//===- InputFiles.cpp -----------------------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "InputFiles.h" #include "Driver.h" #include "InputSection.h" #include "LinkerScript.h" #include "SymbolTable.h" #include "Symbols.h" #include "SyntheticSections.h" #include "lld/Common/ErrorHandler.h" #include "lld/Common/Memory.h" #include "llvm/ADT/STLExtras.h" #include "llvm/CodeGen/Analysis.h" #include "llvm/DebugInfo/DWARF/DWARFContext.h" #include "llvm/IR/LLVMContext.h" #include "llvm/IR/Module.h" #include "llvm/LTO/LTO.h" #include "llvm/MC/StringTableBuilder.h" #include "llvm/Object/ELFObjectFile.h" #include "llvm/Support/ARMAttributeParser.h" #include "llvm/Support/ARMBuildAttributes.h" #include "llvm/Support/Endian.h" #include "llvm/Support/Path.h" #include "llvm/Support/TarWriter.h" #include "llvm/Support/raw_ostream.h" using namespace llvm; using namespace llvm::ELF; using namespace llvm::object; using namespace llvm::sys; using namespace llvm::sys::fs; using namespace llvm::support::endian; using namespace lld; using namespace lld::elf; bool InputFile::IsInGroup; uint32_t InputFile::NextGroupId; std::vector elf::BinaryFiles; std::vector elf::BitcodeFiles; std::vector elf::LazyObjFiles; std::vector elf::ObjectFiles; std::vector elf::SharedFiles; std::unique_ptr elf::Tar; static ELFKind getELFKind(MemoryBufferRef MB, StringRef ArchiveName) { unsigned char Size; unsigned char Endian; std::tie(Size, Endian) = getElfArchType(MB.getBuffer()); auto Fatal = [&](StringRef Msg) { StringRef Filename = MB.getBufferIdentifier(); if (ArchiveName.empty()) fatal(Filename + ": " + Msg); else fatal(ArchiveName + "(" + Filename + "): " + Msg); }; if (!MB.getBuffer().startswith(ElfMagic)) Fatal("not an ELF file"); if (Endian != ELFDATA2LSB && Endian != ELFDATA2MSB) Fatal("corrupted ELF file: invalid data encoding"); if (Size != ELFCLASS32 && Size != ELFCLASS64) Fatal("corrupted ELF file: invalid file class"); size_t BufSize = MB.getBuffer().size(); if ((Size == ELFCLASS32 && BufSize < sizeof(Elf32_Ehdr)) || (Size == ELFCLASS64 && BufSize < sizeof(Elf64_Ehdr))) Fatal("corrupted ELF file: file is too short"); if (Size == ELFCLASS32) return (Endian == ELFDATA2LSB) ? ELF32LEKind : ELF32BEKind; return (Endian == ELFDATA2LSB) ? ELF64LEKind : ELF64BEKind; } InputFile::InputFile(Kind K, MemoryBufferRef M) : MB(M), GroupId(NextGroupId), FileKind(K) { // All files within the same --{start,end}-group get the same group ID. // Otherwise, a new file will get a new group ID. if (!IsInGroup) ++NextGroupId; } Optional elf::readFile(StringRef Path) { // The --chroot option changes our virtual root directory. // This is useful when you are dealing with files created by --reproduce. if (!Config->Chroot.empty() && Path.startswith("/")) Path = Saver.save(Config->Chroot + Path); log(Path); auto MBOrErr = MemoryBuffer::getFile(Path, -1, false); if (auto EC = MBOrErr.getError()) { error("cannot open " + Path + ": " + EC.message()); return None; } std::unique_ptr &MB = *MBOrErr; MemoryBufferRef MBRef = MB->getMemBufferRef(); make>(std::move(MB)); // take MB ownership if (Tar) Tar->append(relativeToRoot(Path), MBRef.getBuffer()); return MBRef; } // All input object files must be for the same architecture // (e.g. it does not make sense to link x86 object files with // MIPS object files.) This function checks for that error. static bool isCompatible(InputFile *File) { if (!File->isElf() && !isa(File)) return true; if (File->EKind == Config->EKind && File->EMachine == Config->EMachine) { if (Config->EMachine != EM_MIPS) return true; if (isMipsN32Abi(File) == Config->MipsN32Abi) return true; } if (!Config->Emulation.empty()) { error(toString(File) + " is incompatible with " + Config->Emulation); } else { InputFile *Existing; if (!ObjectFiles.empty()) Existing = ObjectFiles[0]; else if (!SharedFiles.empty()) Existing = SharedFiles[0]; else Existing = BitcodeFiles[0]; error(toString(File) + " is incompatible with " + toString(Existing)); } return false; } template static void doParseFile(InputFile *File) { if (!isCompatible(File)) return; // Binary file if (auto *F = dyn_cast(File)) { BinaryFiles.push_back(F); F->parse(); return; } // .a file if (auto *F = dyn_cast(File)) { F->parse(); return; } // Lazy object file if (auto *F = dyn_cast(File)) { LazyObjFiles.push_back(F); F->parse(); return; } if (Config->Trace) message(toString(File)); // .so file if (auto *F = dyn_cast(File)) { F->parse(); return; } // LLVM bitcode file if (auto *F = dyn_cast(File)) { BitcodeFiles.push_back(F); F->parse(); return; } // Regular object file ObjectFiles.push_back(File); cast>(File)->parse(); } // Add symbols in File to the symbol table. void elf::parseFile(InputFile *File) { switch (Config->EKind) { case ELF32LEKind: doParseFile(File); return; case ELF32BEKind: doParseFile(File); return; case ELF64LEKind: doParseFile(File); return; case ELF64BEKind: doParseFile(File); return; default: llvm_unreachable("unknown ELFT"); } } // Concatenates arguments to construct a string representing an error location. static std::string createFileLineMsg(StringRef Path, unsigned Line) { std::string Filename = path::filename(Path); std::string Lineno = ":" + std::to_string(Line); if (Filename == Path) return Filename + Lineno; return Filename + Lineno + " (" + Path.str() + Lineno + ")"; } template static std::string getSrcMsgAux(ObjFile &File, const Symbol &Sym, InputSectionBase &Sec, uint64_t Offset) { // In DWARF, functions and variables are stored to different places. // First, lookup a function for a given offset. if (Optional Info = File.getDILineInfo(&Sec, Offset)) return createFileLineMsg(Info->FileName, Info->Line); // If it failed, lookup again as a variable. if (Optional> FileLine = File.getVariableLoc(Sym.getName())) return createFileLineMsg(FileLine->first, FileLine->second); // File.SourceFile contains STT_FILE symbol, and that is a last resort. return File.SourceFile; } std::string InputFile::getSrcMsg(const Symbol &Sym, InputSectionBase &Sec, uint64_t Offset) { if (kind() != ObjKind) return ""; switch (Config->EKind) { default: llvm_unreachable("Invalid kind"); case ELF32LEKind: return getSrcMsgAux(cast>(*this), Sym, Sec, Offset); case ELF32BEKind: return getSrcMsgAux(cast>(*this), Sym, Sec, Offset); case ELF64LEKind: return getSrcMsgAux(cast>(*this), Sym, Sec, Offset); case ELF64BEKind: return getSrcMsgAux(cast>(*this), Sym, Sec, Offset); } } template void ObjFile::initializeDwarf() { Dwarf = llvm::make_unique(make_unique>(this)); for (std::unique_ptr &CU : Dwarf->compile_units()) { auto Report = [](Error Err) { handleAllErrors(std::move(Err), [](ErrorInfoBase &Info) { warn(Info.message()); }); }; Expected ExpectedLT = Dwarf->getLineTableForUnit(CU.get(), Report); const DWARFDebugLine::LineTable *LT = nullptr; if (ExpectedLT) LT = *ExpectedLT; else Report(ExpectedLT.takeError()); if (!LT) continue; LineTables.push_back(LT); // Loop over variable records and insert them to VariableLoc. for (const auto &Entry : CU->dies()) { DWARFDie Die(CU.get(), &Entry); // Skip all tags that are not variables. if (Die.getTag() != dwarf::DW_TAG_variable) continue; // Skip if a local variable because we don't need them for generating // error messages. In general, only non-local symbols can fail to be // linked. if (!dwarf::toUnsigned(Die.find(dwarf::DW_AT_external), 0)) continue; // Get the source filename index for the variable. unsigned File = dwarf::toUnsigned(Die.find(dwarf::DW_AT_decl_file), 0); if (!LT->hasFileAtIndex(File)) continue; // Get the line number on which the variable is declared. unsigned Line = dwarf::toUnsigned(Die.find(dwarf::DW_AT_decl_line), 0); // Here we want to take the variable name to add it into VariableLoc. // Variable can have regular and linkage name associated. At first, we try // to get linkage name as it can be different, for example when we have // two variables in different namespaces of the same object. Use common // name otherwise, but handle the case when it also absent in case if the // input object file lacks some debug info. StringRef Name = dwarf::toString(Die.find(dwarf::DW_AT_linkage_name), dwarf::toString(Die.find(dwarf::DW_AT_name), "")); if (!Name.empty()) VariableLoc.insert({Name, {LT, File, Line}}); } } } // Returns the pair of file name and line number describing location of data // object (variable, array, etc) definition. template Optional> ObjFile::getVariableLoc(StringRef Name) { llvm::call_once(InitDwarfLine, [this]() { initializeDwarf(); }); // Return if we have no debug information about data object. auto It = VariableLoc.find(Name); if (It == VariableLoc.end()) return None; // Take file name string from line table. std::string FileName; if (!It->second.LT->getFileNameByIndex( It->second.File, nullptr, DILineInfoSpecifier::FileLineInfoKind::AbsoluteFilePath, FileName)) return None; return std::make_pair(FileName, It->second.Line); } // Returns source line information for a given offset // using DWARF debug info. template Optional ObjFile::getDILineInfo(InputSectionBase *S, uint64_t Offset) { llvm::call_once(InitDwarfLine, [this]() { initializeDwarf(); }); // Detect SectionIndex for specified section. uint64_t SectionIndex = object::SectionedAddress::UndefSection; ArrayRef Sections = S->File->getSections(); for (uint64_t CurIndex = 0; CurIndex < Sections.size(); ++CurIndex) { if (S == Sections[CurIndex]) { SectionIndex = CurIndex; break; } } // Use fake address calcuated by adding section file offset and offset in // section. See comments for ObjectInfo class. DILineInfo Info; for (const llvm::DWARFDebugLine::LineTable *LT : LineTables) { if (LT->getFileLineInfoForAddress( {S->getOffsetInFile() + Offset, SectionIndex}, nullptr, DILineInfoSpecifier::FileLineInfoKind::AbsoluteFilePath, Info)) return Info; } return None; } // Returns "", "foo.a(bar.o)" or "baz.o". std::string lld::toString(const InputFile *F) { if (!F) return ""; if (F->ToStringCache.empty()) { if (F->ArchiveName.empty()) F->ToStringCache = F->getName(); else F->ToStringCache = (F->ArchiveName + "(" + F->getName() + ")").str(); } return F->ToStringCache; } ELFFileBase::ELFFileBase(Kind K, MemoryBufferRef MB) : InputFile(K, MB) { EKind = getELFKind(MB, ""); switch (EKind) { case ELF32LEKind: init(); break; case ELF32BEKind: init(); break; case ELF64LEKind: init(); break; case ELF64BEKind: init(); break; default: llvm_unreachable("getELFKind"); } } template static const Elf_Shdr *findSection(ArrayRef Sections, uint32_t Type) { for (const Elf_Shdr &Sec : Sections) if (Sec.sh_type == Type) return &Sec; return nullptr; } template void ELFFileBase::init() { using Elf_Shdr = typename ELFT::Shdr; using Elf_Sym = typename ELFT::Sym; // Initialize trivial attributes. const ELFFile &Obj = getObj(); EMachine = Obj.getHeader()->e_machine; OSABI = Obj.getHeader()->e_ident[llvm::ELF::EI_OSABI]; ABIVersion = Obj.getHeader()->e_ident[llvm::ELF::EI_ABIVERSION]; ArrayRef Sections = CHECK(Obj.sections(), this); // Find a symbol table. bool IsDSO = (identify_magic(MB.getBuffer()) == file_magic::elf_shared_object); const Elf_Shdr *SymtabSec = findSection(Sections, IsDSO ? SHT_DYNSYM : SHT_SYMTAB); if (!SymtabSec) return; // Initialize members corresponding to a symbol table. FirstGlobal = SymtabSec->sh_info; ArrayRef ESyms = CHECK(Obj.symbols(SymtabSec), this); if (FirstGlobal == 0 || FirstGlobal > ESyms.size()) fatal(toString(this) + ": invalid sh_info in symbol table"); ELFSyms = reinterpret_cast(ESyms.data()); NumELFSyms = ESyms.size(); StringTable = CHECK(Obj.getStringTableForSymtab(*SymtabSec, Sections), this); } template uint32_t ObjFile::getSectionIndex(const Elf_Sym &Sym) const { return CHECK( this->getObj().getSectionIndex(&Sym, getELFSyms(), ShndxTable), this); } template ArrayRef ObjFile::getLocalSymbols() { if (this->Symbols.empty()) return {}; return makeArrayRef(this->Symbols).slice(1, this->FirstGlobal - 1); } template ArrayRef ObjFile::getGlobalSymbols() { return makeArrayRef(this->Symbols).slice(this->FirstGlobal); } template void ObjFile::parse(bool IgnoreComdats) { // Read a section table. JustSymbols is usually false. if (this->JustSymbols) initializeJustSymbols(); else initializeSections(IgnoreComdats); // Read a symbol table. initializeSymbols(); } // Sections with SHT_GROUP and comdat bits define comdat section groups. // They are identified and deduplicated by group name. This function // returns a group name. template StringRef ObjFile::getShtGroupSignature(ArrayRef Sections, const Elf_Shdr &Sec) { const Elf_Sym *Sym = CHECK(object::getSymbol(this->getELFSyms(), Sec.sh_info), this); StringRef Signature = CHECK(Sym->getName(this->StringTable), this); // As a special case, if a symbol is a section symbol and has no name, // we use a section name as a signature. // // Such SHT_GROUP sections are invalid from the perspective of the ELF // standard, but GNU gold 1.14 (the newest version as of July 2017) or // older produce such sections as outputs for the -r option, so we need // a bug-compatibility. if (Signature.empty() && Sym->getType() == STT_SECTION) return getSectionName(Sec); return Signature; } template bool ObjFile::shouldMerge(const Elf_Shdr &Sec) { // On a regular link we don't merge sections if -O0 (default is -O1). This // sometimes makes the linker significantly faster, although the output will // be bigger. // // Doing the same for -r would create a problem as it would combine sections // with different sh_entsize. One option would be to just copy every SHF_MERGE // section as is to the output. While this would produce a valid ELF file with // usable SHF_MERGE sections, tools like (llvm-)?dwarfdump get confused when // they see two .debug_str. We could have separate logic for combining // SHF_MERGE sections based both on their name and sh_entsize, but that seems // to be more trouble than it is worth. Instead, we just use the regular (-O1) // logic for -r. if (Config->Optimize == 0 && !Config->Relocatable) return false; // A mergeable section with size 0 is useless because they don't have // any data to merge. A mergeable string section with size 0 can be // argued as invalid because it doesn't end with a null character. // We'll avoid a mess by handling them as if they were non-mergeable. if (Sec.sh_size == 0) return false; // Check for sh_entsize. The ELF spec is not clear about the zero // sh_entsize. It says that "the member [sh_entsize] contains 0 if // the section does not hold a table of fixed-size entries". We know // that Rust 1.13 produces a string mergeable section with a zero // sh_entsize. Here we just accept it rather than being picky about it. uint64_t EntSize = Sec.sh_entsize; if (EntSize == 0) return false; if (Sec.sh_size % EntSize) fatal(toString(this) + ": SHF_MERGE section size must be a multiple of sh_entsize"); uint64_t Flags = Sec.sh_flags; if (!(Flags & SHF_MERGE)) return false; if (Flags & SHF_WRITE) fatal(toString(this) + ": writable SHF_MERGE section is not supported"); return true; } // This is for --just-symbols. // // --just-symbols is a very minor feature that allows you to link your // output against other existing program, so that if you load both your // program and the other program into memory, your output can refer the // other program's symbols. // // When the option is given, we link "just symbols". The section table is // initialized with null pointers. template void ObjFile::initializeJustSymbols() { ArrayRef Sections = CHECK(this->getObj().sections(), this); this->Sections.resize(Sections.size()); } // An ELF object file may contain a `.deplibs` section. If it exists, the // section contains a list of library specifiers such as `m` for libm. This // function resolves a given name by finding the first matching library checking // the various ways that a library can be specified to LLD. This ELF extension // is a form of autolinking and is called `dependent libraries`. It is currently // unique to LLVM and lld. static void addDependentLibrary(StringRef Specifier, const InputFile *F) { if (!Config->DependentLibraries) return; if (fs::exists(Specifier)) Driver->addFile(Specifier, /*WithLOption=*/false); else if (Optional S = findFromSearchPaths(Specifier)) Driver->addFile(*S, /*WithLOption=*/true); else if (Optional S = searchLibraryBaseName(Specifier)) Driver->addFile(*S, /*WithLOption=*/true); else error(toString(F) + ": unable to find library from dependent library specifier: " + Specifier); } template void ObjFile::initializeSections(bool IgnoreComdats) { const ELFFile &Obj = this->getObj(); ArrayRef ObjSections = CHECK(Obj.sections(), this); uint64_t Size = ObjSections.size(); this->Sections.resize(Size); this->SectionStringTable = CHECK(Obj.getSectionStringTable(ObjSections), this); for (size_t I = 0, E = ObjSections.size(); I < E; I++) { if (this->Sections[I] == &InputSection::Discarded) continue; const Elf_Shdr &Sec = ObjSections[I]; if (Sec.sh_type == ELF::SHT_LLVM_CALL_GRAPH_PROFILE) CGProfile = check(Obj.template getSectionContentsAsArray(&Sec)); // SHF_EXCLUDE'ed sections are discarded by the linker. However, // if -r is given, we'll let the final link discard such sections. // This is compatible with GNU. if ((Sec.sh_flags & SHF_EXCLUDE) && !Config->Relocatable) { if (Sec.sh_type == SHT_LLVM_ADDRSIG) { // We ignore the address-significance table if we know that the object // file was created by objcopy or ld -r. This is because these tools // will reorder the symbols in the symbol table, invalidating the data // in the address-significance table, which refers to symbols by index. if (Sec.sh_link != 0) this->AddrsigSec = &Sec; else if (Config->ICF == ICFLevel::Safe) warn(toString(this) + ": --icf=safe is incompatible with object " "files created using objcopy or ld -r"); } this->Sections[I] = &InputSection::Discarded; continue; } switch (Sec.sh_type) { case SHT_GROUP: { // De-duplicate section groups by their signatures. StringRef Signature = getShtGroupSignature(ObjSections, Sec); this->Sections[I] = &InputSection::Discarded; ArrayRef Entries = CHECK(Obj.template getSectionContentsAsArray(&Sec), this); if (Entries.empty()) fatal(toString(this) + ": empty SHT_GROUP"); // The first word of a SHT_GROUP section contains flags. Currently, // the standard defines only "GRP_COMDAT" flag for the COMDAT group. // An group with the empty flag doesn't define anything; such sections // are just skipped. if (Entries[0] == 0) continue; if (Entries[0] != GRP_COMDAT) fatal(toString(this) + ": unsupported SHT_GROUP format"); bool IsNew = IgnoreComdats || Symtab->ComdatGroups.try_emplace(CachedHashStringRef(Signature), this) .second; if (IsNew) { if (Config->Relocatable) this->Sections[I] = createInputSection(Sec); continue; } // Otherwise, discard group members. for (uint32_t SecIndex : Entries.slice(1)) { if (SecIndex >= Size) fatal(toString(this) + ": invalid section index in group: " + Twine(SecIndex)); this->Sections[SecIndex] = &InputSection::Discarded; } break; } case SHT_SYMTAB_SHNDX: ShndxTable = CHECK(Obj.getSHNDXTable(Sec, ObjSections), this); break; case SHT_SYMTAB: case SHT_STRTAB: case SHT_NULL: break; default: this->Sections[I] = createInputSection(Sec); } // .ARM.exidx sections have a reverse dependency on the InputSection they // have a SHF_LINK_ORDER dependency, this is identified by the sh_link. if (Sec.sh_flags & SHF_LINK_ORDER) { InputSectionBase *LinkSec = nullptr; if (Sec.sh_link < this->Sections.size()) LinkSec = this->Sections[Sec.sh_link]; if (!LinkSec) fatal(toString(this) + ": invalid sh_link index: " + Twine(Sec.sh_link)); InputSection *IS = cast(this->Sections[I]); LinkSec->DependentSections.push_back(IS); if (!isa(LinkSec)) error("a section " + IS->Name + " with SHF_LINK_ORDER should not refer a non-regular " "section: " + toString(LinkSec)); } } } // For ARM only, to set the EF_ARM_ABI_FLOAT_SOFT or EF_ARM_ABI_FLOAT_HARD // flag in the ELF Header we need to look at Tag_ABI_VFP_args to find out how // the input objects have been compiled. static void updateARMVFPArgs(const ARMAttributeParser &Attributes, const InputFile *F) { if (!Attributes.hasAttribute(ARMBuildAttrs::ABI_VFP_args)) // If an ABI tag isn't present then it is implicitly given the value of 0 // which maps to ARMBuildAttrs::BaseAAPCS. However many assembler files, // including some in glibc that don't use FP args (and should have value 3) // don't have the attribute so we do not consider an implicit value of 0 // as a clash. return; unsigned VFPArgs = Attributes.getAttributeValue(ARMBuildAttrs::ABI_VFP_args); ARMVFPArgKind Arg; switch (VFPArgs) { case ARMBuildAttrs::BaseAAPCS: Arg = ARMVFPArgKind::Base; break; case ARMBuildAttrs::HardFPAAPCS: Arg = ARMVFPArgKind::VFP; break; case ARMBuildAttrs::ToolChainFPPCS: // Tool chain specific convention that conforms to neither AAPCS variant. Arg = ARMVFPArgKind::ToolChain; break; case ARMBuildAttrs::CompatibleFPAAPCS: // Object compatible with all conventions. return; default: error(toString(F) + ": unknown Tag_ABI_VFP_args value: " + Twine(VFPArgs)); return; } // Follow ld.bfd and error if there is a mix of calling conventions. if (Config->ARMVFPArgs != Arg && Config->ARMVFPArgs != ARMVFPArgKind::Default) error(toString(F) + ": incompatible Tag_ABI_VFP_args"); else Config->ARMVFPArgs = Arg; } // The ARM support in lld makes some use of instructions that are not available // on all ARM architectures. Namely: // - Use of BLX instruction for interworking between ARM and Thumb state. // - Use of the extended Thumb branch encoding in relocation. // - Use of the MOVT/MOVW instructions in Thumb Thunks. // The ARM Attributes section contains information about the architecture chosen // at compile time. We follow the convention that if at least one input object // is compiled with an architecture that supports these features then lld is // permitted to use them. static void updateSupportedARMFeatures(const ARMAttributeParser &Attributes) { if (!Attributes.hasAttribute(ARMBuildAttrs::CPU_arch)) return; auto Arch = Attributes.getAttributeValue(ARMBuildAttrs::CPU_arch); switch (Arch) { case ARMBuildAttrs::Pre_v4: case ARMBuildAttrs::v4: case ARMBuildAttrs::v4T: // Architectures prior to v5 do not support BLX instruction break; case ARMBuildAttrs::v5T: case ARMBuildAttrs::v5TE: case ARMBuildAttrs::v5TEJ: case ARMBuildAttrs::v6: case ARMBuildAttrs::v6KZ: case ARMBuildAttrs::v6K: Config->ARMHasBlx = true; // Architectures used in pre-Cortex processors do not support // The J1 = 1 J2 = 1 Thumb branch range extension, with the exception // of Architecture v6T2 (arm1156t2-s and arm1156t2f-s) that do. break; default: // All other Architectures have BLX and extended branch encoding Config->ARMHasBlx = true; Config->ARMJ1J2BranchEncoding = true; if (Arch != ARMBuildAttrs::v6_M && Arch != ARMBuildAttrs::v6S_M) // All Architectures used in Cortex processors with the exception // of v6-M and v6S-M have the MOVT and MOVW instructions. Config->ARMHasMovtMovw = true; break; } } // If a source file is compiled with x86 hardware-assisted call flow control // enabled, the generated object file contains feature flags indicating that // fact. This function reads the feature flags and returns it. // // Essentially we want to read a single 32-bit value in this function, but this // function is rather complicated because the value is buried deep inside a // .note.gnu.property section. // // The section consists of one or more NOTE records. Each NOTE record consists // of zero or more type-length-value fields. We want to find a field of a // certain type. It seems a bit too much to just store a 32-bit value, perhaps // the ABI is unnecessarily complicated. template static uint32_t readAndFeatures(ObjFile *Obj, ArrayRef Data) { using Elf_Nhdr = typename ELFT::Nhdr; using Elf_Note = typename ELFT::Note; uint32_t FeaturesSet = 0; while (!Data.empty()) { // Read one NOTE record. if (Data.size() < sizeof(Elf_Nhdr)) fatal(toString(Obj) + ": .note.gnu.property: section too short"); auto *Nhdr = reinterpret_cast(Data.data()); if (Data.size() < Nhdr->getSize()) fatal(toString(Obj) + ": .note.gnu.property: section too short"); Elf_Note Note(*Nhdr); if (Nhdr->n_type != NT_GNU_PROPERTY_TYPE_0 || Note.getName() != "GNU") { Data = Data.slice(Nhdr->getSize()); continue; } uint32_t FeatureAndType = Config->EMachine == EM_AARCH64 ? GNU_PROPERTY_AARCH64_FEATURE_1_AND : GNU_PROPERTY_X86_FEATURE_1_AND; // Read a body of a NOTE record, which consists of type-length-value fields. ArrayRef Desc = Note.getDesc(); while (!Desc.empty()) { if (Desc.size() < 8) fatal(toString(Obj) + ": .note.gnu.property: section too short"); uint32_t Type = read32le(Desc.data()); uint32_t Size = read32le(Desc.data() + 4); if (Type == FeatureAndType) { // We found a FEATURE_1_AND field. There may be more than one of these // in a .note.gnu.propery section, for a relocatable object we // accumulate the bits set. FeaturesSet |= read32le(Desc.data() + 8); } // On 64-bit, a payload may be followed by a 4-byte padding to make its // size a multiple of 8. if (ELFT::Is64Bits) Size = alignTo(Size, 8); Desc = Desc.slice(Size + 8); // +8 for Type and Size } // Go to next NOTE record to look for more FEATURE_1_AND descriptions. Data = Data.slice(Nhdr->getSize()); } return FeaturesSet; } template InputSectionBase *ObjFile::getRelocTarget(const Elf_Shdr &Sec) { uint32_t Idx = Sec.sh_info; if (Idx >= this->Sections.size()) fatal(toString(this) + ": invalid relocated section index: " + Twine(Idx)); InputSectionBase *Target = this->Sections[Idx]; // Strictly speaking, a relocation section must be included in the // group of the section it relocates. However, LLVM 3.3 and earlier // would fail to do so, so we gracefully handle that case. if (Target == &InputSection::Discarded) return nullptr; if (!Target) fatal(toString(this) + ": unsupported relocation reference"); return Target; } // Create a regular InputSection class that has the same contents // as a given section. static InputSection *toRegularSection(MergeInputSection *Sec) { return make(Sec->File, Sec->Flags, Sec->Type, Sec->Alignment, Sec->data(), Sec->Name); } template InputSectionBase *ObjFile::createInputSection(const Elf_Shdr &Sec) { StringRef Name = getSectionName(Sec); switch (Sec.sh_type) { case SHT_ARM_ATTRIBUTES: { if (Config->EMachine != EM_ARM) break; ARMAttributeParser Attributes; ArrayRef Contents = check(this->getObj().getSectionContents(&Sec)); Attributes.Parse(Contents, /*isLittle*/ Config->EKind == ELF32LEKind); updateSupportedARMFeatures(Attributes); updateARMVFPArgs(Attributes, this); // FIXME: Retain the first attribute section we see. The eglibc ARM // dynamic loaders require the presence of an attribute section for dlopen // to work. In a full implementation we would merge all attribute sections. if (In.ARMAttributes == nullptr) { In.ARMAttributes = make(*this, Sec, Name); return In.ARMAttributes; } return &InputSection::Discarded; } case SHT_LLVM_DEPENDENT_LIBRARIES: { if (Config->Relocatable) break; ArrayRef Data = CHECK(this->getObj().template getSectionContentsAsArray(&Sec), this); if (!Data.empty() && Data.back() != '\0') { error(toString(this) + ": corrupted dependent libraries section (unterminated string): " + Name); return &InputSection::Discarded; } for (const char *D = Data.begin(), *E = Data.end(); D < E;) { StringRef S(D); addDependentLibrary(S, this); D += S.size() + 1; } return &InputSection::Discarded; } case SHT_RELA: case SHT_REL: { // Find a relocation target section and associate this section with that. // Target may have been discarded if it is in a different section group // and the group is discarded, even though it's a violation of the // spec. We handle that situation gracefully by discarding dangling // relocation sections. InputSectionBase *Target = getRelocTarget(Sec); if (!Target) return nullptr; // This section contains relocation information. // If -r is given, we do not interpret or apply relocation // but just copy relocation sections to output. if (Config->Relocatable) { InputSection *RelocSec = make(*this, Sec, Name); // We want to add a dependency to target, similar like we do for // -emit-relocs below. This is useful for the case when linker script // contains the "/DISCARD/". It is perhaps uncommon to use a script with // -r, but we faced it in the Linux kernel and have to handle such case // and not to crash. Target->DependentSections.push_back(RelocSec); return RelocSec; } if (Target->FirstRelocation) fatal(toString(this) + ": multiple relocation sections to one section are not supported"); // ELF spec allows mergeable sections with relocations, but they are // rare, and it is in practice hard to merge such sections by contents, // because applying relocations at end of linking changes section // contents. So, we simply handle such sections as non-mergeable ones. // Degrading like this is acceptable because section merging is optional. if (auto *MS = dyn_cast(Target)) { Target = toRegularSection(MS); this->Sections[Sec.sh_info] = Target; } if (Sec.sh_type == SHT_RELA) { ArrayRef Rels = CHECK(getObj().relas(&Sec), this); Target->FirstRelocation = Rels.begin(); Target->NumRelocations = Rels.size(); Target->AreRelocsRela = true; } else { ArrayRef Rels = CHECK(getObj().rels(&Sec), this); Target->FirstRelocation = Rels.begin(); Target->NumRelocations = Rels.size(); Target->AreRelocsRela = false; } assert(isUInt<31>(Target->NumRelocations)); // Relocation sections processed by the linker are usually removed // from the output, so returning `nullptr` for the normal case. // However, if -emit-relocs is given, we need to leave them in the output. // (Some post link analysis tools need this information.) if (Config->EmitRelocs) { InputSection *RelocSec = make(*this, Sec, Name); // We will not emit relocation section if target was discarded. Target->DependentSections.push_back(RelocSec); return RelocSec; } return nullptr; } } // The GNU linker uses .note.GNU-stack section as a marker indicating // that the code in the object file does not expect that the stack is // executable (in terms of NX bit). If all input files have the marker, // the GNU linker adds a PT_GNU_STACK segment to tells the loader to // make the stack non-executable. Most object files have this section as // of 2017. // // But making the stack non-executable is a norm today for security // reasons. Failure to do so may result in a serious security issue. // Therefore, we make LLD always add PT_GNU_STACK unless it is // explicitly told to do otherwise (by -z execstack). Because the stack // executable-ness is controlled solely by command line options, // .note.GNU-stack sections are simply ignored. if (Name == ".note.GNU-stack") return &InputSection::Discarded; // Object files that use processor features such as Intel Control-Flow // Enforcement (CET) or AArch64 Branch Target Identification BTI, use a // .note.gnu.property section containing a bitfield of feature bits like the // GNU_PROPERTY_X86_FEATURE_1_IBT flag. Read a bitmap containing the flag. // // Since we merge bitmaps from multiple object files to create a new // .note.gnu.property containing a single AND'ed bitmap, we discard an input // file's .note.gnu.property section. if (Name == ".note.gnu.property") { ArrayRef Contents = check(this->getObj().getSectionContents(&Sec)); this->AndFeatures = readAndFeatures(this, Contents); return &InputSection::Discarded; } // Split stacks is a feature to support a discontiguous stack, // commonly used in the programming language Go. For the details, // see https://gcc.gnu.org/wiki/SplitStacks. An object file compiled // for split stack will include a .note.GNU-split-stack section. if (Name == ".note.GNU-split-stack") { if (Config->Relocatable) { error("cannot mix split-stack and non-split-stack in a relocatable link"); return &InputSection::Discarded; } this->SplitStack = true; return &InputSection::Discarded; } // An object file cmpiled for split stack, but where some of the // functions were compiled with the no_split_stack_attribute will // include a .note.GNU-no-split-stack section. if (Name == ".note.GNU-no-split-stack") { this->SomeNoSplitStack = true; return &InputSection::Discarded; } // The linkonce feature is a sort of proto-comdat. Some glibc i386 object // files contain definitions of symbol "__x86.get_pc_thunk.bx" in linkonce // sections. Drop those sections to avoid duplicate symbol errors. // FIXME: This is glibc PR20543, we should remove this hack once that has been // fixed for a while. if (Name == ".gnu.linkonce.t.__x86.get_pc_thunk.bx" || Name == ".gnu.linkonce.t.__i686.get_pc_thunk.bx") return &InputSection::Discarded; // If we are creating a new .build-id section, strip existing .build-id // sections so that the output won't have more than one .build-id. // This is not usually a problem because input object files normally don't // have .build-id sections, but you can create such files by // "ld.{bfd,gold,lld} -r --build-id", and we want to guard against it. if (Name == ".note.gnu.build-id" && Config->BuildId != BuildIdKind::None) return &InputSection::Discarded; // The linker merges EH (exception handling) frames and creates a // .eh_frame_hdr section for runtime. So we handle them with a special // class. For relocatable outputs, they are just passed through. if (Name == ".eh_frame" && !Config->Relocatable) return make(*this, Sec, Name); if (shouldMerge(Sec)) return make(*this, Sec, Name); return make(*this, Sec, Name); } template StringRef ObjFile::getSectionName(const Elf_Shdr &Sec) { return CHECK(getObj().getSectionName(&Sec, SectionStringTable), this); } // Initialize this->Symbols. this->Symbols is a parallel array as // its corresponding ELF symbol table. template void ObjFile::initializeSymbols() { ArrayRef ESyms = this->getELFSyms(); this->Symbols.resize(ESyms.size()); // Our symbol table may have already been partially initialized // because of LazyObjFile. for (size_t I = 0, End = ESyms.size(); I != End; ++I) if (!this->Symbols[I] && ESyms[I].getBinding() != STB_LOCAL) this->Symbols[I] = Symtab->insert(CHECK(ESyms[I].getName(this->StringTable), this)); // Fill this->Symbols. A symbol is either local or global. for (size_t I = 0, End = ESyms.size(); I != End; ++I) { const Elf_Sym &ESym = ESyms[I]; // Read symbol attributes. uint32_t SecIdx = getSectionIndex(ESym); if (SecIdx >= this->Sections.size()) fatal(toString(this) + ": invalid section index: " + Twine(SecIdx)); InputSectionBase *Sec = this->Sections[SecIdx]; uint8_t Binding = ESym.getBinding(); uint8_t StOther = ESym.st_other; uint8_t Type = ESym.getType(); uint64_t Value = ESym.st_value; uint64_t Size = ESym.st_size; StringRefZ Name = this->StringTable.data() + ESym.st_name; // Handle local symbols. Local symbols are not added to the symbol // table because they are not visible from other object files. We // allocate symbol instances and add their pointers to Symbols. if (Binding == STB_LOCAL) { if (ESym.getType() == STT_FILE) SourceFile = CHECK(ESym.getName(this->StringTable), this); if (this->StringTable.size() <= ESym.st_name) fatal(toString(this) + ": invalid symbol name offset"); if (ESym.st_shndx == SHN_UNDEF) this->Symbols[I] = make(this, Name, Binding, StOther, Type); else if (Sec == &InputSection::Discarded) this->Symbols[I] = make(this, Name, Binding, StOther, Type, /*DiscardedSecIdx=*/SecIdx); else this->Symbols[I] = make(this, Name, Binding, StOther, Type, Value, Size, Sec); continue; } // Handle global undefined symbols. if (ESym.st_shndx == SHN_UNDEF) { this->Symbols[I]->resolve(Undefined{this, Name, Binding, StOther, Type}); continue; } // Handle global common symbols. if (ESym.st_shndx == SHN_COMMON) { if (Value == 0 || Value >= UINT32_MAX) fatal(toString(this) + ": common symbol '" + StringRef(Name.Data) + "' has invalid alignment: " + Twine(Value)); this->Symbols[I]->resolve( CommonSymbol{this, Name, Binding, StOther, Type, Value, Size}); continue; } // If a defined symbol is in a discarded section, handle it as if it // were an undefined symbol. Such symbol doesn't comply with the // standard, but in practice, a .eh_frame often directly refer // COMDAT member sections, and if a comdat group is discarded, some // defined symbol in a .eh_frame becomes dangling symbols. if (Sec == &InputSection::Discarded) { this->Symbols[I]->resolve( Undefined{this, Name, Binding, StOther, Type, SecIdx}); continue; } // Handle global defined symbols. if (Binding == STB_GLOBAL || Binding == STB_WEAK || Binding == STB_GNU_UNIQUE) { this->Symbols[I]->resolve( Defined{this, Name, Binding, StOther, Type, Value, Size, Sec}); continue; } fatal(toString(this) + ": unexpected binding: " + Twine((int)Binding)); } } ArchiveFile::ArchiveFile(std::unique_ptr &&File) : InputFile(ArchiveKind, File->getMemoryBufferRef()), File(std::move(File)) {} void ArchiveFile::parse() { for (const Archive::Symbol &Sym : File->symbols()) Symtab->addSymbol(LazyArchive{*this, Sym}); } // Returns a buffer pointing to a member file containing a given symbol. void ArchiveFile::fetch(const Archive::Symbol &Sym) { Archive::Child C = CHECK(Sym.getMember(), toString(this) + ": could not get the member for symbol " + Sym.getName()); if (!Seen.insert(C.getChildOffset()).second) return; MemoryBufferRef MB = CHECK(C.getMemoryBufferRef(), toString(this) + ": could not get the buffer for the member defining symbol " + Sym.getName()); if (Tar && C.getParent()->isThin()) Tar->append(relativeToRoot(CHECK(C.getFullName(), this)), MB.getBuffer()); InputFile *File = createObjectFile( MB, getName(), C.getParent()->isThin() ? 0 : C.getChildOffset()); File->GroupId = GroupId; parseFile(File); } unsigned SharedFile::VernauxNum; // Parse the version definitions in the object file if present, and return a // vector whose nth element contains a pointer to the Elf_Verdef for version // identifier n. Version identifiers that are not definitions map to nullptr. template static std::vector parseVerdefs(const uint8_t *Base, const typename ELFT::Shdr *Sec) { if (!Sec) return {}; // We cannot determine the largest verdef identifier without inspecting // every Elf_Verdef, but both bfd and gold assign verdef identifiers // sequentially starting from 1, so we predict that the largest identifier // will be VerdefCount. unsigned VerdefCount = Sec->sh_info; std::vector Verdefs(VerdefCount + 1); // Build the Verdefs array by following the chain of Elf_Verdef objects // from the start of the .gnu.version_d section. const uint8_t *Verdef = Base + Sec->sh_offset; for (unsigned I = 0; I != VerdefCount; ++I) { auto *CurVerdef = reinterpret_cast(Verdef); Verdef += CurVerdef->vd_next; unsigned VerdefIndex = CurVerdef->vd_ndx; Verdefs.resize(VerdefIndex + 1); Verdefs[VerdefIndex] = CurVerdef; } return Verdefs; } // We do not usually care about alignments of data in shared object // files because the loader takes care of it. However, if we promote a // DSO symbol to point to .bss due to copy relocation, we need to keep // the original alignment requirements. We infer it in this function. template static uint64_t getAlignment(ArrayRef Sections, const typename ELFT::Sym &Sym) { uint64_t Ret = UINT64_MAX; if (Sym.st_value) Ret = 1ULL << countTrailingZeros((uint64_t)Sym.st_value); if (0 < Sym.st_shndx && Sym.st_shndx < Sections.size()) Ret = std::min(Ret, Sections[Sym.st_shndx].sh_addralign); return (Ret > UINT32_MAX) ? 0 : Ret; } // Fully parse the shared object file. // // This function parses symbol versions. If a DSO has version information, // the file has a ".gnu.version_d" section which contains symbol version // definitions. Each symbol is associated to one version through a table in // ".gnu.version" section. That table is a parallel array for the symbol // table, and each table entry contains an index in ".gnu.version_d". // // The special index 0 is reserved for VERF_NDX_LOCAL and 1 is for // VER_NDX_GLOBAL. There's no table entry for these special versions in // ".gnu.version_d". // // The file format for symbol versioning is perhaps a bit more complicated // than necessary, but you can easily understand the code if you wrap your // head around the data structure described above. template void SharedFile::parse() { using Elf_Dyn = typename ELFT::Dyn; using Elf_Shdr = typename ELFT::Shdr; using Elf_Sym = typename ELFT::Sym; using Elf_Verdef = typename ELFT::Verdef; using Elf_Versym = typename ELFT::Versym; ArrayRef DynamicTags; const ELFFile Obj = this->getObj(); ArrayRef Sections = CHECK(Obj.sections(), this); const Elf_Shdr *VersymSec = nullptr; const Elf_Shdr *VerdefSec = nullptr; // Search for .dynsym, .dynamic, .symtab, .gnu.version and .gnu.version_d. for (const Elf_Shdr &Sec : Sections) { switch (Sec.sh_type) { default: continue; case SHT_DYNAMIC: DynamicTags = CHECK(Obj.template getSectionContentsAsArray(&Sec), this); break; case SHT_GNU_versym: VersymSec = &Sec; break; case SHT_GNU_verdef: VerdefSec = &Sec; break; } } if (VersymSec && NumELFSyms == 0) { error("SHT_GNU_versym should be associated with symbol table"); return; } // Search for a DT_SONAME tag to initialize this->SoName. for (const Elf_Dyn &Dyn : DynamicTags) { if (Dyn.d_tag == DT_NEEDED) { uint64_t Val = Dyn.getVal(); if (Val >= this->StringTable.size()) fatal(toString(this) + ": invalid DT_NEEDED entry"); DtNeeded.push_back(this->StringTable.data() + Val); } else if (Dyn.d_tag == DT_SONAME) { uint64_t Val = Dyn.getVal(); if (Val >= this->StringTable.size()) fatal(toString(this) + ": invalid DT_SONAME entry"); SoName = this->StringTable.data() + Val; } } // DSOs are uniquified not by filename but by soname. DenseMap::iterator It; bool WasInserted; std::tie(It, WasInserted) = Symtab->SoNames.try_emplace(SoName, this); // If a DSO appears more than once on the command line with and without // --as-needed, --no-as-needed takes precedence over --as-needed because a // user can add an extra DSO with --no-as-needed to force it to be added to // the dependency list. It->second->IsNeeded |= IsNeeded; if (!WasInserted) return; SharedFiles.push_back(this); Verdefs = parseVerdefs(Obj.base(), VerdefSec); // Parse ".gnu.version" section which is a parallel array for the symbol // table. If a given file doesn't have a ".gnu.version" section, we use // VER_NDX_GLOBAL. size_t Size = NumELFSyms - FirstGlobal; std::vector Versyms(Size, VER_NDX_GLOBAL); if (VersymSec) { ArrayRef Versym = CHECK(Obj.template getSectionContentsAsArray(VersymSec), this) .slice(FirstGlobal); for (size_t I = 0; I < Size; ++I) Versyms[I] = Versym[I].vs_index; } // System libraries can have a lot of symbols with versions. Using a // fixed buffer for computing the versions name (foo@ver) can save a // lot of allocations. SmallString<0> VersionedNameBuffer; // Add symbols to the symbol table. ArrayRef Syms = this->getGlobalELFSyms(); for (size_t I = 0; I < Syms.size(); ++I) { const Elf_Sym &Sym = Syms[I]; // ELF spec requires that all local symbols precede weak or global // symbols in each symbol table, and the index of first non-local symbol // is stored to sh_info. If a local symbol appears after some non-local // symbol, that's a violation of the spec. StringRef Name = CHECK(Sym.getName(this->StringTable), this); if (Sym.getBinding() == STB_LOCAL) { warn("found local symbol '" + Name + "' in global part of symbol table in file " + toString(this)); continue; } if (Sym.isUndefined()) { Symbol *S = Symtab->addSymbol( Undefined{this, Name, Sym.getBinding(), Sym.st_other, Sym.getType()}); S->ExportDynamic = true; continue; } // MIPS BFD linker puts _gp_disp symbol into DSO files and incorrectly // assigns VER_NDX_LOCAL to this section global symbol. Here is a // workaround for this bug. uint32_t Idx = Versyms[I] & ~VERSYM_HIDDEN; if (Config->EMachine == EM_MIPS && Idx == VER_NDX_LOCAL && Name == "_gp_disp") continue; uint32_t Alignment = getAlignment(Sections, Sym); if (!(Versyms[I] & VERSYM_HIDDEN)) { Symtab->addSymbol(SharedSymbol{*this, Name, Sym.getBinding(), Sym.st_other, Sym.getType(), Sym.st_value, Sym.st_size, Alignment, Idx}); } // Also add the symbol with the versioned name to handle undefined symbols // with explicit versions. if (Idx == VER_NDX_GLOBAL) continue; if (Idx >= Verdefs.size() || Idx == VER_NDX_LOCAL) { error("corrupt input file: version definition index " + Twine(Idx) + " for symbol " + Name + " is out of bounds\n>>> defined in " + toString(this)); continue; } StringRef VerName = this->StringTable.data() + reinterpret_cast(Verdefs[Idx])->getAux()->vda_name; VersionedNameBuffer.clear(); Name = (Name + "@" + VerName).toStringRef(VersionedNameBuffer); Symtab->addSymbol(SharedSymbol{*this, Saver.save(Name), Sym.getBinding(), Sym.st_other, Sym.getType(), Sym.st_value, Sym.st_size, Alignment, Idx}); } } static ELFKind getBitcodeELFKind(const Triple &T) { if (T.isLittleEndian()) return T.isArch64Bit() ? ELF64LEKind : ELF32LEKind; return T.isArch64Bit() ? ELF64BEKind : ELF32BEKind; } static uint8_t getBitcodeMachineKind(StringRef Path, const Triple &T) { switch (T.getArch()) { case Triple::aarch64: return EM_AARCH64; case Triple::amdgcn: case Triple::r600: return EM_AMDGPU; case Triple::arm: case Triple::thumb: return EM_ARM; case Triple::avr: return EM_AVR; case Triple::mips: case Triple::mipsel: case Triple::mips64: case Triple::mips64el: return EM_MIPS; case Triple::msp430: return EM_MSP430; case Triple::ppc: return EM_PPC; case Triple::ppc64: case Triple::ppc64le: return EM_PPC64; case Triple::x86: return T.isOSIAMCU() ? EM_IAMCU : EM_386; case Triple::x86_64: return EM_X86_64; default: error(Path + ": could not infer e_machine from bitcode target triple " + T.str()); return EM_NONE; } } BitcodeFile::BitcodeFile(MemoryBufferRef MB, StringRef ArchiveName, uint64_t OffsetInArchive) : InputFile(BitcodeKind, MB) { this->ArchiveName = ArchiveName; std::string Path = MB.getBufferIdentifier().str(); if (Config->ThinLTOIndexOnly) Path = replaceThinLTOSuffix(MB.getBufferIdentifier()); // ThinLTO assumes that all MemoryBufferRefs given to it have a unique // name. If two archives define two members with the same name, this // causes a collision which result in only one of the objects being taken // into consideration at LTO time (which very likely causes undefined // symbols later in the link stage). So we append file offset to make // filename unique. StringRef Name = ArchiveName.empty() ? Saver.save(Path) : Saver.save(ArchiveName + "(" + Path + " at " + utostr(OffsetInArchive) + ")"); MemoryBufferRef MBRef(MB.getBuffer(), Name); Obj = CHECK(lto::InputFile::create(MBRef), this); Triple T(Obj->getTargetTriple()); EKind = getBitcodeELFKind(T); EMachine = getBitcodeMachineKind(MB.getBufferIdentifier(), T); } static uint8_t mapVisibility(GlobalValue::VisibilityTypes GvVisibility) { switch (GvVisibility) { case GlobalValue::DefaultVisibility: return STV_DEFAULT; case GlobalValue::HiddenVisibility: return STV_HIDDEN; case GlobalValue::ProtectedVisibility: return STV_PROTECTED; } llvm_unreachable("unknown visibility"); } template static Symbol *createBitcodeSymbol(const std::vector &KeptComdats, const lto::InputFile::Symbol &ObjSym, BitcodeFile &F) { StringRef Name = Saver.save(ObjSym.getName()); uint8_t Binding = ObjSym.isWeak() ? STB_WEAK : STB_GLOBAL; uint8_t Type = ObjSym.isTLS() ? STT_TLS : STT_NOTYPE; uint8_t Visibility = mapVisibility(ObjSym.getVisibility()); bool CanOmitFromDynSym = ObjSym.canBeOmittedFromSymbolTable(); int C = ObjSym.getComdatIndex(); if (ObjSym.isUndefined() || (C != -1 && !KeptComdats[C])) { Undefined New(&F, Name, Binding, Visibility, Type); if (CanOmitFromDynSym) New.ExportDynamic = false; return Symtab->addSymbol(New); } if (ObjSym.isCommon()) return Symtab->addSymbol( CommonSymbol{&F, Name, Binding, Visibility, STT_OBJECT, ObjSym.getCommonAlignment(), ObjSym.getCommonSize()}); Defined New(&F, Name, Binding, Visibility, Type, 0, 0, nullptr); if (CanOmitFromDynSym) New.ExportDynamic = false; return Symtab->addSymbol(New); } template void BitcodeFile::parse() { std::vector KeptComdats; for (StringRef S : Obj->getComdatTable()) KeptComdats.push_back( Symtab->ComdatGroups.try_emplace(CachedHashStringRef(S), this).second); for (const lto::InputFile::Symbol &ObjSym : Obj->symbols()) Symbols.push_back(createBitcodeSymbol(KeptComdats, ObjSym, *this)); for (auto L : Obj->getDependentLibraries()) addDependentLibrary(L, this); } void BinaryFile::parse() { ArrayRef Data = arrayRefFromStringRef(MB.getBuffer()); auto *Section = make(this, SHF_ALLOC | SHF_WRITE, SHT_PROGBITS, 8, Data, ".data"); Sections.push_back(Section); // For each input file foo that is embedded to a result as a binary // blob, we define _binary_foo_{start,end,size} symbols, so that // user programs can access blobs by name. Non-alphanumeric // characters in a filename are replaced with underscore. std::string S = "_binary_" + MB.getBufferIdentifier().str(); for (size_t I = 0; I < S.size(); ++I) if (!isAlnum(S[I])) S[I] = '_'; Symtab->addSymbol(Defined{nullptr, Saver.save(S + "_start"), STB_GLOBAL, STV_DEFAULT, STT_OBJECT, 0, 0, Section}); Symtab->addSymbol(Defined{nullptr, Saver.save(S + "_end"), STB_GLOBAL, STV_DEFAULT, STT_OBJECT, Data.size(), 0, Section}); Symtab->addSymbol(Defined{nullptr, Saver.save(S + "_size"), STB_GLOBAL, STV_DEFAULT, STT_OBJECT, Data.size(), 0, nullptr}); } InputFile *elf::createObjectFile(MemoryBufferRef MB, StringRef ArchiveName, uint64_t OffsetInArchive) { if (isBitcode(MB)) return make(MB, ArchiveName, OffsetInArchive); switch (getELFKind(MB, ArchiveName)) { case ELF32LEKind: return make>(MB, ArchiveName); case ELF32BEKind: return make>(MB, ArchiveName); case ELF64LEKind: return make>(MB, ArchiveName); case ELF64BEKind: return make>(MB, ArchiveName); default: llvm_unreachable("getELFKind"); } } void LazyObjFile::fetch() { if (MB.getBuffer().empty()) return; InputFile *File = createObjectFile(MB, ArchiveName, OffsetInArchive); File->GroupId = GroupId; MB = {}; // Copy symbol vector so that the new InputFile doesn't have to // insert the same defined symbols to the symbol table again. File->Symbols = std::move(Symbols); parseFile(File); } template void LazyObjFile::parse() { using Elf_Sym = typename ELFT::Sym; // A lazy object file wraps either a bitcode file or an ELF file. if (isBitcode(this->MB)) { std::unique_ptr Obj = CHECK(lto::InputFile::create(this->MB), this); for (const lto::InputFile::Symbol &Sym : Obj->symbols()) { if (Sym.isUndefined()) continue; Symtab->addSymbol(LazyObject{*this, Saver.save(Sym.getName())}); } return; } if (getELFKind(this->MB, ArchiveName) != Config->EKind) { error("incompatible file: " + this->MB.getBufferIdentifier()); return; } // Find a symbol table. ELFFile Obj = check(ELFFile::create(MB.getBuffer())); ArrayRef Sections = CHECK(Obj.sections(), this); for (const typename ELFT::Shdr &Sec : Sections) { if (Sec.sh_type != SHT_SYMTAB) continue; // A symbol table is found. ArrayRef ESyms = CHECK(Obj.symbols(&Sec), this); uint32_t FirstGlobal = Sec.sh_info; StringRef Strtab = CHECK(Obj.getStringTableForSymtab(Sec, Sections), this); this->Symbols.resize(ESyms.size()); // Get existing symbols or insert placeholder symbols. for (size_t I = FirstGlobal, End = ESyms.size(); I != End; ++I) if (ESyms[I].st_shndx != SHN_UNDEF) this->Symbols[I] = Symtab->insert(CHECK(ESyms[I].getName(Strtab), this)); // Replace existing symbols with LazyObject symbols. // // resolve() may trigger this->fetch() if an existing symbol is an // undefined symbol. If that happens, this LazyObjFile has served // its purpose, and we can exit from the loop early. for (Symbol *Sym : this->Symbols) { if (!Sym) continue; Sym->resolve(LazyObject{*this, Sym->getName()}); // MemoryBuffer is emptied if this file is instantiated as ObjFile. if (MB.getBuffer().empty()) return; } return; } } std::string elf::replaceThinLTOSuffix(StringRef Path) { StringRef Suffix = Config->ThinLTOObjectSuffixReplace.first; StringRef Repl = Config->ThinLTOObjectSuffixReplace.second; if (Path.consume_back(Suffix)) return (Path + Repl).str(); return Path; } template void BitcodeFile::parse(); template void BitcodeFile::parse(); template void BitcodeFile::parse(); template void BitcodeFile::parse(); template void LazyObjFile::parse(); template void LazyObjFile::parse(); template void LazyObjFile::parse(); template void LazyObjFile::parse(); template class elf::ObjFile; template class elf::ObjFile; template class elf::ObjFile; template class elf::ObjFile; template void SharedFile::parse(); template void SharedFile::parse(); template void SharedFile::parse(); template void SharedFile::parse();