//===-- RewriteLoop.cpp ---------------------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "PassDetail.h" #include "flang/Optimizer/Dialect/FIRDialect.h" #include "flang/Optimizer/Dialect/FIROps.h" #include "flang/Optimizer/Transforms/Passes.h" #include "mlir/Dialect/Affine/IR/AffineOps.h" #include "mlir/Dialect/ControlFlow/IR/ControlFlowOps.h" #include "mlir/Dialect/StandardOps/IR/Ops.h" #include "mlir/Pass/Pass.h" #include "mlir/Transforms/DialectConversion.h" #include "llvm/Support/CommandLine.h" using namespace fir; namespace { // Conversion of fir control ops to more primitive control-flow. // // FIR loops that cannot be converted to the affine dialect will remain as // `fir.do_loop` operations. These can be converted to control-flow operations. /// Convert `fir.do_loop` to CFG class CfgLoopConv : public mlir::OpRewritePattern { public: using OpRewritePattern::OpRewritePattern; CfgLoopConv(mlir::MLIRContext *ctx, bool forceLoopToExecuteOnce) : mlir::OpRewritePattern(ctx), forceLoopToExecuteOnce(forceLoopToExecuteOnce) {} mlir::LogicalResult matchAndRewrite(DoLoopOp loop, mlir::PatternRewriter &rewriter) const override { auto loc = loop.getLoc(); // Create the start and end blocks that will wrap the DoLoopOp with an // initalizer and an end point auto *initBlock = rewriter.getInsertionBlock(); auto initPos = rewriter.getInsertionPoint(); auto *endBlock = rewriter.splitBlock(initBlock, initPos); // Split the first DoLoopOp block in two parts. The part before will be the // conditional block since it already has the induction variable and // loop-carried values as arguments. auto *conditionalBlock = &loop.region().front(); conditionalBlock->addArgument(rewriter.getIndexType(), loc); auto *firstBlock = rewriter.splitBlock(conditionalBlock, conditionalBlock->begin()); auto *lastBlock = &loop.region().back(); // Move the blocks from the DoLoopOp between initBlock and endBlock rewriter.inlineRegionBefore(loop.region(), endBlock); // Get loop values from the DoLoopOp auto low = loop.lowerBound(); auto high = loop.upperBound(); assert(low && high && "must be a Value"); auto step = loop.step(); // Initalization block rewriter.setInsertionPointToEnd(initBlock); auto diff = rewriter.create(loc, high, low); auto distance = rewriter.create(loc, diff, step); mlir::Value iters = rewriter.create(loc, distance, step); if (forceLoopToExecuteOnce) { auto zero = rewriter.create(loc, 0); auto cond = rewriter.create( loc, arith::CmpIPredicate::sle, iters, zero); auto one = rewriter.create(loc, 1); iters = rewriter.create(loc, cond, one, iters); } llvm::SmallVector loopOperands; loopOperands.push_back(low); auto operands = loop.getIterOperands(); loopOperands.append(operands.begin(), operands.end()); loopOperands.push_back(iters); rewriter.create(loc, conditionalBlock, loopOperands); // Last loop block auto *terminator = lastBlock->getTerminator(); rewriter.setInsertionPointToEnd(lastBlock); auto iv = conditionalBlock->getArgument(0); mlir::Value steppedIndex = rewriter.create(loc, iv, step); assert(steppedIndex && "must be a Value"); auto lastArg = conditionalBlock->getNumArguments() - 1; auto itersLeft = conditionalBlock->getArgument(lastArg); auto one = rewriter.create(loc, 1); mlir::Value itersMinusOne = rewriter.create(loc, itersLeft, one); llvm::SmallVector loopCarried; loopCarried.push_back(steppedIndex); auto begin = loop.finalValue() ? std::next(terminator->operand_begin()) : terminator->operand_begin(); loopCarried.append(begin, terminator->operand_end()); loopCarried.push_back(itersMinusOne); rewriter.create(loc, conditionalBlock, loopCarried); rewriter.eraseOp(terminator); // Conditional block rewriter.setInsertionPointToEnd(conditionalBlock); auto zero = rewriter.create(loc, 0); auto comparison = rewriter.create( loc, arith::CmpIPredicate::sgt, itersLeft, zero); rewriter.create( loc, comparison, firstBlock, llvm::ArrayRef(), endBlock, llvm::ArrayRef()); // The result of the loop operation is the values of the condition block // arguments except the induction variable on the last iteration. auto args = loop.finalValue() ? conditionalBlock->getArguments() : conditionalBlock->getArguments().drop_front(); rewriter.replaceOp(loop, args.drop_back()); return success(); } private: bool forceLoopToExecuteOnce; }; /// Convert `fir.if` to control-flow class CfgIfConv : public mlir::OpRewritePattern { public: using OpRewritePattern::OpRewritePattern; CfgIfConv(mlir::MLIRContext *ctx, bool forceLoopToExecuteOnce) : mlir::OpRewritePattern(ctx) {} mlir::LogicalResult matchAndRewrite(IfOp ifOp, mlir::PatternRewriter &rewriter) const override { auto loc = ifOp.getLoc(); // Split the block containing the 'fir.if' into two parts. The part before // will contain the condition, the part after will be the continuation // point. auto *condBlock = rewriter.getInsertionBlock(); auto opPosition = rewriter.getInsertionPoint(); auto *remainingOpsBlock = rewriter.splitBlock(condBlock, opPosition); mlir::Block *continueBlock; if (ifOp.getNumResults() == 0) { continueBlock = remainingOpsBlock; } else { continueBlock = rewriter.createBlock(remainingOpsBlock, ifOp.getResultTypes()); rewriter.create(loc, remainingOpsBlock); } // Move blocks from the "then" region to the region containing 'fir.if', // place it before the continuation block, and branch to it. auto &ifOpRegion = ifOp.thenRegion(); auto *ifOpBlock = &ifOpRegion.front(); auto *ifOpTerminator = ifOpRegion.back().getTerminator(); auto ifOpTerminatorOperands = ifOpTerminator->getOperands(); rewriter.setInsertionPointToEnd(&ifOpRegion.back()); rewriter.create(loc, continueBlock, ifOpTerminatorOperands); rewriter.eraseOp(ifOpTerminator); rewriter.inlineRegionBefore(ifOpRegion, continueBlock); // Move blocks from the "else" region (if present) to the region containing // 'fir.if', place it before the continuation block and branch to it. It // will be placed after the "then" regions. auto *otherwiseBlock = continueBlock; auto &otherwiseRegion = ifOp.elseRegion(); if (!otherwiseRegion.empty()) { otherwiseBlock = &otherwiseRegion.front(); auto *otherwiseTerm = otherwiseRegion.back().getTerminator(); auto otherwiseTermOperands = otherwiseTerm->getOperands(); rewriter.setInsertionPointToEnd(&otherwiseRegion.back()); rewriter.create(loc, continueBlock, otherwiseTermOperands); rewriter.eraseOp(otherwiseTerm); rewriter.inlineRegionBefore(otherwiseRegion, continueBlock); } rewriter.setInsertionPointToEnd(condBlock); rewriter.create( loc, ifOp.condition(), ifOpBlock, llvm::ArrayRef(), otherwiseBlock, llvm::ArrayRef()); rewriter.replaceOp(ifOp, continueBlock->getArguments()); return success(); } }; /// Convert `fir.iter_while` to control-flow. class CfgIterWhileConv : public mlir::OpRewritePattern { public: using OpRewritePattern::OpRewritePattern; CfgIterWhileConv(mlir::MLIRContext *ctx, bool forceLoopToExecuteOnce) : mlir::OpRewritePattern(ctx) {} mlir::LogicalResult matchAndRewrite(fir::IterWhileOp whileOp, mlir::PatternRewriter &rewriter) const override { auto loc = whileOp.getLoc(); // Start by splitting the block containing the 'fir.do_loop' into two parts. // The part before will get the init code, the part after will be the end // point. auto *initBlock = rewriter.getInsertionBlock(); auto initPosition = rewriter.getInsertionPoint(); auto *endBlock = rewriter.splitBlock(initBlock, initPosition); // Use the first block of the loop body as the condition block since it is // the block that has the induction variable and loop-carried values as // arguments. Split out all operations from the first block into a new // block. Move all body blocks from the loop body region to the region // containing the loop. auto *conditionBlock = &whileOp.region().front(); auto *firstBodyBlock = rewriter.splitBlock(conditionBlock, conditionBlock->begin()); auto *lastBodyBlock = &whileOp.region().back(); rewriter.inlineRegionBefore(whileOp.region(), endBlock); auto iv = conditionBlock->getArgument(0); auto iterateVar = conditionBlock->getArgument(1); // Append the induction variable stepping logic to the last body block and // branch back to the condition block. Loop-carried values are taken from // operands of the loop terminator. auto *terminator = lastBodyBlock->getTerminator(); rewriter.setInsertionPointToEnd(lastBodyBlock); auto step = whileOp.step(); mlir::Value stepped = rewriter.create(loc, iv, step); assert(stepped && "must be a Value"); llvm::SmallVector loopCarried; loopCarried.push_back(stepped); auto begin = whileOp.finalValue() ? std::next(terminator->operand_begin()) : terminator->operand_begin(); loopCarried.append(begin, terminator->operand_end()); rewriter.create(loc, conditionBlock, loopCarried); rewriter.eraseOp(terminator); // Compute loop bounds before branching to the condition. rewriter.setInsertionPointToEnd(initBlock); auto lowerBound = whileOp.lowerBound(); auto upperBound = whileOp.upperBound(); assert(lowerBound && upperBound && "must be a Value"); // The initial values of loop-carried values is obtained from the operands // of the loop operation. llvm::SmallVector destOperands; destOperands.push_back(lowerBound); auto iterOperands = whileOp.getIterOperands(); destOperands.append(iterOperands.begin(), iterOperands.end()); rewriter.create(loc, conditionBlock, destOperands); // With the body block done, we can fill in the condition block. rewriter.setInsertionPointToEnd(conditionBlock); // The comparison depends on the sign of the step value. We fully expect // this expression to be folded by the optimizer or LLVM. This expression // is written this way so that `step == 0` always returns `false`. auto zero = rewriter.create(loc, 0); auto compl0 = rewriter.create( loc, arith::CmpIPredicate::slt, zero, step); auto compl1 = rewriter.create( loc, arith::CmpIPredicate::sle, iv, upperBound); auto compl2 = rewriter.create( loc, arith::CmpIPredicate::slt, step, zero); auto compl3 = rewriter.create( loc, arith::CmpIPredicate::sle, upperBound, iv); auto cmp0 = rewriter.create(loc, compl0, compl1); auto cmp1 = rewriter.create(loc, compl2, compl3); auto cmp2 = rewriter.create(loc, cmp0, cmp1); // Remember to AND in the early-exit bool. auto comparison = rewriter.create(loc, iterateVar, cmp2); rewriter.create( loc, comparison, firstBodyBlock, llvm::ArrayRef(), endBlock, llvm::ArrayRef()); // The result of the loop operation is the values of the condition block // arguments except the induction variable on the last iteration. auto args = whileOp.finalValue() ? conditionBlock->getArguments() : conditionBlock->getArguments().drop_front(); rewriter.replaceOp(whileOp, args); return success(); } }; /// Convert FIR structured control flow ops to CFG ops. class CfgConversion : public CFGConversionBase { public: void runOnOperation() override { auto *context = &getContext(); mlir::RewritePatternSet patterns(context); patterns.insert( context, forceLoopToExecuteOnce); mlir::ConversionTarget target(*context); target.addLegalDialect(); // apply the patterns target.addIllegalOp(); target.markUnknownOpDynamicallyLegal([](Operation *) { return true; }); if (mlir::failed(mlir::applyPartialConversion(getOperation(), target, std::move(patterns)))) { mlir::emitError(mlir::UnknownLoc::get(context), "error in converting to CFG\n"); signalPassFailure(); } } }; } // namespace /// Convert FIR's structured control flow ops to CFG ops. This /// conversion enables the `createLowerToCFGPass` to transform these to CFG /// form. std::unique_ptr fir::createFirToCfgPass() { return std::make_unique(); }