobalSymbol(SymbolName); SymbolAddress = cantFail(SymbolIter->getAddress()); (void)SymbolAddress; } LLVM_DEBUG( SmallString<16> TypeName; Rel.getTypeName(TypeName); dbgs() << "BOLT-DEBUG: dynamic relocation at 0x" << Twine::utohexstr(Rel.getOffset()) << " : " << TypeName << " : " << SymbolName << " : " << Twine::utohexstr(SymbolAddress) << " : + 0x" << Twine::utohexstr(Addend) << '\n' ); if (IsJmpRel) IsJmpRelocation[RType] = true; if (Symbol) SymbolIndex[Symbol] = getRelocationSymbol(InputFile, Rel); BC->addDynamicRelocation(Rel.getOffset(), Symbol, RType, Addend); } } void RewriteInstance::readRelocations(const SectionRef &Section) { LLVM_DEBUG({ StringRef SectionName = cantFail(Section.getName()); dbgs() << "BOLT-DEBUG: reading relocations for section " << SectionName << ":\n"; }); if (BinarySection(*BC, Section).isAllocatable()) { LLVM_DEBUG(dbgs() << "BOLT-DEBUG: ignoring runtime relocations\n"); return; } section_iterator SecIter = cantFail(Section.getRelocatedSection()); assert(SecIter != InputFile->section_end() && "relocated section expected"); SectionRef RelocatedSection = *SecIter; StringRef RelocatedSectionName = cantFail(RelocatedSection.getName()); LLVM_DEBUG(dbgs() << "BOLT-DEBUG: relocated section is " << RelocatedSectionName << '\n'); if (!BinarySection(*BC, RelocatedSection).isAllocatable()) { LLVM_DEBUG(dbgs() << "BOLT-DEBUG: ignoring relocations against " << "non-allocatable section\n"); return; } const bool SkipRelocs = StringSwitch(RelocatedSectionName) .Cases(".plt", ".rela.plt", ".got.plt", ".eh_frame", ".gcc_except_table", true) .Default(false); if (SkipRelocs) { LLVM_DEBUG( dbgs() << "BOLT-DEBUG: ignoring relocations against known section\n"); return; } const bool IsAArch64 = BC->isAArch64(); const bool IsFromCode = RelocatedSection.isText(); auto printRelocationInfo = [&](const RelocationRef &Rel, StringRef SymbolName, uint64_t SymbolAddress, uint64_t Addend, uint64_t ExtractedValue) { SmallString<16> TypeName; Rel.getTypeName(TypeName); const uint64_t Address = SymbolAddress + Addend; ErrorOr Section = BC->getSectionForAddress(SymbolAddress); dbgs() << "Relocation: offset = 0x" << Twine::utohexstr(Rel.getOffset()) << "; type = " << TypeName << "; value = 0x" << Twine::utohexstr(ExtractedValue) << "; symbol = " << SymbolName << " (" << (Section ? Section->getName() : "") << ")" << "; symbol address = 0x" << Twine::utohexstr(SymbolAddress) << "; addend = 0x" << Twine::utohexstr(Addend) << "; address = 0x" << Twine::utohexstr(Address) << "; in = "; if (BinaryFunction *Func = BC->getBinaryFunctionContainingAddress( Rel.getOffset(), false, IsAArch64)) dbgs() << Func->getPrintName() << "\n"; else dbgs() << BC->getSectionForAddress(Rel.getOffset())->getName() << "\n"; }; for (const RelocationRef &Rel : Section.relocations()) { SmallString<16> TypeName; Rel.getTypeName(TypeName); uint64_t RType = Rel.getType(); if (Relocation::isNone(RType)) continue; // Adjust the relocation type as the linker might have skewed it. if (BC->isX86() && (RType & ELF::R_X86_64_converted_reloc_bit)) { if (opts::Verbosity >= 1) dbgs() << "BOLT-WARNING: ignoring R_X86_64_converted_reloc_bit\n"; RType &= ~ELF::R_X86_64_converted_reloc_bit; } if (Relocation::isTLS(RType)) { // No special handling required for TLS relocations on X86. if (BC->isX86()) continue; // The non-got related TLS relocations on AArch64 also could be skipped. if (!Relocation::isGOT(RType)) continue; } if (!IsAArch64 && BC->getDynamicRelocationAt(Rel.getOffset())) { LLVM_DEBUG( dbgs() << "BOLT-DEBUG: address 0x" << Twine::utohexstr(Rel.getOffset()) << " has a dynamic relocation against it. Ignoring static " "relocation.\n"); continue; } std::string SymbolName; uint64_t SymbolAddress; int64_t Addend; uint64_t ExtractedValue; bool IsSectionRelocation; bool Skip; if (!analyzeRelocation(Rel, RType, SymbolName, IsSectionRelocation, SymbolAddress, Addend, ExtractedValue, Skip)) { LLVM_DEBUG(dbgs() << "BOLT-WARNING: failed to analyze relocation @ " << "offset = 0x" << Twine::utohexstr(Rel.getOffset()) << "; type name = " << TypeName << '\n'); ++NumFailedRelocations; continue; } if (Skip) { LLVM_DEBUG(dbgs() << "BOLT-DEBUG: skipping relocation @ offset = 0x" << Twine::utohexstr(Rel.getOffset()) << "; type name = " << TypeName << '\n'); continue; } const uint64_t Address = SymbolAddress + Addend; LLVM_DEBUG(dbgs() << "BOLT-DEBUG: "; printRelocationInfo( Rel, SymbolName, SymbolAddress, Addend, ExtractedValue)); BinaryFunction *ContainingBF = nullptr; if (IsFromCode) { ContainingBF = BC->getBinaryFunctionContainingAddress(Rel.getOffset(), /*CheckPastEnd*/ false, /*UseMaxSize*/ true); assert(ContainingBF && "cannot find function for address in code"); if (!IsAArch64 && !ContainingBF->containsAddress(Rel.getOffset())) { if (opts::Verbosity >= 1) outs() << "BOLT-INFO: " << *ContainingBF << " has relocations in padding area\n"; ContainingBF->setSize(ContainingBF->getMaxSize()); ContainingBF->setSimple(false); continue; } } MCSymbol *ReferencedSymbol = nullptr; if (!IsSectionRelocation) { if (BinaryData *BD = BC->getBinaryDataByName(SymbolName)) ReferencedSymbol = BD->getSymbol(); } // PC-relative relocations from data to code are tricky since the original // information is typically lost after linking even with '--emit-relocs'. // They are normally used by PIC-style jump tables and reference both // the jump table and jump destination by computing the difference // between the two. If we blindly apply the relocation it will appear // that it references an arbitrary location in the code, possibly even // in a different function from that containing the jump table. if (!IsAArch64 && Relocation::isPCRelative(RType)) { // For relocations against non-code sections, just register the fact that // we have a PC-relative relocation at a given address. The actual // referenced label/address cannot be determined from linker data alone. if (!IsFromCode) BC->addPCRelativeDataRelocation(Rel.getOffset()); else if (!IsSectionRelocation && ReferencedSymbol) ContainingBF->addRelocation(Rel.getOffset(), ReferencedSymbol, RType, Addend, ExtractedValue); else LLVM_DEBUG( dbgs() << "BOLT-DEBUG: not creating PC-relative relocation at 0x" << Twine::utohexstr(Rel.getOffset()) << " for " << SymbolName << "\n"); continue; } bool ForceRelocation = BC->forceSymbolRelocations(SymbolName); ErrorOr RefSection = std::make_error_code(std::errc::bad_address); if (BC->isAArch64() && Relocation::isGOT(RType)) { ForceRelocation = true; } else { RefSection = BC->getSectionForAddress(SymbolAddress); if (!RefSection && !ForceRelocation) { LLVM_DEBUG( dbgs() << "BOLT-DEBUG: cannot determine referenced section.\n"); continue; } } const bool IsToCode = RefSection && RefSection->isText(); // Occasionally we may see a reference past the last byte of the function // typically as a result of __builtin_unreachable(). Check it here. BinaryFunction *ReferencedBF = BC->getBinaryFunctionContainingAddress( Address, /*CheckPastEnd*/ true, /*UseMaxSize*/ IsAArch64); if (!IsSectionRelocation) { if (BinaryFunction *BF = BC->getBinaryFunctionContainingAddress(SymbolAddress)) { if (BF != ReferencedBF) { // It's possible we are referencing a function without referencing any // code, e.g. when taking a bitmask action on a function address. errs() << "BOLT-WARNING: non-standard function reference (e.g. " "bitmask) detected against function " << *BF; if (IsFromCode) errs() << " from function " << *ContainingBF << '\n'; else errs() << " from data section at 0x" << Twine::utohexstr(Rel.getOffset()) << '\n'; LLVM_DEBUG(printRelocationInfo(Rel, SymbolName, SymbolAddress, Addend, ExtractedValue)); ReferencedBF = BF; } } } else if (ReferencedBF) { assert(RefSection && "section expected for section relocation"); if (*ReferencedBF->getOriginSection() != *RefSection) { LLVM_DEBUG(dbgs() << "BOLT-DEBUG: ignoring false function reference\n"); ReferencedBF = nullptr; } } // Workaround for a member function pointer de-virtualization bug. We check // if a non-pc-relative relocation in the code is pointing to (fptr - 1). if (IsToCode && ContainingBF && !Relocation::isPCRelative(RType) && (!ReferencedBF || (ReferencedBF->getAddress() != Address))) { if (const BinaryFunction *RogueBF = BC->getBinaryFunctionAtAddress(Address + 1)) { // Do an extra check that the function was referenced previously. // It's a linear search, but it should rarely happen. bool Found = false; for (const auto &RelKV : ContainingBF->Relocations) { const Relocation &Rel = RelKV.second; if (Rel.Symbol == RogueBF->getSymbol() && !Relocation::isPCRelative(Rel.Type)) { Found = true; break; } } if (Found) { errs() << "BOLT-WARNING: detected possible compiler " "de-virtualization bug: -1 addend used with " "non-pc-relative relocation against function " << *RogueBF << " in function " << *ContainingBF << '\n'; continue; } } } if (ForceRelocation) { std::string Name = Relocation::isGOT(RType) ? "Zero" : SymbolName; ReferencedSymbol = BC->registerNameAtAddress(Name, 0, 0, 0); SymbolAddress = 0; if (Relocation::isGOT(RType)) Addend = Address; LLVM_DEBUG(dbgs() << "BOLT-DEBUG: forcing relocation against symbol " << SymbolName << " with addend " << Addend << '\n'); } else if (ReferencedBF) { ReferencedSymbol = ReferencedBF->getSymbol(); uint64_t RefFunctionOffset = 0; // Adjust the point of reference to a code location inside a function. if (ReferencedBF->containsAddress(Address, /*UseMaxSize = */true)) { RefFunctionOffset = Address - ReferencedBF->getAddress(); if (RefFunctionOffset) { if (ContainingBF && ContainingBF != ReferencedBF) { ReferencedSymbol = ReferencedBF->addEntryPointAtOffset(RefFunctionOffset); } else { ReferencedSymbol = ReferencedBF->getOrCreateLocalLabel(Address, /*CreatePastEnd =*/true); ReferencedBF->registerReferencedOffset(RefFunctionOffset); } if (opts::Verbosity > 1 && !BinarySection(*BC, RelocatedSection).isReadOnly()) errs() << "BOLT-WARNING: writable reference into the middle of " << "the function " << *ReferencedBF << " detected at address 0x" << Twine::utohexstr(Rel.getOffset()) << '\n'; } SymbolAddress = Address; Addend = 0; } LLVM_DEBUG( dbgs() << " referenced function " << *ReferencedBF; if (Address != ReferencedBF->getAddress()) dbgs() << " at offset 0x" << Twine::utohexstr(RefFunctionOffset); dbgs() << '\n' ); } else { if (IsToCode && SymbolAddress) { // This can happen e.g. with PIC-style jump tables. LLVM_DEBUG(dbgs() << "BOLT-DEBUG: no corresponding function for " "relocation against code\n"); } // In AArch64 there are zero reasons to keep a reference to the // "original" symbol plus addend. The original symbol is probably just a // section symbol. If we are here, this means we are probably accessing // data, so it is imperative to keep the original address. if (IsAArch64) { SymbolName = ("SYMBOLat0x" + Twine::utohexstr(Address)).str(); SymbolAddress = Address; Addend = 0; } if (BinaryData *BD = BC->getBinaryDataContainingAddress(SymbolAddress)) { // Note: this assertion is trying to check sanity of BinaryData objects // but AArch64 has inferred and incomplete object locations coming from // GOT/TLS or any other non-trivial relocation (that requires creation // of sections and whose symbol address is not really what should be // encoded in the instruction). So we essentially disabled this check // for AArch64 and live with bogus names for objects. assert((IsAArch64 || IsSectionRelocation || BD->nameStartsWith(SymbolName) || BD->nameStartsWith("PG" + SymbolName) || (BD->nameStartsWith("ANONYMOUS") && (BD->getSectionName().startswith(".plt") || BD->getSectionName().endswith(".plt")))) && "BOLT symbol names of all non-section relocations must match " "up with symbol names referenced in the relocation"); if (IsSectionRelocation) BC->markAmbiguousRelocations(*BD, Address); ReferencedSymbol = BD->getSymbol(); Addend += (SymbolAddress - BD->getAddress()); SymbolAddress = BD->getAddress(); assert(Address == SymbolAddress + Addend); } else { // These are mostly local data symbols but undefined symbols // in relocation sections can get through here too, from .plt. assert( (IsAArch64 || IsSectionRelocation || BC->getSectionNameForAddress(SymbolAddress)->startswith(".plt")) && "known symbols should not resolve to anonymous locals"); if (IsSectionRelocation) { ReferencedSymbol = BC->getOrCreateGlobalSymbol(SymbolAddress, "SYMBOLat"); } else { SymbolRef Symbol = *Rel.getSymbol(); const uint64_t SymbolSize = IsAArch64 ? 0 : ELFSymbolRef(Symbol).getSize(); const uint64_t SymbolAlignment = IsAArch64 ? 1 : Symbol.getAlignment(); const uint32_t SymbolFlags = cantFail(Symbol.getFlags()); std::string Name; if (SymbolFlags & SymbolRef::SF_Global) { Name = SymbolName; } else { if (StringRef(SymbolName) .startswith(BC->AsmInfo->getPrivateGlobalPrefix())) Name = NR.uniquify("PG" + SymbolName); else Name = NR.uniquify(SymbolName); } ReferencedSymbol = BC->registerNameAtAddress( Name, SymbolAddress, SymbolSize, SymbolAlignment, SymbolFlags); } if (IsSectionRelocation) { BinaryData *BD = BC->getBinaryDataByName(ReferencedSymbol->getName()); BC->markAmbiguousRelocations(*BD, Address); } } } auto checkMaxDataRelocations = [&]() { ++NumDataRelocations; if (opts::MaxDataRelocations && NumDataRelocations + 1 == opts::MaxDataRelocations) { LLVM_DEBUG(dbgs() << "BOLT-DEBUG: processing ending on data relocation " << NumDataRelocations << ": "); printRelocationInfo(Rel, ReferencedSymbol->getName(), SymbolAddress, Addend, ExtractedValue); } return (!opts::MaxDataRelocations || NumDataRelocations < opts::MaxDataRelocations); }; if ((RefSection && refersToReorderedSection(RefSection)) || (opts::ForceToDataRelocations && checkMaxDataRelocations())) ForceRelocation = true; if (IsFromCode) { ContainingBF->addRelocation(Rel.getOffset(), ReferencedSymbol, RType, Addend, ExtractedValue); } else if (IsToCode || ForceRelocation) { BC->addRelocation(Rel.getOffset(), ReferencedSymbol, RType, Addend, ExtractedValue); } else { LLVM_DEBUG( dbgs() << "BOLT-DEBUG: ignoring relocation from data to data\n"); } } } void RewriteInstance::selectFunctionsToProcess() { // Extend the list of functions to process or skip from a file. auto populateFunctionNames = [](cl::opt &FunctionNamesFile, cl::list &FunctionNames) { if (FunctionNamesFile.empty()) return; std::ifstream FuncsFile(FunctionNamesFile, std::ios::in); std::string FuncName; while (std::getline(FuncsFile, FuncName)) FunctionNames.push_back(FuncName); }; populateFunctionNames(opts::FunctionNamesFile, opts::ForceFunctionNames); populateFunctionNames(opts::SkipFunctionNamesFile, opts::SkipFunctionNames); populateFunctionNames(opts::FunctionNamesFileNR, opts::ForceFunctionNamesNR); // Make a set of functions to process to speed up lookups. std::unordered_set ForceFunctionsNR( opts::ForceFunctionNamesNR.begin(), opts::ForceFunctionNamesNR.end()); if ((!opts::ForceFunctionNames.empty() || !opts::ForceFunctionNamesNR.empty()) && !opts::SkipFunctionNames.empty()) { errs() << "BOLT-ERROR: cannot select functions to process and skip at the " "same time. Please use only one type of selection.\n"; exit(1); } uint64_t LiteThresholdExecCount = 0; if (opts::LiteThresholdPct) { if (opts::LiteThresholdPct > 100) opts::LiteThresholdPct = 100; std::vector TopFunctions; for (auto &BFI : BC->getBinaryFunctions()) { const BinaryFunction &Function = BFI.second; if (ProfileReader->mayHaveProfileData(Function)) TopFunctions.push_back(&Function); } std::sort(TopFunctions.begin(), TopFunctions.end(), [](const BinaryFunction *A, const BinaryFunction *B) { return A->getKnownExecutionCount() < B->getKnownExecutionCount(); }); size_t Index = TopFunctions.size() * opts::LiteThresholdPct / 100; if (Index) --Index; LiteThresholdExecCount = TopFunctions[Index]->getKnownExecutionCount(); outs() << "BOLT-INFO: limiting processing to functions with at least " << LiteThresholdExecCount << " invocations\n"; } LiteThresholdExecCount = std::max( LiteThresholdExecCount, static_cast(opts::LiteThresholdCount)); uint64_t NumFunctionsToProcess = 0; auto shouldProcess = [&](const BinaryFunction &Function) { if (opts::MaxFunctions && NumFunctionsToProcess > opts::MaxFunctions) return false; // If the list is not empty, only process functions from the list. if (!opts::ForceFunctionNames.empty() || !ForceFunctionsNR.empty()) { // Regex check (-funcs and -funcs-file options). for (std::string &Name : opts::ForceFunctionNames) if (Function.hasNameRegex(Name)) return true; // Non-regex check (-funcs-no-regex and -funcs-file-no-regex). Optional Match = Function.forEachName([&ForceFunctionsNR](StringRef Name) { return ForceFunctionsNR.count(Name.str()); }); return Match.hasValue(); } for (std::string &Name : opts::SkipFunctionNames) if (Function.hasNameRegex(Name)) return false; if (opts::Lite) { if (ProfileReader && !ProfileReader->mayHaveProfileData(Function)) return false; if (Function.getKnownExecutionCount() < LiteThresholdExecCount) return false; } return true; }; for (auto &BFI : BC->getBinaryFunctions()) { BinaryFunction &Function = BFI.second; // Pseudo functions are explicitly marked by us not to be processed. if (Function.isPseudo()) { Function.IsIgnored = true; Function.HasExternalRefRelocations = true; continue; } if (!shouldProcess(Function)) { LLVM_DEBUG(dbgs() << "BOLT-INFO: skipping processing of function " << Function << " per user request\n"); Function.setIgnored(); } else { ++NumFunctionsToProcess; if (opts::MaxFunctions && NumFunctionsToProcess == opts::MaxFunctions) outs() << "BOLT-INFO: processing ending on " << Function << '\n'; } } } void RewriteInstance::readDebugInfo() { NamedRegionTimer T("readDebugInfo", "read debug info", TimerGroupName, TimerGroupDesc, opts::TimeRewrite); if (!opts::UpdateDebugSections) return; BC->preprocessDebugInfo(); } void RewriteInstance::preprocessProfileData() { if (!ProfileReader) return; NamedRegionTimer T("preprocessprofile", "pre-process profile data", TimerGroupName, TimerGroupDesc, opts::TimeRewrite); outs() << "BOLT-INFO: pre-processing profile using " << ProfileReader->getReaderName() << '\n'; if (BAT->enabledFor(InputFile)) { outs() << "BOLT-INFO: profile collection done on a binary already " "processed by BOLT\n"; ProfileReader->setBAT(&*BAT); } if (Error E = ProfileReader->preprocessProfile(*BC.get())) report_error("cannot pre-process profile", std::move(E)); if (!BC->hasSymbolsWithFileName() && ProfileReader->hasLocalsWithFileName() && !opts::AllowStripped) { errs() << "BOLT-ERROR: input binary does not have local file symbols " "but profile data includes function names with embedded file " "names. It appears that the input binary was stripped while a " "profiled binary was not. If you know what you are doing and " "wish to proceed, use -allow-stripped option.\n"; exit(1); } } void RewriteInstance::processProfileDataPreCFG() { if (!ProfileReader) return; NamedRegionTimer T("processprofile-precfg", "process profile data pre-CFG", TimerGroupName, TimerGroupDesc, opts::TimeRewrite); if (Error E = ProfileReader->readProfilePreCFG(*BC.get())) report_error("cannot read profile pre-CFG", std::move(E)); } void RewriteInstance::processProfileData() { if (!ProfileReader) return; NamedRegionTimer T("processprofile", "process profile data", TimerGroupName, TimerGroupDesc, opts::TimeRewrite); if (Error E = ProfileReader->readProfile(*BC.get())) report_error("cannot read profile", std::move(E)); if (!opts::SaveProfile.empty()) { YAMLProfileWriter PW(opts::SaveProfile); PW.writeProfile(*this); } // Release memory used by profile reader. ProfileReader.reset(); if (opts::AggregateOnly) exit(0); } void RewriteInstance::disassembleFunctions() { NamedRegionTimer T("disassembleFunctions", "disassemble functions", TimerGroupName, TimerGroupDesc, opts::TimeRewrite); for (auto &BFI : BC->getBinaryFunctions()) { BinaryFunction &Function = BFI.second; ErrorOr> FunctionData = Function.getData(); if (!FunctionData) { errs() << "BOLT-ERROR: corresponding section is non-executable or " << "empty for function " << Function << '\n'; exit(1); } // Treat zero-sized functions as non-simple ones. if (Function.getSize() == 0) { Function.setSimple(false); continue; } // Offset of the function in the file. const auto *FileBegin = reinterpret_cast(InputFile->getData().data()); Function.setFileOffset(FunctionData->begin() - FileBegin); if (!shouldDisassemble(Function)) { NamedRegionTimer T("scan", "scan functions", "buildfuncs", "Scan Binary Functions", opts::TimeBuild); Function.scanExternalRefs(); Function.setSimple(false); continue; } if (!Function.disassemble()) { if (opts::processAllFunctions()) BC->exitWithBugReport("function cannot be properly disassembled. " "Unable to continue in relocation mode.", Function); if (opts::Verbosity >= 1) outs() << "BOLT-INFO: could not disassemble function " << Function << ". Will ignore.\n"; // Forcefully ignore the function. Function.setIgnored(); continue; } if (opts::PrintAll || opts::PrintDisasm) Function.print(outs(), "after disassembly", true); BC->processInterproceduralReferences(Function); } BC->populateJumpTables(); BC->skipMarkedFragments(); for (auto &BFI : BC->getBinaryFunctions()) { BinaryFunction &Function = BFI.second; if (!shouldDisassemble(Function)) continue; Function.postProcessEntryPoints(); Function.postProcessJumpTables(); } BC->adjustCodePadding(); for (auto &BFI : BC->getBinaryFunctions()) { BinaryFunction &Function = BFI.second; if (!shouldDisassemble(Function)) continue; if (!Function.isSimple()) { assert((!BC->HasRelocations || Function.getSize() == 0) && "unexpected non-simple function in relocation mode"); continue; } // Fill in CFI information for this function if (!Function.trapsOnEntry() && !CFIRdWrt->fillCFIInfoFor(Function)) { if (BC->HasRelocations) { BC->exitWithBugReport("unable to fill CFI.", Function); } else { errs() << "BOLT-WARNING: unable to fill CFI for function " << Function << ". Skipping.\n"; Function.setSimple(false); continue; } } // Parse LSDA. if (Function.getLSDAAddress() != 0) Function.parseLSDA(getLSDAData(), getLSDAAddress()); } } void RewriteInstance::buildFunctionsCFG() { NamedRegionTimer T("buildCFG", "buildCFG", "buildfuncs", "Build Binary Functions", opts::TimeBuild); // Create annotation indices to allow lock-free execution BC->MIB->getOrCreateAnnotationIndex("JTIndexReg"); BC->MIB->getOrCreateAnnotationIndex("NOP"); BC->MIB->getOrCreateAnnotationIndex("Size"); ParallelUtilities::WorkFuncWithAllocTy WorkFun = [&](BinaryFunction &BF, MCPlusBuilder::AllocatorIdTy AllocId) { if (!BF.buildCFG(AllocId)) return; if (opts::PrintAll) { auto L = BC->scopeLock(); BF.print(outs(), "while building cfg", true); } }; ParallelUtilities::PredicateTy SkipPredicate = [&](const BinaryFunction &BF) { return !shouldDisassemble(BF) || !BF.isSimple(); }; ParallelUtilities::runOnEachFunctionWithUniqueAllocId( *BC, ParallelUtilities::SchedulingPolicy::SP_INST_LINEAR, WorkFun, SkipPredicate, "disassembleFunctions-buildCFG", /*ForceSequential*/ opts::SequentialDisassembly || opts::PrintAll); BC->postProcessSymbolTable(); } void RewriteInstance::postProcessFunctions() { BC->TotalScore = 0; BC->SumExecutionCount = 0; for (auto &BFI : BC->getBinaryFunctions()) { BinaryFunction &Function = BFI.second; if (Function.empty()) continue; Function.postProcessCFG(); if (opts::PrintAll || opts::PrintCFG) Function.print(outs(), "after building cfg", true); if (opts::DumpDotAll) Function.dumpGraphForPass("00_build-cfg"); if (opts::PrintLoopInfo) { Function.calculateLoopInfo(); Function.printLoopInfo(outs()); } BC->TotalScore += Function.getFunctionScore(); BC->SumExecutionCount += Function.getKnownExecutionCount(); } if (opts::PrintGlobals) { outs() << "BOLT-INFO: Global symbols:\n"; BC->printGlobalSymbols(outs()); } } void RewriteInstance::runOptimizationPasses() { NamedRegionTimer T("runOptimizationPasses", "run optimization passes", TimerGroupName, TimerGroupDesc, opts::TimeRewrite); BinaryFunctionPassManager::runAllPasses(*BC); } namespace { class BOLTSymbolResolver : public JITSymbolResolver { BinaryContext &BC; public: BOLTSymbolResolver(BinaryContext &BC) : BC(BC) {} // We are responsible for all symbols Expected getResponsibilitySet(const LookupSet &Symbols) override { return Symbols; } // Some of our symbols may resolve to zero and this should not be an error bool allowsZeroSymbols() override { return true; } /// Resolves the address of each symbol requested void lookup(const LookupSet &Symbols, OnResolvedFunction OnResolved) override { JITSymbolResolver::LookupResult AllResults; if (BC.EFMM->ObjectsLoaded) { for (const StringRef &Symbol : Symbols) { std::string SymName = Symbol.str(); LLVM_DEBUG(dbgs() << "BOLT: looking for " << SymName << "\n"); // Resolve to a PLT entry if possible if (const BinaryData *I = BC.getPLTBinaryDataByName(SymName)) { AllResults[Symbol] = JITEvaluatedSymbol(I->getAddress(), JITSymbolFlags()); continue; } OnResolved(make_error( "Symbol not found required by runtime: " + Symbol, inconvertibleErrorCode())); return; } OnResolved(std::move(AllResults)); return; } for (const StringRef &Symbol : Symbols) { std::string SymName = Symbol.str(); LLVM_DEBUG(dbgs() << "BOLT: looking for " << SymName << "\n"); if (BinaryData *I = BC.getBinaryDataByName(SymName)) { uint64_t Address = I->isMoved() && !I->isJumpTable() ? I->getOutputAddress() : I->getAddress(); LLVM_DEBUG(dbgs() << "Resolved to address 0x" << Twine::utohexstr(Address) << "\n"); AllResults[Symbol] = JITEvaluatedSymbol(Address, JITSymbolFlags()); continue; } LLVM_DEBUG(dbgs() << "Resolved to address 0x0\n"); AllResults[Symbol] = JITEvaluatedSymbol(0, JITSymbolFlags()); } OnResolved(std::move(AllResults)); } }; } // anonymous namespace void RewriteInstance::emitAndLink() { NamedRegionTimer T("emitAndLink", "emit and link", TimerGroupName, TimerGroupDesc, opts::TimeRewrite); std::error_code EC; // This is an object file, which we keep for debugging purposes. // Once we decide it's useless, we should create it in memory. SmallString<128> OutObjectPath; sys::fs::getPotentiallyUniqueTempFileName("output", "o", OutObjectPath); std::unique_ptr TempOut = std::make_unique(OutObjectPath, EC, sys::fs::OF_None); check_error(EC, "cannot create output object file"); std::unique_ptr BOS = std::make_unique(TempOut->os()); raw_pwrite_stream *OS = BOS.get(); // Implicitly MCObjectStreamer takes ownership of MCAsmBackend (MAB) // and MCCodeEmitter (MCE). ~MCObjectStreamer() will delete these // two instances. std::unique_ptr Streamer = BC->createStreamer(*OS); if (EHFrameSection) { if (opts::UseOldText || opts::StrictMode) { // The section is going to be regenerated from scratch. // Empty the contents, but keep the section reference. EHFrameSection->clearContents(); } else { // Make .eh_frame relocatable. relocateEHFrameSection(); } } emitBinaryContext(*Streamer, *BC, getOrgSecPrefix()); Streamer->Finish(); if (Streamer->getContext().hadError()) { errs() << "BOLT-ERROR: Emission failed.\n"; exit(1); } ////////////////////////////////////////////////////////////////////////////// // Assign addresses to new sections. ////////////////////////////////////////////////////////////////////////////// // Get output object as ObjectFile. std::unique_ptr ObjectMemBuffer = MemoryBuffer::getMemBuffer(BOS->str(), "in-memory object file", false); std::unique_ptr Obj = cantFail( object::ObjectFile::createObjectFile(ObjectMemBuffer->getMemBufferRef()), "error creating in-memory object"); BOLTSymbolResolver Resolver = BOLTSymbolResolver(*BC); MCAsmLayout FinalLayout( static_cast(Streamer.get())->getAssembler()); RTDyld.reset(new decltype(RTDyld)::element_type(*BC->EFMM, Resolver)); RTDyld->setProcessAllSections(false); RTDyld->loadObject(*Obj); // Assign addresses to all sections. If key corresponds to the object // created by ourselves, call our regular mapping function. If we are // loading additional objects as part of runtime libraries for // instrumentation, treat them as extra sections. mapFileSections(*RTDyld); RTDyld->finalizeWithMemoryManagerLocking(); if (RTDyld->hasError()) { errs() << "BOLT-ERROR: RTDyld failed: " << RTDyld->getErrorString() << "\n"; exit(1); } // Update output addresses based on the new section map and // layout. Only do this for the object created by ourselves. updateOutputValues(FinalLayout); if (opts::UpdateDebugSections) DebugInfoRewriter->updateLineTableOffsets(FinalLayout); if (RuntimeLibrary *RtLibrary = BC->getRuntimeLibrary()) RtLibrary->link(*BC, ToolPath, *RTDyld, [this](RuntimeDyld &R) { this->mapExtraSections(*RTDyld); }); // Once the code is emitted, we can rename function sections to actual // output sections and de-register sections used for emission. for (BinaryFunction *Function : BC->getAllBinaryFunctions()) { ErrorOr Section = Function->getCodeSection(); if (Section && (Function->getImageAddress() == 0 || Function->getImageSize() == 0)) continue; // Restore origin section for functions that were emitted or supposed to // be emitted to patch sections. if (Section) BC->deregisterSection(*Section); assert(Function->getOriginSectionName() && "expected origin section"); Function->CodeSectionName = std::string(*Function->getOriginSectionName()); if (Function->isSplit()) { if (ErrorOr ColdSection = Function->getColdCodeSection()) BC->deregisterSection(*ColdSection); Function->ColdCodeSectionName = std::string(getBOLTTextSectionName()); } } if (opts::PrintCacheMetrics) { outs() << "BOLT-INFO: cache metrics after emitting functions:\n"; CacheMetrics::printAll(BC->getSortedFunctions()); } if (opts::KeepTmp) { TempOut->keep(); outs() << "BOLT-INFO: intermediary output object file saved for debugging " "purposes: " << OutObjectPath << "\n"; } } void RewriteInstance::updateMetadata() { updateSDTMarkers(); updateLKMarkers(); parsePseudoProbe(); updatePseudoProbes(); if (opts::UpdateDebugSections) { NamedRegionTimer T("updateDebugInfo", "update debug info", TimerGroupName, TimerGroupDesc, opts::TimeRewrite); DebugInfoRewriter->updateDebugInfo(); } if (opts::WriteBoltInfoSection) addBoltInfoSection(); } void RewriteInstance::updatePseudoProbes() { // check if there is pseudo probe section decoded if (BC->ProbeDecoder.getAddress2ProbesMap().empty()) return; // input address converted to output AddressProbesMap &Address2ProbesMap = BC->ProbeDecoder.getAddress2ProbesMap(); const GUIDProbeFunctionMap &GUID2Func = BC->ProbeDecoder.getGUID2FuncDescMap(); for (auto &AP : Address2ProbesMap) { BinaryFunction *F = BC->getBinaryFunctionContainingAddress(AP.first); // If F is removed, eliminate all probes inside it from inline tree // Setting probes' addresses as INT64_MAX means elimination if (!F) { for (MCDecodedPseudoProbe &Probe : AP.second) Probe.setAddress(INT64_MAX); continue; } // If F is not emitted, the function will remain in the same address as its // input if (!F->isEmitted()) continue; uint64_t Offset = AP.first - F->getAddress(); const BinaryBasicBlock *BB = F->getBasicBlockContainingOffset(Offset); uint64_t BlkOutputAddress = BB->getOutputAddressRange().first; // Check if block output address is defined. // If not, such block is removed from binary. Then remove the probes from // inline tree if (BlkOutputAddress == 0) { for (MCDecodedPseudoProbe &Probe : AP.second) Probe.setAddress(INT64_MAX); continue; } unsigned ProbeTrack = AP.second.size(); std::list::iterator Probe = AP.second.begin(); while (ProbeTrack != 0) { if (Probe->isBlock()) { Probe->setAddress(BlkOutputAddress); } else if (Probe->isCall()) { // A call probe may be duplicated due to ICP // Go through output of InputOffsetToAddressMap to collect all related // probes const InputOffsetToAddressMapTy &Offset2Addr = F->getInputOffsetToAddressMap(); auto CallOutputAddresses = Offset2Addr.equal_range(Offset); auto CallOutputAddress = CallOutputAddresses.first; if (CallOutputAddress == CallOutputAddresses.second) { Probe->setAddress(INT64_MAX); } else { Probe->setAddress(CallOutputAddress->second); CallOutputAddress = std::next(CallOutputAddress); } while (CallOutputAddress != CallOutputAddresses.second) { AP.second.push_back(*Probe); AP.second.back().setAddress(CallOutputAddress->second); Probe->getInlineTreeNode()->addProbes(&(AP.second.back())); CallOutputAddress = std::next(CallOutputAddress); } } Probe = std::next(Probe); ProbeTrack--; } } if (opts::PrintPseudoProbes == opts::PrintPseudoProbesOptions::PPP_All || opts::PrintPseudoProbes == opts::PrintPseudoProbesOptions::PPP_Probes_Address_Conversion) { outs() << "Pseudo Probe Address Conversion results:\n"; // table that correlates address to block std::unordered_map Addr2BlockNames; for (auto &F : BC->getBinaryFunctions()) for (BinaryBasicBlock &BinaryBlock : F.second) Addr2BlockNames[BinaryBlock.getOutputAddressRange().first] = BinaryBlock.getName(); // scan all addresses -> correlate probe to block when print out std::vector Addresses; for (auto &Entry : Address2ProbesMap) Addresses.push_back(Entry.first); std::sort(Addresses.begin(), Addresses.end()); for (uint64_t Key : Addresses) { for (MCDecodedPseudoProbe &Probe : Address2ProbesMap[Key]) { if (Probe.getAddress() == INT64_MAX) outs() << "Deleted Probe: "; else outs() << "Address: " << format_hex(Probe.getAddress(), 8) << " "; Probe.print(outs(), GUID2Func, true); // print block name only if the probe is block type and undeleted. if (Probe.isBlock() && Probe.getAddress() != INT64_MAX) outs() << format_hex(Probe.getAddress(), 8) << " Probe is in " << Addr2BlockNames[Probe.getAddress()] << "\n"; } } outs() << "=======================================\n"; } // encode pseudo probes with updated addresses encodePseudoProbes(); } template static void emitLEB128IntValue(F encode, uint64_t Value, SmallString<8> &Contents) { SmallString<128> Tmp; raw_svector_ostream OSE(Tmp); encode(Value, OSE); Contents.append(OSE.str().begin(), OSE.str().end()); } void RewriteInstance::encodePseudoProbes() { // Buffer for new pseudo probes section SmallString<8> Contents; MCDecodedPseudoProbe *LastProbe = nullptr; auto EmitInt = [&](uint64_t Value, uint32_t Size) { const bool IsLittleEndian = BC->AsmInfo->isLittleEndian(); uint64_t Swapped = support::endian::byte_swap( Value, IsLittleEndian ? support::little : support::big); unsigned Index = IsLittleEndian ? 0 : 8 - Size; auto Entry = StringRef(reinterpret_cast(&Swapped) + Index, Size); Contents.append(Entry.begin(), Entry.end()); }; auto EmitULEB128IntValue = [&](uint64_t Value) { SmallString<128> Tmp; raw_svector_ostream OSE(Tmp); encodeULEB128(Value, OSE, 0); Contents.append(OSE.str().begin(), OSE.str().end()); }; auto EmitSLEB128IntValue = [&](int64_t Value) { SmallString<128> Tmp; raw_svector_ostream OSE(Tmp); encodeSLEB128(Value, OSE); Contents.append(OSE.str().begin(), OSE.str().end()); }; // Emit indiviual pseudo probes in a inline tree node // Probe index, type, attribute, address type and address are encoded // Address of the first probe is absolute. // Other probes' address are represented by delta auto EmitDecodedPseudoProbe = [&](MCDecodedPseudoProbe *&CurProbe) { EmitULEB128IntValue(CurProbe->getIndex()); uint8_t PackedType = CurProbe->getType() | (CurProbe->getAttributes() << 4); uint8_t Flag = LastProbe ? ((int8_t)MCPseudoProbeFlag::AddressDelta << 7) : 0; EmitInt(Flag | PackedType, 1); if (LastProbe) { // Emit the delta between the address label and LastProbe. int64_t Delta = CurProbe->getAddress() - LastProbe->getAddress(); EmitSLEB128IntValue(Delta); } else { // Emit absolute address for encoding the first pseudo probe. uint32_t AddrSize = BC->AsmInfo->getCodePointerSize(); EmitInt(CurProbe->getAddress(), AddrSize); } }; std::map> Inlinees; // DFS of inline tree to emit pseudo probes in all tree node // Inline site index of a probe is emitted first. // Then tree node Guid, size of pseudo probes and children nodes, and detail // of contained probes are emitted Deleted probes are skipped Root node is not // encoded to binaries. It's a "wrapper" of inline trees of each function. std::list> NextNodes; const MCDecodedPseudoProbeInlineTree &Root = BC->ProbeDecoder.getDummyInlineRoot(); for (auto Child = Root.getChildren().begin(); Child != Root.getChildren().end(); ++Child) Inlinees[Child->first] = Child->second.get(); for (auto Inlinee : Inlinees) // INT64_MAX is "placeholder" of unused callsite index field in the pair NextNodes.push_back({INT64_MAX, Inlinee.second}); Inlinees.clear(); while (!NextNodes.empty()) { uint64_t ProbeIndex = NextNodes.back().first; MCDecodedPseudoProbeInlineTree *Cur = NextNodes.back().second; NextNodes.pop_back(); if (Cur->Parent && !Cur->Parent->isRoot()) // Emit probe inline site EmitULEB128IntValue(ProbeIndex); // Emit probes grouped by GUID. LLVM_DEBUG({ dbgs().indent(MCPseudoProbeTable::DdgPrintIndent); dbgs() << "GUID: " << Cur->Guid << "\n"; }); // Emit Guid EmitInt(Cur->Guid, 8); // Emit number of probes in this node uint64_t Deleted = 0; for (MCDecodedPseudoProbe *&Probe : Cur->getProbes()) if (Probe->getAddress() == INT64_MAX) Deleted++; LLVM_DEBUG(dbgs() << "Deleted Probes:" << Deleted << "\n"); uint64_t ProbesSize = Cur->getProbes().size() - Deleted; EmitULEB128IntValue(ProbesSize); // Emit number of direct inlinees EmitULEB128IntValue(Cur->getChildren().size()); // Emit probes in this group for (MCDecodedPseudoProbe *&Probe : Cur->getProbes()) { if (Probe->getAddress() == INT64_MAX) continue; EmitDecodedPseudoProbe(Probe); LastProbe = Probe; } for (auto Child = Cur->getChildren().begin(); Child != Cur->getChildren().end(); ++Child) Inlinees[Child->first] = Child->second.get(); for (const auto &Inlinee : Inlinees) { assert(Cur->Guid != 0 && "non root tree node must have nonzero Guid"); NextNodes.push_back({std::get<1>(Inlinee.first), Inlinee.second}); LLVM_DEBUG({ dbgs().indent(MCPseudoProbeTable::DdgPrintIndent); dbgs() << "InlineSite: " << std::get<1>(Inlinee.first) << "\n"; }); } Inlinees.clear(); } // Create buffer for new contents for the section // Freed when parent section is destroyed uint8_t *Output = new uint8_t[Contents.str().size()]; memcpy(Output, Contents.str().data(), Contents.str().size()); addToDebugSectionsToOverwrite(".pseudo_probe"); BC->registerOrUpdateSection(".pseudo_probe", PseudoProbeSection->getELFType(), PseudoProbeSection->getELFFlags(), Output, Contents.str().size(), 1); if (opts::PrintPseudoProbes == opts::PrintPseudoProbesOptions::PPP_All || opts::PrintPseudoProbes == opts::PrintPseudoProbesOptions::PPP_Encoded_Probes) { // create a dummy decoder; MCPseudoProbeDecoder DummyDecoder; StringRef DescContents = PseudoProbeDescSection->getContents(); DummyDecoder.buildGUID2FuncDescMap( reinterpret_cast(DescContents.data()), DescContents.size()); StringRef ProbeContents = PseudoProbeSection->getOutputContents(); DummyDecoder.buildAddress2ProbeMap( reinterpret_cast(ProbeContents.data()), ProbeContents.size()); DummyDecoder.printProbesForAllAddresses(outs()); } } void RewriteInstance::updateSDTMarkers() { NamedRegionTimer T("updateSDTMarkers", "update SDT markers", TimerGroupName, TimerGroupDesc, opts::TimeRewrite); if (!SDTSection) return; SDTSection->registerPatcher(std::make_unique()); SimpleBinaryPatcher *SDTNotePatcher = static_cast(SDTSection->getPatcher()); for (auto &SDTInfoKV : BC->SDTMarkers) { const uint64_t OriginalAddress = SDTInfoKV.first; SDTMarkerInfo &SDTInfo = SDTInfoKV.second; const BinaryFunction *F = BC->getBinaryFunctionContainingAddress(OriginalAddress); if (!F) continue; const uint64_t NewAddress = F->translateInputToOutputAddress(OriginalAddress); SDTNotePatcher->addLE64Patch(SDTInfo.PCOffset, NewAddress); } } void RewriteInstance::updateLKMarkers() { if (BC->LKMarkers.size() == 0) return; NamedRegionTimer T("updateLKMarkers", "update LK markers", TimerGroupName, TimerGroupDesc, opts::TimeRewrite); std::unordered_map PatchCounts; for (std::pair> &LKMarkerInfoKV : BC->LKMarkers) { const uint64_t OriginalAddress = LKMarkerInfoKV.first; const BinaryFunction *BF = BC->getBinaryFunctionContainingAddress(OriginalAddress, false, true); if (!BF) continue; uint64_t NewAddress = BF->translateInputToOutputAddress(OriginalAddress); if (NewAddress == 0) continue; // Apply base address. if (OriginalAddress >= 0xffffffff00000000 && NewAddress < 0xffffffff) NewAddress = NewAddress + 0xffffffff00000000; if (OriginalAddress == NewAddress) continue; for (LKInstructionMarkerInfo &LKMarkerInfo : LKMarkerInfoKV.second) { StringRef SectionName = LKMarkerInfo.SectionName; SimpleBinaryPatcher *LKPatcher; ErrorOr BSec = BC->getUniqueSectionByName(SectionName); assert(BSec && "missing section info for kernel section"); if (!BSec->getPatcher()) BSec->registerPatcher(std::make_unique()); LKPatcher = static_cast(BSec->getPatcher()); PatchCounts[std::string(SectionName)]++; if (LKMarkerInfo.IsPCRelative) LKPatcher->addLE32Patch(LKMarkerInfo.SectionOffset, NewAddress - OriginalAddress + LKMarkerInfo.PCRelativeOffset); else LKPatcher->addLE64Patch(LKMarkerInfo.SectionOffset, NewAddress); } } outs() << "BOLT-INFO: patching linux kernel sections. Total patches per " "section are as follows:\n"; for (const std::pair &KV : PatchCounts) outs() << " Section: " << KV.first << ", patch-counts: " << KV.second << '\n'; } void RewriteInstance::mapFileSections(RuntimeDyld &RTDyld) { mapCodeSections(RTDyld); mapDataSections(RTDyld); } std::vector RewriteInstance::getCodeSections() { std::vector CodeSections; for (BinarySection &Section : BC->textSections()) if (Section.hasValidSectionID()) CodeSections.emplace_back(&Section); auto compareSections = [&](const BinarySection *A, const BinarySection *B) { // Place movers before anything else. if (A->getName() == BC->getHotTextMoverSectionName()) return true; if (B->getName() == BC->getHotTextMoverSectionName()) return false; // Depending on the option, put main text at the beginning or at the end. if (opts::HotFunctionsAtEnd) return B->getName() == BC->getMainCodeSectionName(); else return A->getName() == BC->getMainCodeSectionName(); }; // Determine the order of sections. std::stable_sort(CodeSections.begin(), CodeSections.end(), compareSections); return CodeSections; } void RewriteInstance::mapCodeSections(RuntimeDyld &RTDyld) { if (BC->HasRelocations) { ErrorOr TextSection = BC->getUniqueSectionByName(BC->getMainCodeSectionName()); assert(TextSection && ".text section not found in output"); assert(TextSection->hasValidSectionID() && ".text section should be valid"); // Map sections for functions with pre-assigned addresses. for (BinaryFunction *InjectedFunction : BC->getInjectedBinaryFunctions()) { const uint64_t OutputAddress = InjectedFunction->getOutputAddress(); if (!OutputAddress) continue; ErrorOr FunctionSection = InjectedFunction->getCodeSection(); assert(FunctionSection && "function should have section"); FunctionSection->setOutputAddress(OutputAddress); RTDyld.reassignSectionAddress(FunctionSection->getSectionID(), OutputAddress); InjectedFunction->setImageAddress(FunctionSection->getAllocAddress()); InjectedFunction->setImageSize(FunctionSection->getOutputSize()); } // Populate the list of sections to be allocated. std::vector CodeSections = getCodeSections(); // Remove sections that were pre-allocated (patch sections). CodeSections.erase( std::remove_if(CodeSections.begin(), CodeSections.end(), [](BinarySection *Section) { return Section->getOutputAddress(); }), CodeSections.end()); LLVM_DEBUG(dbgs() << "Code sections in the order of output:\n"; for (const BinarySection *Section : CodeSections) dbgs() << Section->getName() << '\n'; ); uint64_t PaddingSize = 0; // size of padding required at the end // Allocate sections starting at a given Address. auto allocateAt = [&](uint64_t Address) { for (BinarySection *Section : CodeSections) { Address = alignTo(Address, Section->getAlignment()); Section->setOutputAddress(Address); Address += Section->getOutputSize(); } // Make sure we allocate enough space for huge pages. if (opts::HotText) { uint64_t HotTextEnd = TextSection->getOutputAddress() + TextSection->getOutputSize(); HotTextEnd = alignTo(HotTextEnd, BC->PageAlign); if (HotTextEnd > Address) { PaddingSize = HotTextEnd - Address; Address = HotTextEnd; } } return Address; }; // Check if we can fit code in the original .text bool AllocationDone = false; if (opts::UseOldText) { const uint64_t CodeSize = allocateAt(BC->OldTextSectionAddress) - BC->OldTextSectionAddress; if (CodeSize <= BC->OldTextSectionSize) { outs() << "BOLT-INFO: using original .text for new code with 0x" << Twine::utohexstr(opts::AlignText) << " alignment\n"; AllocationDone = true; } else { errs() << "BOLT-WARNING: original .text too small to fit the new code" << " using 0x" << Twine::utohexstr(opts::AlignText) << " alignment. " << CodeSize << " bytes needed, have " << BC->OldTextSectionSize << " bytes available.\n"; opts::UseOldText = false; } } if (!AllocationDone) NextAvailableAddress = allocateAt(NextAvailableAddress); // Do the mapping for ORC layer based on the allocation. for (BinarySection *Section : CodeSections) { LLVM_DEBUG( dbgs() << "BOLT: mapping " << Section->getName() << " at 0x" << Twine::utohexstr(Section->getAllocAddress()) << " to 0x" << Twine::utohexstr(Section->getOutputAddress()) << '\n'); RTDyld.reassignSectionAddress(Section->getSectionID(), Section->getOutputAddress()); Section->setOutputFileOffset( getFileOffsetForAddress(Section->getOutputAddress())); } // Check if we need to insert a padding section for hot text. if (PaddingSize && !opts::UseOldText) outs() << "BOLT-INFO: padding code to 0x" << Twine::utohexstr(NextAvailableAddress) << " to accommodate hot text\n"; return; } // Processing in non-relocation mode. uint64_t NewTextSectionStartAddress = NextAvailableAddress; for (auto &BFI : BC->getBinaryFunctions()) { BinaryFunction &Function = BFI.second; if (!Function.isEmitted()) continue; bool TooLarge = false; ErrorOr FuncSection = Function.getCodeSection(); assert(FuncSection && "cannot find section for function"); FuncSection->setOutputAddress(Function.getAddress()); LLVM_DEBUG(dbgs() << "BOLT: mapping 0x" << Twine::utohexstr(FuncSection->getAllocAddress()) << " to 0x" << Twine::utohexstr(Function.getAddress()) << '\n'); RTDyld.reassignSectionAddress(FuncSection->getSectionID(), Function.getAddress()); Function.setImageAddress(FuncSection->getAllocAddress()); Function.setImageSize(FuncSection->getOutputSize()); if (Function.getImageSize() > Function.getMaxSize()) { TooLarge = true; FailedAddresses.emplace_back(Function.getAddress()); } // Map jump tables if updating in-place. if (opts::JumpTables == JTS_BASIC) { for (auto &JTI : Function.JumpTables) { JumpTable *JT = JTI.second; BinarySection &Section = JT->getOutputSection(); Section.setOutputAddress(JT->getAddress()); Section.setOutputFileOffset(getFileOffsetForAddress(JT->getAddress())); LLVM_DEBUG(dbgs() << "BOLT-DEBUG: mapping " << Section.getName() << " to 0x" << Twine::utohexstr(JT->getAddress()) << '\n'); RTDyld.reassignSectionAddress(Section.getSectionID(), JT->getAddress()); } } if (!Function.isSplit()) continue; ErrorOr ColdSection = Function.getColdCodeSection(); assert(ColdSection && "cannot find section for cold part"); // Cold fragments are aligned at 16 bytes. NextAvailableAddress = alignTo(NextAvailableAddress, 16); BinaryFunction::FragmentInfo &ColdPart = Function.cold(); if (TooLarge) { // The corresponding FDE will refer to address 0. ColdPart.setAddress(0); ColdPart.setImageAddress(0); ColdPart.setImageSize(0); ColdPart.setFileOffset(0); } else { ColdPart.setAddress(NextAvailableAddress); ColdPart.setImageAddress(ColdSection->getAllocAddress()); ColdPart.setImageSize(ColdSection->getOutputSize()); ColdPart.setFileOffset(getFileOffsetForAddress(NextAvailableAddress)); ColdSection->setOutputAddress(ColdPart.getAddress()); } LLVM_DEBUG(dbgs() << "BOLT: mapping cold fragment 0x" << Twine::utohexstr(ColdPart.getImageAddress()) << " to 0x" << Twine::utohexstr(ColdPart.getAddress()) << " with size " << Twine::utohexstr(ColdPart.getImageSize()) << '\n'); RTDyld.reassignSectionAddress(ColdSection->getSectionID(), ColdPart.getAddress()); NextAvailableAddress += ColdPart.getImageSize(); } // Add the new text section aggregating all existing code sections. // This is pseudo-section that serves a purpose of creating a corresponding // entry in section header table. int64_t NewTextSectionSize = NextAvailableAddress - NewTextSectionStartAddress; if (NewTextSectionSize) { const unsigned Flags = BinarySection::getFlags(/*IsReadOnly=*/true, /*IsText=*/true, /*IsAllocatable=*/true); BinarySection &Section = BC->registerOrUpdateSection(getBOLTTextSectionName(), ELF::SHT_PROGBITS, Flags, /*Data=*/nullptr, NewTextSectionSize, 16); Section.setOutputAddress(NewTextSectionStartAddress); Section.setOutputFileOffset( getFileOffsetForAddress(NewTextSectionStartAddress)); } } void RewriteInstance::mapDataSections(RuntimeDyld &RTDyld) { // Map special sections to their addresses in the output image. // These are the sections that we generate via MCStreamer. // The order is important. std::vector Sections = { ".eh_frame", Twine(getOrgSecPrefix(), ".eh_frame").str(), ".gcc_except_table", ".rodata", ".rodata.cold"}; if (RuntimeLibrary *RtLibrary = BC->getRuntimeLibrary()) RtLibrary->addRuntimeLibSections(Sections); for (std::string &SectionName : Sections) { ErrorOr Section = BC->getUniqueSectionByName(SectionName); if (!Section || !Section->isAllocatable() || !Section->isFinalized()) continue; NextAvailableAddress = alignTo(NextAvailableAddress, Section->getAlignment()); LLVM_DEBUG(dbgs() << "BOLT: mapping section " << SectionName << " (0x" << Twine::utohexstr(Section->getAllocAddress()) << ") to 0x" << Twine::utohexstr(NextAvailableAddress) << ":0x" << Twine::utohexstr(NextAvailableAddress + Section->getOutputSize()) << '\n'); RTDyld.reassignSectionAddress(Section->getSectionID(), NextAvailableAddress); Section->setOutputAddress(NextAvailableAddress); Section->setOutputFileOffset(getFileOffsetForAddress(NextAvailableAddress)); NextAvailableAddress += Section->getOutputSize(); } // Handling for sections with relocations. for (BinarySection &Section : BC->sections()) { if (!Section.hasSectionRef()) continue; StringRef SectionName = Section.getName(); ErrorOr OrgSection = BC->getUniqueSectionByName((getOrgSecPrefix() + SectionName).str()); if (!OrgSection || !OrgSection->isAllocatable() || !OrgSection->isFinalized() || !OrgSection->hasValidSectionID()) continue; if (OrgSection->getOutputAddress()) { LLVM_DEBUG(dbgs() << "BOLT-DEBUG: section " << SectionName << " is already mapped at 0x" << Twine::utohexstr(OrgSection->getOutputAddress()) << '\n'); continue; } LLVM_DEBUG( dbgs() << "BOLT: mapping original section " << SectionName << " (0x" << Twine::utohexstr(OrgSection->getAllocAddress()) << ") to 0x" << Twine::utohexstr(Section.getAddress()) << '\n'); RTDyld.reassignSectionAddress(OrgSection->getSectionID(), Section.getAddress()); OrgSection->setOutputAddress(Section.getAddress()); OrgSection->setOutputFileOffset(Section.getContents().data() - InputFile->getData().data()); } } void RewriteInstance::mapExtraSections(RuntimeDyld &RTDyld) { for (BinarySection &Section : BC->allocatableSections()) { if (Section.getOutputAddress() || !Section.hasValidSectionID()) continue; NextAvailableAddress = alignTo(NextAvailableAddress, Section.getAlignment()); Section.setOutputAddress(NextAvailableAddress); NextAvailableAddress += Section.getOutputSize(); LLVM_DEBUG(dbgs() << "BOLT: (extra) mapping " << Section.getName() << " at 0x" << Twine::utohexstr(Section.getAllocAddress()) << " to 0x" << Twine::utohexstr(Section.getOutputAddress()) << '\n'); RTDyld.reassignSectionAddress(Section.getSectionID(), Section.getOutputAddress()); Section.setOutputFileOffset( getFileOffsetForAddress(Section.getOutputAddress())); } } void RewriteInstance::updateOutputValues(const MCAsmLayout &Layout) { for (BinaryFunction *Function : BC->getAllBinaryFunctions()) Function->updateOutputValues(Layout); } void RewriteInstance::patchELFPHDRTable() { auto ELF64LEFile = dyn_cast(InputFile); if (!ELF64LEFile) { errs() << "BOLT-ERROR: only 64-bit LE ELF binaries are supported\n"; exit(1); } const ELFFile &Obj = ELF64LEFile->getELFFile(); raw_fd_ostream &OS = Out->os(); // Write/re-write program headers. Phnum = Obj.getHeader().e_phnum; if (PHDRTableOffset) { // Writing new pheader table. Phnum += 1; // only adding one new segment // Segment size includes the size of the PHDR area. NewTextSegmentSize = NextAvailableAddress - PHDRTableAddress; } else { assert(!PHDRTableAddress && "unexpected address for program header table"); // Update existing table. PHDRTableOffset = Obj.getHeader().e_phoff; NewTextSegmentSize = NextAvailableAddress - NewTextSegmentAddress; } OS.seek(PHDRTableOffset); bool ModdedGnuStack = false; (void)ModdedGnuStack; bool AddedSegment = false; (void)AddedSegment; auto createNewTextPhdr = [&]() { ELF64LEPhdrTy NewPhdr; NewPhdr.p_type = ELF::PT_LOAD; if (PHDRTableAddress) { NewPhdr.p_offset = PHDRTableOffset; NewPhdr.p_vaddr = PHDRTableAddress; NewPhdr.p_paddr = PHDRTableAddress; } else { NewPhdr.p_offset = NewTextSegmentOffset; NewPhdr.p_vaddr = NewTextSegmentAddress; NewPhdr.p_paddr = NewTextSegmentAddress; } NewPhdr.p_filesz = NewTextSegmentSize; NewPhdr.p_memsz = NewTextSegmentSize; NewPhdr.p_flags = ELF::PF_X | ELF::PF_R; // FIXME: Currently instrumentation is experimental and the runtime data // is emitted with code, thus everything needs to be writable if (opts::Instrument) NewPhdr.p_flags |= ELF::PF_W; NewPhdr.p_align = BC->PageAlign; return NewPhdr; }; // Copy existing program headers with modifications. for (const ELF64LE::Phdr &Phdr : cantFail(Obj.program_headers())) { ELF64LE::Phdr NewPhdr = Phdr; if (PHDRTableAddress && Phdr.p_type == ELF::PT_PHDR) { NewPhdr.p_offset = PHDRTableOffset; NewPhdr.p_vaddr = PHDRTableAddress; NewPhdr.p_paddr = PHDRTableAddress; NewPhdr.p_filesz = sizeof(NewPhdr) * Phnum; NewPhdr.p_memsz = sizeof(NewPhdr) * Phnum; } else if (Phdr.p_type == ELF::PT_GNU_EH_FRAME) { ErrorOr EHFrameHdrSec = BC->getUniqueSectionByName(".eh_frame_hdr"); if (EHFrameHdrSec && EHFrameHdrSec->isAllocatable() && EHFrameHdrSec->isFinalized()) { NewPhdr.p_offset = EHFrameHdrSec->getOutputFileOffset(); NewPhdr.p_vaddr = EHFrameHdrSec->getOutputAddress(); NewPhdr.p_paddr = EHFrameHdrSec->getOutputAddress(); NewPhdr.p_filesz = EHFrameHdrSec->getOutputSize(); NewPhdr.p_memsz = EHFrameHdrSec->getOutputSize(); } } else if (opts::UseGnuStack && Phdr.p_type == ELF::PT_GNU_STACK) { NewPhdr = createNewTextPhdr(); ModdedGnuStack = true; } else if (!opts::UseGnuStack && Phdr.p_type == ELF::PT_DYNAMIC) { // Insert the new header before DYNAMIC. ELF64LE::Phdr NewTextPhdr = createNewTextPhdr(); OS.write(reinterpret_cast(&NewTextPhdr), sizeof(NewTextPhdr)); AddedSegment = true; } OS.write(reinterpret_cast(&NewPhdr), sizeof(NewPhdr)); } if (!opts::UseGnuStack && !AddedSegment) { // Append the new header to the end of the table. ELF64LE::Phdr NewTextPhdr = createNewTextPhdr(); OS.write(reinterpret_cast(&NewTextPhdr), sizeof(NewTextPhdr)); } assert((!opts::UseGnuStack || ModdedGnuStack) && "could not find GNU_STACK program header to modify"); } namespace { /// Write padding to \p OS such that its current \p Offset becomes aligned /// at \p Alignment. Return new (aligned) offset. uint64_t appendPadding(raw_pwrite_stream &OS, uint64_t Offset, uint64_t Alignment) { if (!Alignment) return Offset; const uint64_t PaddingSize = offsetToAlignment(Offset, llvm::Align(Alignment)); for (unsigned I = 0; I < PaddingSize; ++I) OS.write((unsigned char)0); return Offset + PaddingSize; } } void RewriteInstance::rewriteNoteSections() { auto ELF64LEFile = dyn_cast(InputFile); if (!ELF64LEFile) { errs() << "BOLT-ERROR: only 64-bit LE ELF binaries are supported\n"; exit(1); } const ELFFile &Obj = ELF64LEFile->getELFFile(); raw_fd_ostream &OS = Out->os(); uint64_t NextAvailableOffset = getFileOffsetForAddress(NextAvailableAddress); assert(NextAvailableOffset >= FirstNonAllocatableOffset && "next available offset calculation failure"); OS.seek(NextAvailableOffset); // Copy over non-allocatable section contents and update file offsets. for (const ELF64LE::Shdr &Section : cantFail(Obj.sections())) { if (Section.sh_type == ELF::SHT_NULL) continue; if (Section.sh_flags & ELF::SHF_ALLOC) continue; StringRef SectionName = cantFail(Obj.getSectionName(Section), "cannot get section name"); ErrorOr BSec = BC->getUniqueSectionByName(SectionName); if (shouldStrip(Section, SectionName)) continue; // Insert padding as needed. NextAvailableOffset = appendPadding(OS, NextAvailableOffset, Section.sh_addralign); // New section size. uint64_t Size = 0; bool DataWritten = false; uint8_t *SectionData = nullptr; // Copy over section contents unless it's one of the sections we overwrite. if (!willOverwriteSection(SectionName)) { Size = Section.sh_size; StringRef Dataref = InputFile->getData().substr(Section.sh_offset, Size); std::string Data; if (BSec && BSec->getPatcher()) { Data = BSec->getPatcher()->patchBinary(Dataref); Dataref = StringRef(Data); } // Section was expanded, so need to treat it as overwrite. if (Size != Dataref.size()) { BSec = BC->registerOrUpdateNoteSection( SectionName, copyByteArray(Dataref), Dataref.size()); Size = 0; } else { OS << Dataref; DataWritten = true; // Add padding as the section extension might rely on the alignment. Size = appendPadding(OS, Size, Section.sh_addralign); } } // Perform section post-processing. if (BSec && !BSec->isAllocatable()) { assert(BSec->getAlignment() <= Section.sh_addralign && "alignment exceeds value in file"); if (BSec->getAllocAddress()) { assert(!DataWritten && "Writing section twice."); SectionData = BSec->getOutputData(); LLVM_DEBUG(dbgs() << "BOLT-DEBUG: " << (Size ? "appending" : "writing") << " contents to section " << SectionName << '\n'); OS.write(reinterpret_cast(SectionData), BSec->getOutputSize()); Size += BSec->getOutputSize(); } BSec->setOutputFileOffset(NextAvailableOffset); BSec->flushPendingRelocations(OS, [this] (const MCSymbol *S) { return getNewValueForSymbol(S->getName()); }); } // Set/modify section info. BinarySection &NewSection = BC->registerOrUpdateNoteSection(SectionName, SectionData, Size, Section.sh_addralign, BSec ? BSec->isReadOnly() : false, BSec ? BSec->getELFType() : ELF::SHT_PROGBITS); NewSection.setOutputAddress(0); NewSection.setOutputFileOffset(NextAvailableOffset); NextAvailableOffset += Size; } // Write new note sections. for (BinarySection &Section : BC->nonAllocatableSections()) { if (Section.getOutputFileOffset() || !Section.getAllocAddress()) continue; assert(!Section.hasPendingRelocations() && "cannot have pending relocs"); NextAvailableOffset = appendPadding(OS, NextAvailableOffset, Section.getAlignment()); Section.setOutputFileOffset(NextAvailableOffset); LLVM_DEBUG( dbgs() << "BOLT-DEBUG: writing out new section " << Section.getName() << " of size " << Section.getOutputSize() << " at offset 0x" << Twine::utohexstr(Section.getOutputFileOffset()) << '\n'); OS.write(Section.getOutputContents().data(), Section.getOutputSize()); NextAvailableOffset += Section.getOutputSize(); } } template void RewriteInstance::finalizeSectionStringTable(ELFObjectFile *File) { using ELFShdrTy = typename ELFT::Shdr; const ELFFile &Obj = File->getELFFile(); // Pre-populate section header string table. for (const ELFShdrTy &Section : cantFail(Obj.sections())) { StringRef SectionName = cantFail(Obj.getSectionName(Section), "cannot get section name"); SHStrTab.add(SectionName); std::string OutputSectionName = getOutputSectionName(Obj, Section); if (OutputSectionName != SectionName) SHStrTabPool.emplace_back(std::move(OutputSectionName)); } for (const std::string &Str : SHStrTabPool) SHStrTab.add(Str); for (const BinarySection &Section : BC->sections()) SHStrTab.add(Section.getName()); SHStrTab.finalize(); const size_t SHStrTabSize = SHStrTab.getSize(); uint8_t *DataCopy = new uint8_t[SHStrTabSize]; memset(DataCopy, 0, SHStrTabSize); SHStrTab.write(DataCopy); BC->registerOrUpdateNoteSection(".shstrtab", DataCopy, SHStrTabSize, /*Alignment=*/1, /*IsReadOnly=*/true, ELF::SHT_STRTAB); } void RewriteInstance::addBoltInfoSection() { std::string DescStr; raw_string_ostream DescOS(DescStr); DescOS << "BOLT revision: " << BoltRevision << ", " << "command line:"; for (int I = 0; I < Argc; ++I) DescOS << " " << Argv[I]; DescOS.flush(); // Encode as GNU GOLD VERSION so it is easily printable by 'readelf -n' const std::string BoltInfo = BinarySection::encodeELFNote("GNU", DescStr, 4 /*NT_GNU_GOLD_VERSION*/); BC->registerOrUpdateNoteSection(".note.bolt_info", copyByteArray(BoltInfo), BoltInfo.size(), /*Alignment=*/1, /*IsReadOnly=*/true, ELF::SHT_NOTE); } void RewriteInstance::addBATSection() { BC->registerOrUpdateNoteSection(BoltAddressTranslation::SECTION_NAME, nullptr, 0, /*Alignment=*/1, /*IsReadOnly=*/true, ELF::SHT_NOTE); } void RewriteInstance::encodeBATSection() { std::string DescStr; raw_string_ostream DescOS(DescStr); BAT->write(DescOS); DescOS.flush(); const std::string BoltInfo = BinarySection::encodeELFNote("BOLT", DescStr, BinarySection::NT_BOLT_BAT); BC->registerOrUpdateNoteSection(BoltAddressTranslation::SECTION_NAME, copyByteArray(BoltInfo), BoltInfo.size(), /*Alignment=*/1, /*IsReadOnly=*/true, ELF::SHT_NOTE); } template std::string RewriteInstance::getOutputSectionName(const ELFObjType &Obj, const ELFShdrTy &Section) { if (Section.sh_type == ELF::SHT_NULL) return ""; StringRef SectionName = cantFail(Obj.getSectionName(Section), "cannot get section name"); if ((Section.sh_flags & ELF::SHF_ALLOC) && willOverwriteSection(SectionName)) return (getOrgSecPrefix() + SectionName).str(); return std::string(SectionName); } template bool RewriteInstance::shouldStrip(const ELFShdrTy &Section, StringRef SectionName) { // Strip non-allocatable relocation sections. if (!(Section.sh_flags & ELF::SHF_ALLOC) && Section.sh_type == ELF::SHT_RELA) return true; // Strip debug sections if not updating them. if (isDebugSection(SectionName) && !opts::UpdateDebugSections) return true; // Strip symtab section if needed if (opts::RemoveSymtab && Section.sh_type == ELF::SHT_SYMTAB) return true; return false; } template std::vector::Elf_Shdr> RewriteInstance::getOutputSections(ELFObjectFile *File, std::vector &NewSectionIndex) { using ELFShdrTy = typename ELFObjectFile::Elf_Shdr; const ELFFile &Obj = File->getELFFile(); typename ELFT::ShdrRange Sections = cantFail(Obj.sections()); // Keep track of section header entries together with their name. std::vector> OutputSections; auto addSection = [&](const std::string &Name, const ELFShdrTy &Section) { ELFShdrTy NewSection = Section; NewSection.sh_name = SHStrTab.getOffset(Name); OutputSections.emplace_back(Name, std::move(NewSection)); }; // Copy over entries for original allocatable sections using modified name. for (const ELFShdrTy &Section : Sections) { // Always ignore this section. if (Section.sh_type == ELF::SHT_NULL) { OutputSections.emplace_back("", Section); continue; } if (!(Section.sh_flags & ELF::SHF_ALLOC)) continue; addSection(getOutputSectionName(Obj, Section), Section); } for (const BinarySection &Section : BC->allocatableSections()) { if (!Section.isFinalized()) continue; if (Section.getName().startswith(getOrgSecPrefix()) || Section.isAnonymous()) { if (opts::Verbosity) outs() << "BOLT-INFO: not writing section header for section " << Section.getName() << '\n'; continue; } if (opts::Verbosity >= 1) outs() << "BOLT-INFO: writing section header for " << Section.getName() << '\n'; ELFShdrTy NewSection; NewSection.sh_type = ELF::SHT_PROGBITS; NewSection.sh_addr = Section.getOutputAddress(); NewSection.sh_offset = Section.getOutputFileOffset(); NewSection.sh_size = Section.getOutputSize(); NewSection.sh_entsize = 0; NewSection.sh_flags = Section.getELFFlags(); NewSection.sh_link = 0; NewSection.sh_info = 0; NewSection.sh_addralign = Section.getAlignment(); addSection(std::string(Section.getName()), NewSection); } // Sort all allocatable sections by their offset. std::stable_sort(OutputSections.begin(), OutputSections.end(), [] (const std::pair &A, const std::pair &B) { return A.second.sh_offset < B.second.sh_offset; }); // Fix section sizes to prevent overlapping. ELFShdrTy *PrevSection = nullptr; StringRef PrevSectionName; for (auto &SectionKV : OutputSections) { ELFShdrTy &Section = SectionKV.second; // TBSS section does not take file or memory space. Ignore it for layout // purposes. if (Section.sh_type == ELF::SHT_NOBITS && (Section.sh_flags & ELF::SHF_TLS)) continue; if (PrevSection && PrevSection->sh_addr + PrevSection->sh_size > Section.sh_addr) { if (opts::Verbosity > 1) outs() << "BOLT-INFO: adjusting size for section " << PrevSectionName << '\n'; PrevSection->sh_size = Section.sh_addr > PrevSection->sh_addr ? Section.sh_addr - PrevSection->sh_addr : 0; } PrevSection = &Section; PrevSectionName = SectionKV.first; } uint64_t LastFileOffset = 0; // Copy over entries for non-allocatable sections performing necessary // adjustments. for (const ELFShdrTy &Section : Sections) { if (Section.sh_type == ELF::SHT_NULL) continue; if (Section.sh_flags & ELF::SHF_ALLOC) continue; StringRef SectionName = cantFail(Obj.getSectionName(Section), "cannot get section name"); if (shouldStrip(Section, SectionName)) continue; ErrorOr BSec = BC->getUniqueSectionByName(SectionName); assert(BSec && "missing section info for non-allocatable section"); ELFShdrTy NewSection = Section; NewSection.sh_offset = BSec->getOutputFileOffset(); NewSection.sh_size = BSec->getOutputSize(); if (NewSection.sh_type == ELF::SHT_SYMTAB) NewSection.sh_info = NumLocalSymbols; addSection(std::string(SectionName), NewSection); LastFileOffset = BSec->getOutputFileOffset(); } // Create entries for new non-allocatable sections. for (BinarySection &Section : BC->nonAllocatableSections()) { if (Section.getOutputFileOffset() <= LastFileOffset) continue; if (opts::Verbosity >= 1) outs() << "BOLT-INFO: writing section header for " << Section.getName() << '\n'; ELFShdrTy NewSection; NewSection.sh_type = Section.getELFType(); NewSection.sh_addr = 0; NewSection.sh_offset = Section.getOutputFileOffset(); NewSection.sh_size = Section.getOutputSize(); NewSection.sh_entsize = 0; NewSection.sh_flags = Section.getELFFlags(); NewSection.sh_link = 0; NewSection.sh_info = 0; NewSection.sh_addralign = Section.getAlignment(); addSection(std::string(Section.getName()), NewSection); } // Assign indices to sections. std::unordered_map NameToIndex; for (uint32_t Index = 1; Index < OutputSections.size(); ++Index) { const std::string &SectionName = OutputSections[Index].first; NameToIndex[SectionName] = Index; if (ErrorOr Section = BC->getUniqueSectionByName(SectionName)) Section->setIndex(Index); } // Update section index mapping NewSectionIndex.clear(); NewSectionIndex.resize(Sections.size(), 0); for (const ELFShdrTy &Section : Sections) { if (Section.sh_type == ELF::SHT_NULL) continue; size_t OrgIndex = std::distance(Sections.begin(), &Section); std::string SectionName = getOutputSectionName(Obj, Section); // Some sections are stripped if (!NameToIndex.count(SectionName)) continue; NewSectionIndex[OrgIndex] = NameToIndex[SectionName]; } std::vector SectionsOnly(OutputSections.size()); std::transform(OutputSections.begin(), OutputSections.end(), SectionsOnly.begin(), [](std::pair &SectionInfo) { return SectionInfo.second; }); return SectionsOnly; } // Rewrite section header table inserting new entries as needed. The sections // header table size itself may affect the offsets of other sections, // so we are placing it at the end of the binary. // // As we rewrite entries we need to track how many sections were inserted // as it changes the sh_link value. We map old indices to new ones for // existing sections. template void RewriteInstance::patchELFSectionHeaderTable(ELFObjectFile *File) { using ELFShdrTy = typename ELFObjectFile::Elf_Shdr; using ELFEhdrTy = typename ELFObjectFile::Elf_Ehdr; raw_fd_ostream &OS = Out->os(); const ELFFile &Obj = File->getELFFile(); std::vector NewSectionIndex; std::vector OutputSections = getOutputSections(File, NewSectionIndex); LLVM_DEBUG( dbgs() << "BOLT-DEBUG: old to new section index mapping:\n"; for (uint64_t I = 0; I < NewSectionIndex.size(); ++I) dbgs() << " " << I << " -> " << NewSectionIndex[I] << '\n'; ); // Align starting address for section header table. uint64_t SHTOffset = OS.tell(); SHTOffset = appendPadding(OS, SHTOffset, sizeof(ELFShdrTy)); // Write all section header entries while patching section references. for (ELFShdrTy &Section : OutputSections) { Section.sh_link = NewSectionIndex[Section.sh_link]; if (Section.sh_type == ELF::SHT_REL || Section.sh_type == ELF::SHT_RELA) { if (Section.sh_info) Section.sh_info = NewSectionIndex[Section.sh_info]; } OS.write(reinterpret_cast(&Section), sizeof(Section)); } // Fix ELF header. ELFEhdrTy NewEhdr = Obj.getHeader(); if (BC->HasRelocations) { if (RuntimeLibrary *RtLibrary = BC->getRuntimeLibrary()) NewEhdr.e_entry = RtLibrary->getRuntimeStartAddress(); else NewEhdr.e_entry = getNewFunctionAddress(NewEhdr.e_entry); assert((NewEhdr.e_entry || !Obj.getHeader().e_entry) && "cannot find new address for entry point"); } NewEhdr.e_phoff = PHDRTableOffset; NewEhdr.e_phnum = Phnum; NewEhdr.e_shoff = SHTOffset; NewEhdr.e_shnum = OutputSections.size(); NewEhdr.e_shstrndx = NewSectionIndex[NewEhdr.e_shstrndx]; OS.pwrite(reinterpret_cast(&NewEhdr), sizeof(NewEhdr), 0); } template void RewriteInstance::updateELFSymbolTable( ELFObjectFile *File, bool IsDynSym, const typename object::ELFObjectFile::Elf_Shdr &SymTabSection, const std::vector &NewSectionIndex, WriteFuncTy Write, StrTabFuncTy AddToStrTab) { const ELFFile &Obj = File->getELFFile(); using ELFSymTy = typename ELFObjectFile::Elf_Sym; StringRef StringSection = cantFail(Obj.getStringTableForSymtab(SymTabSection)); unsigned NumHotTextSymsUpdated = 0; unsigned NumHotDataSymsUpdated = 0; std::map IslandSizes; auto getConstantIslandSize = [&IslandSizes](const BinaryFunction &BF) { auto Itr = IslandSizes.find(&BF); if (Itr != IslandSizes.end()) return Itr->second; return IslandSizes[&BF] = BF.estimateConstantIslandSize(); }; // Symbols for the new symbol table. std::vector Symbols; auto getNewSectionIndex = [&](uint32_t OldIndex) { assert(OldIndex < NewSectionIndex.size() && "section index out of bounds"); const uint32_t NewIndex = NewSectionIndex[OldIndex]; // We may have stripped the section that dynsym was referencing due to // the linker bug. In that case return the old index avoiding marking // the symbol as undefined. if (IsDynSym && NewIndex != OldIndex && NewIndex == ELF::SHN_UNDEF) return OldIndex; return NewIndex; }; // Add extra symbols for the function. // // Note that addExtraSymbols() could be called multiple times for the same // function with different FunctionSymbol matching the main function entry // point. auto addExtraSymbols = [&](const BinaryFunction &Function, const ELFSymTy &FunctionSymbol) { if (Function.isFolded()) { BinaryFunction *ICFParent = Function.getFoldedIntoFunction(); while (ICFParent->isFolded()) ICFParent = ICFParent->getFoldedIntoFunction(); ELFSymTy ICFSymbol = FunctionSymbol; SmallVector Buf; ICFSymbol.st_name = AddToStrTab(Twine(cantFail(FunctionSymbol.getName(StringSection))) .concat(".icf.0") .toStringRef(Buf)); ICFSymbol.st_value = ICFParent->getOutputAddress(); ICFSymbol.st_size = ICFParent->getOutputSize(); ICFSymbol.st_shndx = ICFParent->getCodeSection()->getIndex(); Symbols.emplace_back(ICFSymbol); } if (Function.isSplit() && Function.cold().getAddress()) { ELFSymTy NewColdSym = FunctionSymbol; SmallVector Buf; NewColdSym.st_name = AddToStrTab(Twine(cantFail(FunctionSymbol.getName(StringSection))) .concat(".cold.0") .toStringRef(Buf)); NewColdSym.st_shndx = Function.getColdCodeSection()->getIndex(); NewColdSym.st_value = Function.cold().getAddress(); NewColdSym.st_size = Function.cold().getImageSize(); NewColdSym.setBindingAndType(ELF::STB_LOCAL, ELF::STT_FUNC); Symbols.emplace_back(NewColdSym); } if (Function.hasConstantIsland()) { uint64_t DataMark = Function.getOutputDataAddress(); uint64_t CISize = getConstantIslandSize(Function); uint64_t CodeMark = DataMark + CISize; ELFSymTy DataMarkSym = FunctionSymbol; DataMarkSym.st_name = AddToStrTab("$d"); DataMarkSym.st_value = DataMark; DataMarkSym.st_size = 0; DataMarkSym.setType(ELF::STT_NOTYPE); DataMarkSym.setBinding(ELF::STB_LOCAL); ELFSymTy CodeMarkSym = DataMarkSym; CodeMarkSym.st_name = AddToStrTab("$x"); CodeMarkSym.st_value = CodeMark; Symbols.emplace_back(DataMarkSym); Symbols.emplace_back(CodeMarkSym); } if (Function.hasConstantIsland() && Function.isSplit()) { uint64_t DataMark = Function.getOutputColdDataAddress(); uint64_t CISize = getConstantIslandSize(Function); uint64_t CodeMark = DataMark + CISize; ELFSymTy DataMarkSym = FunctionSymbol; DataMarkSym.st_name = AddToStrTab("$d"); DataMarkSym.st_value = DataMark; DataMarkSym.st_size = 0; DataMarkSym.setType(ELF::STT_NOTYPE); DataMarkSym.setBinding(ELF::STB_LOCAL); ELFSymTy CodeMarkSym = DataMarkSym; CodeMarkSym.st_name = AddToStrTab("$x"); CodeMarkSym.st_value = CodeMark; Symbols.emplace_back(DataMarkSym); Symbols.emplace_back(CodeMarkSym); } }; // For regular (non-dynamic) symbol table, exclude symbols referring // to non-allocatable sections. auto shouldStrip = [&](const ELFSymTy &Symbol) { if (Symbol.isAbsolute() || !Symbol.isDefined()) return false; // If we cannot link the symbol to a section, leave it as is. Expected Section = Obj.getSection(Symbol.st_shndx); if (!Section) return false; // Remove the section symbol iif the corresponding section was stripped. if (Symbol.getType() == ELF::STT_SECTION) { if (!getNewSectionIndex(Symbol.st_shndx)) return true; return false; } // Symbols in non-allocatable sections are typically remnants of relocations // emitted under "-emit-relocs" linker option. Delete those as we delete // relocations against non-allocatable sections. if (!((*Section)->sh_flags & ELF::SHF_ALLOC)) return true; return false; }; for (const ELFSymTy &Symbol : cantFail(Obj.symbols(&SymTabSection))) { // For regular (non-dynamic) symbol table strip unneeded symbols. if (!IsDynSym && shouldStrip(Symbol)) continue; const BinaryFunction *Function = BC->getBinaryFunctionAtAddress(Symbol.st_value); // Ignore false function references, e.g. when the section address matches // the address of the function. if (Function && Symbol.getType() == ELF::STT_SECTION) Function = nullptr; // For non-dynamic symtab, make sure the symbol section matches that of // the function. It can mismatch e.g. if the symbol is a section marker // in which case we treat the symbol separately from the function. // For dynamic symbol table, the section index could be wrong on the input, // and its value is ignored by the runtime if it's different from // SHN_UNDEF and SHN_ABS. if (!IsDynSym && Function && Symbol.st_shndx != Function->getOriginSection()->getSectionRef().getIndex()) Function = nullptr; // Create a new symbol based on the existing symbol. ELFSymTy NewSymbol = Symbol; if (Function) { // If the symbol matched a function that was not emitted, update the // corresponding section index but otherwise leave it unchanged. if (Function->isEmitted()) { NewSymbol.st_value = Function->getOutputAddress(); NewSymbol.st_size = Function->getOutputSize(); NewSymbol.st_shndx = Function->getCodeSection()->getIndex(); } else if (Symbol.st_shndx < ELF::SHN_LORESERVE) { NewSymbol.st_shndx = getNewSectionIndex(Symbol.st_shndx); } // Add new symbols to the symbol table if necessary. if (!IsDynSym) addExtraSymbols(*Function, NewSymbol); } else { // Check if the function symbol matches address inside a function, i.e. // it marks a secondary entry point. Function = (Symbol.getType() == ELF::STT_FUNC) ? BC->getBinaryFunctionContainingAddress(Symbol.st_value, /*CheckPastEnd=*/false, /*UseMaxSize=*/true) : nullptr; if (Function && Function->isEmitted()) { const uint64_t OutputAddress = Function->translateInputToOutputAddress(Symbol.st_value); NewSymbol.st_value = OutputAddress; // Force secondary entry points to have zero size. NewSymbol.st_size = 0; NewSymbol.st_shndx = OutputAddress >= Function->cold().getAddress() && OutputAddress < Function->cold().getImageSize() ? Function->getColdCodeSection()->getIndex() : Function->getCodeSection()->getIndex(); } else { // Check if the symbol belongs to moved data object and update it. BinaryData *BD = opts::ReorderData.empty() ? nullptr : BC->getBinaryDataAtAddress(Symbol.st_value); if (BD && BD->isMoved() && !BD->isJumpTable()) { assert((!BD->getSize() || !Symbol.st_size || Symbol.st_size == BD->getSize()) && "sizes must match"); BinarySection &OutputSection = BD->getOutputSection(); assert(OutputSection.getIndex()); LLVM_DEBUG(dbgs() << "BOLT-DEBUG: moving " << BD->getName() << " from " << *BC->getSectionNameForAddress(Symbol.st_value) << " (" << Symbol.st_shndx << ") to " << OutputSection.getName() << " (" << OutputSection.getIndex() << ")\n"); NewSymbol.st_shndx = OutputSection.getIndex(); NewSymbol.st_value = BD->getOutputAddress(); } else { // Otherwise just update the section for the symbol. if (Symbol.st_shndx < ELF::SHN_LORESERVE) NewSymbol.st_shndx = getNewSectionIndex(Symbol.st_shndx); } // Detect local syms in the text section that we didn't update // and that were preserved by the linker to support relocations against // .text. Remove them from the symtab. if (Symbol.getType() == ELF::STT_NOTYPE && Symbol.getBinding() == ELF::STB_LOCAL && Symbol.st_size == 0) { if (BC->getBinaryFunctionContainingAddress(Symbol.st_value, /*CheckPastEnd=*/false, /*UseMaxSize=*/true)) { // Can only delete the symbol if not patching. Such symbols should // not exist in the dynamic symbol table. assert(!IsDynSym && "cannot delete symbol"); continue; } } } } // Handle special symbols based on their name. Expected SymbolName = Symbol.getName(StringSection); assert(SymbolName && "cannot get symbol name"); auto updateSymbolValue = [&](const StringRef Name, unsigned &IsUpdated) { NewSymbol.st_value = getNewValueForSymbol(Name); NewSymbol.st_shndx = ELF::SHN_ABS; outs() << "BOLT-INFO: setting " << Name << " to 0x" << Twine::utohexstr(NewSymbol.st_value) << '\n'; ++IsUpdated; }; if (opts::HotText && (*SymbolName == "__hot_start" || *SymbolName == "__hot_end")) updateSymbolValue(*SymbolName, NumHotTextSymsUpdated); if (opts::HotData && (*SymbolName == "__hot_data_start" || *SymbolName == "__hot_data_end")) updateSymbolValue(*SymbolName, NumHotDataSymsUpdated); if (*SymbolName == "_end") { unsigned Ignored; updateSymbolValue(*SymbolName, Ignored); } if (IsDynSym) Write((&Symbol - cantFail(Obj.symbols(&SymTabSection)).begin()) * sizeof(ELFSymTy), NewSymbol); else Symbols.emplace_back(NewSymbol); } if (IsDynSym) { assert(Symbols.empty()); return; } // Add symbols of injected functions for (BinaryFunction *Function : BC->getInjectedBinaryFunctions()) { ELFSymTy NewSymbol; BinarySection *OriginSection = Function->getOriginSection(); NewSymbol.st_shndx = OriginSection ? getNewSectionIndex(OriginSection->getSectionRef().getIndex()) : Function->getCodeSection()->getIndex(); NewSymbol.st_value = Function->getOutputAddress(); NewSymbol.st_name = AddToStrTab(Function->getOneName()); NewSymbol.st_size = Function->getOutputSize(); NewSymbol.st_other = 0; NewSymbol.setBindingAndType(ELF::STB_LOCAL, ELF::STT_FUNC); Symbols.emplace_back(NewSymbol); if (Function->isSplit()) { ELFSymTy NewColdSym = NewSymbol; NewColdSym.setType(ELF::STT_NOTYPE); SmallVector Buf; NewColdSym.st_name = AddToStrTab( Twine(Function->getPrintName()).concat(".cold.0").toStringRef(Buf)); NewColdSym.st_value = Function->cold().getAddress(); NewColdSym.st_size = Function->cold().getImageSize(); Symbols.emplace_back(NewColdSym); } } assert((!NumHotTextSymsUpdated || NumHotTextSymsUpdated == 2) && "either none or both __hot_start/__hot_end symbols were expected"); assert((!NumHotDataSymsUpdated || NumHotDataSymsUpdated == 2) && "either none or both __hot_data_start/__hot_data_end symbols were " "expected"); auto addSymbol = [&](const std::string &Name) { ELFSymTy Symbol; Symbol.st_value = getNewValueForSymbol(Name); Symbol.st_shndx = ELF::SHN_ABS; Symbol.st_name = AddToStrTab(Name); Symbol.st_size = 0; Symbol.st_other = 0; Symbol.setBindingAndType(ELF::STB_WEAK, ELF::STT_NOTYPE); outs() << "BOLT-INFO: setting " << Name << " to 0x" << Twine::utohexstr(Symbol.st_value) << '\n'; Symbols.emplace_back(Symbol); }; if (opts::HotText && !NumHotTextSymsUpdated) { addSymbol("__hot_start"); addSymbol("__hot_end"); } if (opts::HotData && !NumHotDataSymsUpdated) { addSymbol("__hot_data_start"); addSymbol("__hot_data_end"); } // Put local symbols at the beginning. std::stable_sort(Symbols.begin(), Symbols.end(), [](const ELFSymTy &A, const ELFSymTy &B) { if (A.getBinding() == ELF::STB_LOCAL && B.getBinding() != ELF::STB_LOCAL) return true; return false; }); for (const ELFSymTy &Symbol : Symbols) Write(0, Symbol); } template void RewriteInstance::patchELFSymTabs(ELFObjectFile *File) { const ELFFile &Obj = File->getELFFile(); using ELFShdrTy = typename ELFObjectFile::Elf_Shdr; using ELFSymTy = typename ELFObjectFile::Elf_Sym; // Compute a preview of how section indices will change after rewriting, so // we can properly update the symbol table based on new section indices. std::vector NewSectionIndex; getOutputSections(File, NewSectionIndex); // Set pointer at the end of the output file, so we can pwrite old symbol // tables if we need to. uint64_t NextAvailableOffset = getFileOffsetForAddress(NextAvailableAddress); assert(NextAvailableOffset >= FirstNonAllocatableOffset && "next available offset calculation failure"); Out->os().seek(NextAvailableOffset); // Update dynamic symbol table. const ELFShdrTy *DynSymSection = nullptr; for (const ELFShdrTy &Section : cantFail(Obj.sections())) { if (Section.sh_type == ELF::SHT_DYNSYM) { DynSymSection = &Section; break; } } assert((DynSymSection || BC->IsStaticExecutable) && "dynamic symbol table expected"); if (DynSymSection) { updateELFSymbolTable( File, /*IsDynSym=*/true, *DynSymSection, NewSectionIndex, [&](size_t Offset, const ELFSymTy &Sym) { Out->os().pwrite(reinterpret_cast(&Sym), sizeof(ELFSymTy), DynSymSection->sh_offset + Offset); }, [](StringRef) -> size_t { return 0; }); } if (opts::RemoveSymtab) return; // (re)create regular symbol table. const ELFShdrTy *SymTabSection = nullptr; for (const ELFShdrTy &Section : cantFail(Obj.sections())) { if (Section.sh_type == ELF::SHT_SYMTAB) { SymTabSection = &Section; break; } } if (!SymTabSection) { errs() << "BOLT-WARNING: no symbol table found\n"; return; } const ELFShdrTy *StrTabSection = cantFail(Obj.getSection(SymTabSection->sh_link)); std::string NewContents; std::string NewStrTab = std::string( File->getData().substr(StrTabSection->sh_offset, StrTabSection->sh_size)); StringRef SecName = cantFail(Obj.getSectionName(*SymTabSection)); StringRef StrSecName = cantFail(Obj.getSectionName(*StrTabSection)); NumLocalSymbols = 0; updateELFSymbolTable( File, /*IsDynSym=*/false, *SymTabSection, NewSectionIndex, [&](size_t Offset, const ELFSymTy &Sym) { if (Sym.getBinding() == ELF::STB_LOCAL) ++NumLocalSymbols; NewContents.append(reinterpret_cast(&Sym), sizeof(ELFSymTy)); }, [&](StringRef Str) { size_t Idx = NewStrTab.size(); NewStrTab.append(NameResolver::restore(Str).str()); NewStrTab.append(1, '\0'); return Idx; }); BC->registerOrUpdateNoteSection(SecName, copyByteArray(NewContents), NewContents.size(), /*Alignment=*/1, /*IsReadOnly=*/true, ELF::SHT_SYMTAB); BC->registerOrUpdateNoteSection(StrSecName, copyByteArray(NewStrTab), NewStrTab.size(), /*Alignment=*/1, /*IsReadOnly=*/true, ELF::SHT_STRTAB); } template void RewriteInstance::patchELFAllocatableRelaSections(ELFObjectFile *File) { using Elf_Rela = typename ELFT::Rela; raw_fd_ostream &OS = Out->os(); const ELFFile &EF = File->getELFFile(); uint64_t RelDynOffset = 0, RelDynEndOffset = 0; uint64_t RelPltOffset = 0, RelPltEndOffset = 0; auto setSectionFileOffsets = [&](uint64_t Address, uint64_t &Start, uint64_t &End) { ErrorOr Section = BC->getSectionForAddress(Address); Start = Section->getInputFileOffset(); End = Start + Section->getSize(); }; if (!DynamicRelocationsAddress && !PLTRelocationsAddress) return; if (DynamicRelocationsAddress) setSectionFileOffsets(*DynamicRelocationsAddress, RelDynOffset, RelDynEndOffset); if (PLTRelocationsAddress) setSectionFileOffsets(*PLTRelocationsAddress, RelPltOffset, RelPltEndOffset); DynamicRelativeRelocationsCount = 0; auto writeRela = [&OS](const Elf_Rela *RelA, uint64_t &Offset) { OS.pwrite(reinterpret_cast(RelA), sizeof(*RelA), Offset); Offset += sizeof(*RelA); }; auto writeRelocations = [&](bool PatchRelative) { for (BinarySection &Section : BC->allocatableSections()) { for (const Relocation &Rel : Section.dynamicRelocations()) { const bool IsRelative = Rel.isRelative(); if (PatchRelative != IsRelative) continue; if (IsRelative) ++DynamicRelativeRelocationsCount; Elf_Rela NewRelA; uint64_t SectionAddress = Section.getOutputAddress(); SectionAddress = SectionAddress == 0 ? Section.getAddress() : SectionAddress; MCSymbol *Symbol = Rel.Symbol; uint32_t SymbolIdx = 0; uint64_t Addend = Rel.Addend; if (Rel.Symbol) { SymbolIdx = getOutputDynamicSymbolIndex(Symbol); } else { // Usually this case is used for R_*_(I)RELATIVE relocations const uint64_t Address = getNewFunctionOrDataAddress(Addend); if (Address) Addend = Address; } NewRelA.setSymbolAndType(SymbolIdx, Rel.Type, EF.isMips64EL()); NewRelA.r_offset = SectionAddress + Rel.Offset; NewRelA.r_addend = Addend; const bool IsJmpRel = !!(IsJmpRelocation.find(Rel.Type) != IsJmpRelocation.end()); uint64_t &Offset = IsJmpRel ? RelPltOffset : RelDynOffset; const uint64_t &EndOffset = IsJmpRel ? RelPltEndOffset : RelDynEndOffset; if (!Offset || !EndOffset) { errs() << "BOLT-ERROR: Invalid offsets for dynamic relocation\n"; exit(1); } if (Offset + sizeof(NewRelA) > EndOffset) { errs() << "BOLT-ERROR: Offset overflow for dynamic relocation\n"; exit(1); } writeRela(&NewRelA, Offset); } } }; // The dynamic linker expects R_*_RELATIVE relocations to be emitted first writeRelocations(/* PatchRelative */ true); writeRelocations(/* PatchRelative */ false); auto fillNone = [&](uint64_t &Offset, uint64_t EndOffset) { if (!Offset) return; typename ELFObjectFile::Elf_Rela RelA; RelA.setSymbolAndType(0, Relocation::getNone(), EF.isMips64EL()); RelA.r_offset = 0; RelA.r_addend = 0; while (Offset < EndOffset) writeRela(&RelA, Offset); assert(Offset == EndOffset && "Unexpected section overflow"); }; // Fill the rest of the sections with R_*_NONE relocations fillNone(RelDynOffset, RelDynEndOffset); fillNone(RelPltOffset, RelPltEndOffset); } template void RewriteInstance::patchELFGOT(ELFObjectFile *File) { raw_fd_ostream &OS = Out->os(); SectionRef GOTSection; for (const SectionRef &Section : File->sections()) { StringRef SectionName = cantFail(Section.getName()); if (SectionName == ".got") { GOTSection = Section; break; } } if (!GOTSection.getObject()) { if (!BC->IsStaticExecutable) errs() << "BOLT-INFO: no .got section found\n"; return; } StringRef GOTContents = cantFail(GOTSection.getContents()); for (const uint64_t *GOTEntry = reinterpret_cast(GOTContents.data()); GOTEntry < reinterpret_cast(GOTContents.data() + GOTContents.size()); ++GOTEntry) { if (uint64_t NewAddress = getNewFunctionAddress(*GOTEntry)) { LLVM_DEBUG(dbgs() << "BOLT-DEBUG: patching GOT entry 0x" << Twine::utohexstr(*GOTEntry) << " with 0x" << Twine::utohexstr(NewAddress) << '\n'); OS.pwrite(reinterpret_cast(&NewAddress), sizeof(NewAddress), reinterpret_cast(GOTEntry) - File->getData().data()); } } } template void RewriteInstance::patchELFDynamic(ELFObjectFile *File) { if (BC->IsStaticExecutable) return; const ELFFile &Obj = File->getELFFile(); raw_fd_ostream &OS = Out->os(); using Elf_Phdr = typename ELFFile::Elf_Phdr; using Elf_Dyn = typename ELFFile::Elf_Dyn; // Locate DYNAMIC by looking through program headers. uint64_t DynamicOffset = 0; const Elf_Phdr *DynamicPhdr = 0; for (const Elf_Phdr &Phdr : cantFail(Obj.program_headers())) { if (Phdr.p_type == ELF::PT_DYNAMIC) { DynamicOffset = Phdr.p_offset; DynamicPhdr = &Phdr; assert(Phdr.p_memsz == Phdr.p_filesz && "dynamic sizes should match"); break; } } assert(DynamicPhdr && "missing dynamic in ELF binary"); bool ZNowSet = false; // Go through all dynamic entries and patch functions addresses with // new ones. typename ELFT::DynRange DynamicEntries = cantFail(Obj.dynamicEntries(), "error accessing dynamic table"); auto DTB = DynamicEntries.begin(); for (const Elf_Dyn &Dyn : DynamicEntries) { Elf_Dyn NewDE = Dyn; bool ShouldPatch = true; switch (Dyn.d_tag) { default: ShouldPatch = false; break; case ELF::DT_RELACOUNT: NewDE.d_un.d_val = DynamicRelativeRelocationsCount; break; case ELF::DT_INIT: case ELF::DT_FINI: { if (BC->HasRelocations) { if (uint64_t NewAddress = getNewFunctionAddress(Dyn.getPtr())) { LLVM_DEBUG(dbgs() << "BOLT-DEBUG: patching dynamic entry of type " << Dyn.getTag() << '\n'); NewDE.d_un.d_ptr = NewAddress; } } RuntimeLibrary *RtLibrary = BC->getRuntimeLibrary(); if (RtLibrary && Dyn.getTag() == ELF::DT_FINI) { if (uint64_t Addr = RtLibrary->getRuntimeFiniAddress()) NewDE.d_un.d_ptr = Addr; } if (RtLibrary && Dyn.getTag() == ELF::DT_INIT && !BC->HasInterpHeader) { if (auto Addr = RtLibrary->getRuntimeStartAddress()) { LLVM_DEBUG(dbgs() << "BOLT-DEBUG: Set DT_INIT to 0x" << Twine::utohexstr(Addr) << '\n'); NewDE.d_un.d_ptr = Addr; } } break; } case ELF::DT_FLAGS: if (BC->RequiresZNow) { NewDE.d_un.d_val |= ELF::DF_BIND_NOW; ZNowSet = true; } break; case ELF::DT_FLAGS_1: if (BC->RequiresZNow) { NewDE.d_un.d_val |= ELF::DF_1_NOW; ZNowSet = true; } break; } if (ShouldPatch) OS.pwrite(reinterpret_cast(&NewDE), sizeof(NewDE), DynamicOffset + (&Dyn - DTB) * sizeof(Dyn)); } if (BC->RequiresZNow && !ZNowSet) { errs() << "BOLT-ERROR: output binary requires immediate relocation " "processing which depends on DT_FLAGS or DT_FLAGS_1 presence in " ".dynamic. Please re-link the binary with -znow.\n"; exit(1); } } template Error RewriteInstance::readELFDynamic(ELFObjectFile *File) { const ELFFile &Obj = File->getELFFile(); using Elf_Phdr = typename ELFFile::Elf_Phdr; using Elf_Dyn = typename ELFFile::Elf_Dyn; // Locate DYNAMIC by looking through program headers. const Elf_Phdr *DynamicPhdr = 0; for (const Elf_Phdr &Phdr : cantFail(Obj.program_headers())) { if (Phdr.p_type == ELF::PT_DYNAMIC) { DynamicPhdr = &Phdr; break; } } if (!DynamicPhdr) { outs() << "BOLT-INFO: static input executable detected\n"; // TODO: static PIE executable might have dynamic header BC->IsStaticExecutable = true; return Error::success(); } if (DynamicPhdr->p_memsz != DynamicPhdr->p_filesz) return createStringError(errc::executable_format_error, "dynamic section sizes should match"); // Go through all dynamic entries to locate entries of interest. auto DynamicEntriesOrErr = Obj.dynamicEntries(); if (!DynamicEntriesOrErr) return DynamicEntriesOrErr.takeError(); typename ELFT::DynRange DynamicEntries = DynamicEntriesOrErr.get(); for (const Elf_Dyn &Dyn : DynamicEntries) { switch (Dyn.d_tag) { case ELF::DT_INIT: if (!BC->HasInterpHeader) { LLVM_DEBUG(dbgs() << "BOLT-DEBUG: Set start function address\n"); BC->StartFunctionAddress = Dyn.getPtr(); } break; case ELF::DT_FINI: BC->FiniFunctionAddress = Dyn.getPtr(); break; case ELF::DT_RELA: DynamicRelocationsAddress = Dyn.getPtr(); break; case ELF::DT_RELASZ: DynamicRelocationsSize = Dyn.getVal(); break; case ELF::DT_JMPREL: PLTRelocationsAddress = Dyn.getPtr(); break; case ELF::DT_PLTRELSZ: PLTRelocationsSize = Dyn.getVal(); break; case ELF::DT_RELACOUNT: DynamicRelativeRelocationsCount = Dyn.getVal(); break; } } if (!DynamicRelocationsAddress || !DynamicRelocationsSize) { DynamicRelocationsAddress.reset(); DynamicRelocationsSize = 0; } if (!PLTRelocationsAddress || !PLTRelocationsSize) { PLTRelocationsAddress.reset(); PLTRelocationsSize = 0; } return Error::success(); } uint64_t RewriteInstance::getNewFunctionAddress(uint64_t OldAddress) { const BinaryFunction *Function = BC->getBinaryFunctionAtAddress(OldAddress); if (!Function) return 0; assert(!Function->isFragment() && "cannot get new address for a fragment"); return Function->getOutputAddress(); } uint64_t RewriteInstance::getNewFunctionOrDataAddress(uint64_t OldAddress) { if (uint64_t Function = getNewFunctionAddress(OldAddress)) return Function; const BinaryData *BD = BC->getBinaryDataAtAddress(OldAddress); if (BD && BD->isMoved()) return BD->getOutputAddress(); return 0; } void RewriteInstance::rewriteFile() { std::error_code EC; Out = std::make_unique(opts::OutputFilename, EC, sys::fs::OF_None); check_error(EC, "cannot create output executable file"); raw_fd_ostream &OS = Out->os(); // Copy allocatable part of the input. OS << InputFile->getData().substr(0, FirstNonAllocatableOffset); // We obtain an asm-specific writer so that we can emit nops in an // architecture-specific way at the end of the function. std::unique_ptr MAB( BC->TheTarget->createMCAsmBackend(*BC->STI, *BC->MRI, MCTargetOptions())); auto Streamer = BC->createStreamer(OS); // Make sure output stream has enough reserved space, otherwise // pwrite() will fail. uint64_t Offset = OS.seek(getFileOffsetForAddress(NextAvailableAddress)); (void)Offset; assert(Offset == getFileOffsetForAddress(NextAvailableAddress) && "error resizing output file"); // Overwrite functions with fixed output address. This is mostly used by // non-relocation mode, with one exception: injected functions are covered // here in both modes. uint64_t CountOverwrittenFunctions = 0; uint64_t OverwrittenScore = 0; for (BinaryFunction *Function : BC->getAllBinaryFunctions()) { if (Function->getImageAddress() == 0 || Function->getImageSize() == 0) continue; if (Function->getImageSize() > Function->getMaxSize()) { if (opts::Verbosity >= 1) errs() << "BOLT-WARNING: new function size (0x" << Twine::utohexstr(Function->getImageSize()) << ") is larger than maximum allowed size (0x" << Twine::utohexstr(Function->getMaxSize()) << ") for function " << *Function << '\n'; // Remove jump table sections that this function owns in non-reloc mode // because we don't want to write them anymore. if (!BC->HasRelocations && opts::JumpTables == JTS_BASIC) { for (auto &JTI : Function->JumpTables) { JumpTable *JT = JTI.second; BinarySection &Section = JT->getOutputSection(); BC->deregisterSection(Section); } } continue; } if (Function->isSplit() && (Function->cold().getImageAddress() == 0 || Function->cold().getImageSize() == 0)) continue; OverwrittenScore += Function->getFunctionScore(); // Overwrite function in the output file. if (opts::Verbosity >= 2) outs() << "BOLT: rewriting function \"" << *Function << "\"\n"; OS.pwrite(reinterpret_cast(Function->getImageAddress()), Function->getImageSize(), Function->getFileOffset()); // Write nops at the end of the function. if (Function->getMaxSize() != std::numeric_limits::max()) { uint64_t Pos = OS.tell(); OS.seek(Function->getFileOffset() + Function->getImageSize()); MAB->writeNopData(OS, Function->getMaxSize() - Function->getImageSize(), &*BC->STI); OS.seek(Pos); } if (!Function->isSplit()) { ++CountOverwrittenFunctions; if (opts::MaxFunctions && CountOverwrittenFunctions == opts::MaxFunctions) { outs() << "BOLT: maximum number of functions reached\n"; break; } continue; } // Write cold part if (opts::Verbosity >= 2) outs() << "BOLT: rewriting function \"" << *Function << "\" (cold part)\n"; OS.pwrite(reinterpret_cast(Function->cold().getImageAddress()), Function->cold().getImageSize(), Function->cold().getFileOffset()); ++CountOverwrittenFunctions; if (opts::MaxFunctions && CountOverwrittenFunctions == opts::MaxFunctions) { outs() << "BOLT: maximum number of functions reached\n"; break; } } // Print function statistics for non-relocation mode. if (!BC->HasRelocations) { outs() << "BOLT: " << CountOverwrittenFunctions << " out of " << BC->getBinaryFunctions().size() << " functions were overwritten.\n"; if (BC->TotalScore != 0) { double Coverage = OverwrittenScore / (double)BC->TotalScore * 100.0; outs() << format("BOLT-INFO: rewritten functions cover %.2lf", Coverage) << "% of the execution count of simple functions of " "this binary\n"; } } if (BC->HasRelocations && opts::TrapOldCode) { uint64_t SavedPos = OS.tell(); // Overwrite function body to make sure we never execute these instructions. for (auto &BFI : BC->getBinaryFunctions()) { BinaryFunction &BF = BFI.second; if (!BF.getFileOffset() || !BF.isEmitted()) continue; OS.seek(BF.getFileOffset()); for (unsigned I = 0; I < BF.getMaxSize(); ++I) OS.write((unsigned char)BC->MIB->getTrapFillValue()); } OS.seek(SavedPos); } // Write all allocatable sections - reloc-mode text is written here as well for (BinarySection &Section : BC->allocatableSections()) { if (!Section.isFinalized() || !Section.getOutputData()) continue; if (opts::Verbosity >= 1) outs() << "BOLT: writing new section " << Section.getName() << "\n data at 0x" << Twine::utohexstr(Section.getAllocAddress()) << "\n of size " << Section.getOutputSize() << "\n at offset " << Section.getOutputFileOffset() << '\n'; OS.pwrite(reinterpret_cast(Section.getOutputData()), Section.getOutputSize(), Section.getOutputFileOffset()); } for (BinarySection &Section : BC->allocatableSections()) Section.flushPendingRelocations(OS, [this](const MCSymbol *S) { return getNewValueForSymbol(S->getName()); }); // If .eh_frame is present create .eh_frame_hdr. if (EHFrameSection && EHFrameSection->isFinalized()) writeEHFrameHeader(); // Add BOLT Addresses Translation maps to allow profile collection to // happen in the output binary if (opts::EnableBAT) addBATSection(); // Patch program header table. patchELFPHDRTable(); // Finalize memory image of section string table. finalizeSectionStringTable(); // Update symbol tables. patchELFSymTabs(); patchBuildID(); if (opts::EnableBAT) encodeBATSection(); // Copy non-allocatable sections once allocatable part is finished. rewriteNoteSections(); if (BC->HasRelocations) { patchELFAllocatableRelaSections(); patchELFGOT(); } // Patch dynamic section/segment. patchELFDynamic(); // Update ELF book-keeping info. patchELFSectionHeaderTable(); if (opts::PrintSections) { outs() << "BOLT-INFO: Sections after processing:\n"; BC->printSections(outs()); } Out->keep(); EC = sys::fs::setPermissions(opts::OutputFilename, sys::fs::perms::all_all); check_error(EC, "cannot set permissions of output file"); } void RewriteInstance::writeEHFrameHeader() { DWARFDebugFrame NewEHFrame(BC->TheTriple->getArch(), true, EHFrameSection->getOutputAddress()); Error E = NewEHFrame.parse(DWARFDataExtractor( EHFrameSection->getOutputContents(), BC->AsmInfo->isLittleEndian(), BC->AsmInfo->getCodePointerSize())); check_error(std::move(E), "failed to parse EH frame"); uint64_t OldEHFrameAddress = 0; StringRef OldEHFrameContents; ErrorOr OldEHFrameSection = BC->getUniqueSectionByName(Twine(getOrgSecPrefix(), ".eh_frame").str()); if (OldEHFrameSection) { OldEHFrameAddress = OldEHFrameSection->getOutputAddress(); OldEHFrameContents = OldEHFrameSection->getOutputContents(); } DWARFDebugFrame OldEHFrame(BC->TheTriple->getArch(), true, OldEHFrameAddress); Error Er = OldEHFrame.parse( DWARFDataExtractor(OldEHFrameContents, BC->AsmInfo->isLittleEndian(), BC->AsmInfo->getCodePointerSize())); check_error(std::move(Er), "failed to parse EH frame"); LLVM_DEBUG(dbgs() << "BOLT: writing a new .eh_frame_hdr\n"); NextAvailableAddress = appendPadding(Out->os(), NextAvailableAddress, EHFrameHdrAlign); const uint64_t EHFrameHdrOutputAddress = NextAvailableAddress; const uint64_t EHFrameHdrFileOffset = getFileOffsetForAddress(NextAvailableAddress); std::vector NewEHFrameHdr = CFIRdWrt->generateEHFrameHeader( OldEHFrame, NewEHFrame, EHFrameHdrOutputAddress, FailedAddresses); assert(Out->os().tell() == EHFrameHdrFileOffset && "offset mismatch"); Out->os().write(NewEHFrameHdr.data(), NewEHFrameHdr.size()); const unsigned Flags = BinarySection::getFlags(/*IsReadOnly=*/true, /*IsText=*/false, /*IsAllocatable=*/true); BinarySection &EHFrameHdrSec = BC->registerOrUpdateSection( ".eh_frame_hdr", ELF::SHT_PROGBITS, Flags, nullptr, NewEHFrameHdr.size(), /*Alignment=*/1); EHFrameHdrSec.setOutputFileOffset(EHFrameHdrFileOffset); EHFrameHdrSec.setOutputAddress(EHFrameHdrOutputAddress); NextAvailableAddress += EHFrameHdrSec.getOutputSize(); // Merge new .eh_frame with original so that gdb can locate all FDEs. if (OldEHFrameSection) { const uint64_t EHFrameSectionSize = (OldEHFrameSection->getOutputAddress() + OldEHFrameSection->getOutputSize() - EHFrameSection->getOutputAddress()); EHFrameSection = BC->registerOrUpdateSection(".eh_frame", EHFrameSection->getELFType(), EHFrameSection->getELFFlags(), EHFrameSection->getOutputData(), EHFrameSectionSize, EHFrameSection->getAlignment()); BC->deregisterSection(*OldEHFrameSection); } LLVM_DEBUG(dbgs() << "BOLT-DEBUG: size of .eh_frame after merge is " << EHFrameSection->getOutputSize() << '\n'); } uint64_t RewriteInstance::getNewValueForSymbol(const StringRef Name) { uint64_t Value = RTDyld->getSymbol(Name).getAddress(); if (Value != 0) return Value; // Return the original value if we haven't emitted the symbol. BinaryData *BD = BC->getBinaryDataByName(Name); if (!BD) return 0; return BD->getAddress(); } uint64_t RewriteInstance::getFileOffsetForAddress(uint64_t Address) const { // Check if it's possibly part of the new segment. if (Address >= NewTextSegmentAddress) return Address - NewTextSegmentAddress + NewTextSegmentOffset; // Find an existing segment that matches the address. const auto SegmentInfoI = BC->SegmentMapInfo.upper_bound(Address); if (SegmentInfoI == BC->SegmentMapInfo.begin()) return 0; const SegmentInfo &SegmentInfo = std::prev(SegmentInfoI)->second; if (Address < SegmentInfo.Address || Address >= SegmentInfo.Address + SegmentInfo.FileSize) return 0; return SegmentInfo.FileOffset + Address - SegmentInfo.Address; } bool RewriteInstance::willOverwriteSection(StringRef SectionName) { for (const char *const &OverwriteName : SectionsToOverwrite) if (SectionName == OverwriteName) return true; for (std::string &OverwriteName : DebugSectionsToOverwrite) if (SectionName == OverwriteName) return true; ErrorOr Section = BC->getUniqueSectionByName(SectionName); return Section && Section->isAllocatable() && Section->isFinalized(); } bool RewriteInstance::isDebugSection(StringRef SectionName) { if (SectionName.startswith(".debug_") || SectionName.startswith(".zdebug_") || SectionName == ".gdb_index" || SectionName == ".stab" || SectionName == ".stabstr") return true; return false; } bool RewriteInstance::isKSymtabSection(StringRef SectionName) { if (SectionName.startswith("__ksymtab")) return true; return false; }