llvm-capstone/clang-tools-extra/clangd/Selection.cpp
Younan Zhang 9ef2ac3ad1
[clangd] Handle lambda scopes inside Node::getDeclContext() (#76329)
We used to consider the `DeclContext` for selection nodes inside a
lambda as the enclosing scope of the lambda expression, rather than the
lambda itself.

For example,

```cpp
void foo();
auto lambda = [] {
  return ^foo();
};
```

where `N` is the selection node for the expression `foo()`,
`N.getDeclContext()` returns the `TranslationUnitDecl` previously, which
IMO is wrong, since the method `operator()` of the lambda is closer.

Incidentally, this fixes a glitch in add-using-declaration tweaks.
(Thanks @HighCommander4 for the test case.)
2024-01-11 16:59:18 +08:00

1138 lines
46 KiB
C++

//===--- Selection.cpp ----------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "Selection.h"
#include "AST.h"
#include "support/Logger.h"
#include "support/Trace.h"
#include "clang/AST/ASTConcept.h"
#include "clang/AST/ASTTypeTraits.h"
#include "clang/AST/Decl.h"
#include "clang/AST/DeclCXX.h"
#include "clang/AST/Expr.h"
#include "clang/AST/ExprCXX.h"
#include "clang/AST/PrettyPrinter.h"
#include "clang/AST/RecursiveASTVisitor.h"
#include "clang/AST/TypeLoc.h"
#include "clang/Basic/OperatorKinds.h"
#include "clang/Basic/SourceLocation.h"
#include "clang/Basic/SourceManager.h"
#include "clang/Basic/TokenKinds.h"
#include "clang/Lex/Lexer.h"
#include "clang/Tooling/Syntax/Tokens.h"
#include "llvm/ADT/BitVector.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <optional>
#include <set>
#include <string>
namespace clang {
namespace clangd {
namespace {
using Node = SelectionTree::Node;
// Measure the fraction of selections that were enabled by recovery AST.
void recordMetrics(const SelectionTree &S, const LangOptions &Lang) {
if (!trace::enabled())
return;
const char *LanguageLabel = Lang.CPlusPlus ? "C++" : Lang.ObjC ? "ObjC" : "C";
static constexpr trace::Metric SelectionUsedRecovery(
"selection_recovery", trace::Metric::Distribution, "language");
static constexpr trace::Metric RecoveryType(
"selection_recovery_type", trace::Metric::Distribution, "language");
const auto *Common = S.commonAncestor();
for (const auto *N = Common; N; N = N->Parent) {
if (const auto *RE = N->ASTNode.get<RecoveryExpr>()) {
SelectionUsedRecovery.record(1, LanguageLabel); // used recovery ast.
RecoveryType.record(RE->isTypeDependent() ? 0 : 1, LanguageLabel);
return;
}
}
if (Common)
SelectionUsedRecovery.record(0, LanguageLabel); // unused.
}
// Return the range covering a node and all its children.
SourceRange getSourceRange(const DynTypedNode &N) {
// MemberExprs to implicitly access anonymous fields should not claim any
// tokens for themselves. Given:
// struct A { struct { int b; }; };
// The clang AST reports the following nodes for an access to b:
// A().b;
// [----] MemberExpr, base = A().<anonymous>, member = b
// [----] MemberExpr: base = A(), member = <anonymous>
// [-] CXXConstructExpr
// For our purposes, we don't want the second MemberExpr to own any tokens,
// so we reduce its range to match the CXXConstructExpr.
// (It's not clear that changing the clang AST would be correct in general).
if (const auto *ME = N.get<MemberExpr>()) {
if (!ME->getMemberDecl()->getDeclName())
return ME->getBase()
? getSourceRange(DynTypedNode::create(*ME->getBase()))
: SourceRange();
}
return N.getSourceRange();
}
// An IntervalSet maintains a set of disjoint subranges of an array.
//
// Initially, it contains the entire array.
// [-----------------------------------------------------------]
//
// When a range is erased(), it will typically split the array in two.
// Claim: [--------------------]
// after: [----------------] [-------------------]
//
// erase() returns the segments actually erased. Given the state above:
// Claim: [---------------------------------------]
// Out: [---------] [------]
// After: [-----] [-----------]
//
// It is used to track (expanded) tokens not yet associated with an AST node.
// On traversing an AST node, its token range is erased from the unclaimed set.
// The tokens actually removed are associated with that node, and hit-tested
// against the selection to determine whether the node is selected.
template <typename T> class IntervalSet {
public:
IntervalSet(llvm::ArrayRef<T> Range) { UnclaimedRanges.insert(Range); }
// Removes the elements of Claim from the set, modifying or removing ranges
// that overlap it.
// Returns the continuous subranges of Claim that were actually removed.
llvm::SmallVector<llvm::ArrayRef<T>> erase(llvm::ArrayRef<T> Claim) {
llvm::SmallVector<llvm::ArrayRef<T>> Out;
if (Claim.empty())
return Out;
// General case:
// Claim: [-----------------]
// UnclaimedRanges: [-A-] [-B-] [-C-] [-D-] [-E-] [-F-] [-G-]
// Overlap: ^first ^second
// Ranges C and D are fully included. Ranges B and E must be trimmed.
auto Overlap = std::make_pair(
UnclaimedRanges.lower_bound({Claim.begin(), Claim.begin()}), // C
UnclaimedRanges.lower_bound({Claim.end(), Claim.end()})); // F
// Rewind to cover B.
if (Overlap.first != UnclaimedRanges.begin()) {
--Overlap.first;
// ...unless B isn't selected at all.
if (Overlap.first->end() <= Claim.begin())
++Overlap.first;
}
if (Overlap.first == Overlap.second)
return Out;
// First, copy all overlapping ranges into the output.
auto OutFirst = Out.insert(Out.end(), Overlap.first, Overlap.second);
// If any of the overlapping ranges were sliced by the claim, split them:
// - restrict the returned range to the claimed part
// - save the unclaimed part so it can be reinserted
llvm::ArrayRef<T> RemainingHead, RemainingTail;
if (Claim.begin() > OutFirst->begin()) {
RemainingHead = {OutFirst->begin(), Claim.begin()};
*OutFirst = {Claim.begin(), OutFirst->end()};
}
if (Claim.end() < Out.back().end()) {
RemainingTail = {Claim.end(), Out.back().end()};
Out.back() = {Out.back().begin(), Claim.end()};
}
// Erase all the overlapping ranges (invalidating all iterators).
UnclaimedRanges.erase(Overlap.first, Overlap.second);
// Reinsert ranges that were merely trimmed.
if (!RemainingHead.empty())
UnclaimedRanges.insert(RemainingHead);
if (!RemainingTail.empty())
UnclaimedRanges.insert(RemainingTail);
return Out;
}
private:
using TokenRange = llvm::ArrayRef<T>;
struct RangeLess {
bool operator()(llvm::ArrayRef<T> L, llvm::ArrayRef<T> R) const {
return L.begin() < R.begin();
}
};
// Disjoint sorted unclaimed ranges of expanded tokens.
std::set<llvm::ArrayRef<T>, RangeLess> UnclaimedRanges;
};
// Sentinel value for the selectedness of a node where we've seen no tokens yet.
// This resolves to Unselected if no tokens are ever seen.
// But Unselected + Complete -> Partial, while NoTokens + Complete --> Complete.
// This value is never exposed publicly.
constexpr SelectionTree::Selection NoTokens =
static_cast<SelectionTree::Selection>(
static_cast<unsigned char>(SelectionTree::Complete + 1));
// Nodes start with NoTokens, and then use this function to aggregate the
// selectedness as more tokens are found.
void update(SelectionTree::Selection &Result, SelectionTree::Selection New) {
if (New == NoTokens)
return;
if (Result == NoTokens)
Result = New;
else if (Result != New)
// Can only be completely selected (or unselected) if all tokens are.
Result = SelectionTree::Partial;
}
// As well as comments, don't count semicolons as real tokens.
// They're not properly claimed as expr-statement is missing from the AST.
bool shouldIgnore(const syntax::Token &Tok) {
switch (Tok.kind()) {
// Even "attached" comments are not considered part of a node's range.
case tok::comment:
// The AST doesn't directly store locations for terminating semicolons.
case tok::semi:
// We don't have locations for cvr-qualifiers: see QualifiedTypeLoc.
case tok::kw_const:
case tok::kw_volatile:
case tok::kw_restrict:
return true;
default:
return false;
}
}
// Determine whether 'Target' is the first expansion of the macro
// argument whose top-level spelling location is 'SpellingLoc'.
bool isFirstExpansion(FileID Target, SourceLocation SpellingLoc,
const SourceManager &SM) {
SourceLocation Prev = SpellingLoc;
while (true) {
// If the arg is expanded multiple times, getMacroArgExpandedLocation()
// returns the first expansion.
SourceLocation Next = SM.getMacroArgExpandedLocation(Prev);
// So if we reach the target, target is the first-expansion of the
// first-expansion ...
if (SM.getFileID(Next) == Target)
return true;
// Otherwise, if the FileID stops changing, we've reached the innermost
// macro expansion, and Target was on a different branch.
if (SM.getFileID(Next) == SM.getFileID(Prev))
return false;
Prev = Next;
}
return false;
}
// SelectionTester can determine whether a range of tokens from the PP-expanded
// stream (corresponding to an AST node) is considered selected.
//
// When the tokens result from macro expansions, the appropriate tokens in the
// main file are examined (macro invocation or args). Similarly for #includes.
// However, only the first expansion of a given spelled token is considered
// selected.
//
// It tests each token in the range (not just the endpoints) as contiguous
// expanded tokens may not have contiguous spellings (with macros).
//
// Non-token text, and tokens not modeled in the AST (comments, semicolons)
// are ignored when determining selectedness.
class SelectionTester {
public:
// The selection is offsets [SelBegin, SelEnd) in SelFile.
SelectionTester(const syntax::TokenBuffer &Buf, FileID SelFile,
unsigned SelBegin, unsigned SelEnd, const SourceManager &SM)
: SelFile(SelFile), SelFileBounds(SM.getLocForStartOfFile(SelFile),
SM.getLocForEndOfFile(SelFile)),
SM(SM) {
// Find all tokens (partially) selected in the file.
auto AllSpelledTokens = Buf.spelledTokens(SelFile);
const syntax::Token *SelFirst =
llvm::partition_point(AllSpelledTokens, [&](const syntax::Token &Tok) {
return SM.getFileOffset(Tok.endLocation()) <= SelBegin;
});
const syntax::Token *SelLimit = std::partition_point(
SelFirst, AllSpelledTokens.end(), [&](const syntax::Token &Tok) {
return SM.getFileOffset(Tok.location()) < SelEnd;
});
auto Sel = llvm::ArrayRef(SelFirst, SelLimit);
// Find which of these are preprocessed to nothing and should be ignored.
llvm::BitVector PPIgnored(Sel.size(), false);
for (const syntax::TokenBuffer::Expansion &X :
Buf.expansionsOverlapping(Sel)) {
if (X.Expanded.empty()) {
for (const syntax::Token &Tok : X.Spelled) {
if (&Tok >= SelFirst && &Tok < SelLimit)
PPIgnored[&Tok - SelFirst] = true;
}
}
}
// Precompute selectedness and offset for selected spelled tokens.
for (unsigned I = 0; I < Sel.size(); ++I) {
if (shouldIgnore(Sel[I]) || PPIgnored[I])
continue;
SelectedSpelled.emplace_back();
Tok &S = SelectedSpelled.back();
S.Offset = SM.getFileOffset(Sel[I].location());
if (S.Offset >= SelBegin && S.Offset + Sel[I].length() <= SelEnd)
S.Selected = SelectionTree::Complete;
else
S.Selected = SelectionTree::Partial;
}
MaybeSelectedExpanded = computeMaybeSelectedExpandedTokens(Buf);
}
// Test whether a consecutive range of tokens is selected.
// The tokens are taken from the expanded token stream.
SelectionTree::Selection
test(llvm::ArrayRef<syntax::Token> ExpandedTokens) const {
if (ExpandedTokens.empty())
return NoTokens;
if (SelectedSpelled.empty())
return SelectionTree::Unselected;
// Cheap (pointer) check whether any of the tokens could touch selection.
// In most cases, the node's overall source range touches ExpandedTokens,
// or we would have failed mayHit(). However now we're only considering
// the *unclaimed* spans of expanded tokens.
// This is a significant performance improvement when a lot of nodes
// surround the selection, including when generated by macros.
if (MaybeSelectedExpanded.empty() ||
&ExpandedTokens.front() > &MaybeSelectedExpanded.back() ||
&ExpandedTokens.back() < &MaybeSelectedExpanded.front()) {
return SelectionTree::Unselected;
}
// The eof token is used as a sentinel.
// In general, source range from an AST node should not claim the eof token,
// but it could occur for unmatched-bracket cases.
// FIXME: fix it in TokenBuffer, expandedTokens(SourceRange) should not
// return the eof token.
if (ExpandedTokens.back().kind() == tok::eof)
ExpandedTokens = ExpandedTokens.drop_back();
SelectionTree::Selection Result = NoTokens;
while (!ExpandedTokens.empty()) {
// Take consecutive tokens from the same context together for efficiency.
SourceLocation Start = ExpandedTokens.front().location();
FileID FID = SM.getFileID(Start);
// Comparing SourceLocations against bounds is cheaper than getFileID().
SourceLocation Limit = SM.getComposedLoc(FID, SM.getFileIDSize(FID));
auto Batch = ExpandedTokens.take_while([&](const syntax::Token &T) {
return T.location() >= Start && T.location() < Limit;
});
assert(!Batch.empty());
ExpandedTokens = ExpandedTokens.drop_front(Batch.size());
update(Result, testChunk(FID, Batch));
}
return Result;
}
// Cheap check whether any of the tokens in R might be selected.
// If it returns false, test() will return NoTokens or Unselected.
// If it returns true, test() may return any value.
bool mayHit(SourceRange R) const {
if (SelectedSpelled.empty() || MaybeSelectedExpanded.empty())
return false;
// If the node starts after the selection ends, it is not selected.
// Tokens a macro location might claim are >= its expansion start.
// So if the expansion start > last selected token, we can prune it.
// (This is particularly helpful for GTest's TEST macro).
if (auto B = offsetInSelFile(getExpansionStart(R.getBegin())))
if (*B > SelectedSpelled.back().Offset)
return false;
// If the node ends before the selection begins, it is not selected.
SourceLocation EndLoc = R.getEnd();
while (EndLoc.isMacroID())
EndLoc = SM.getImmediateExpansionRange(EndLoc).getEnd();
// In the rare case that the expansion range is a char range, EndLoc is
// ~one token too far to the right. We may fail to prune, that's OK.
if (auto E = offsetInSelFile(EndLoc))
if (*E < SelectedSpelled.front().Offset)
return false;
return true;
}
private:
// Plausible expanded tokens that might be affected by the selection.
// This is an overestimate, it may contain tokens that are not selected.
// The point is to allow cheap pruning in test()
llvm::ArrayRef<syntax::Token>
computeMaybeSelectedExpandedTokens(const syntax::TokenBuffer &Toks) {
if (SelectedSpelled.empty())
return {};
auto LastAffectedToken = [&](SourceLocation Loc) {
auto Offset = offsetInSelFile(Loc);
while (Loc.isValid() && !Offset) {
Loc = Loc.isMacroID() ? SM.getImmediateExpansionRange(Loc).getEnd()
: SM.getIncludeLoc(SM.getFileID(Loc));
Offset = offsetInSelFile(Loc);
}
return Offset;
};
auto FirstAffectedToken = [&](SourceLocation Loc) {
auto Offset = offsetInSelFile(Loc);
while (Loc.isValid() && !Offset) {
Loc = Loc.isMacroID() ? SM.getImmediateExpansionRange(Loc).getBegin()
: SM.getIncludeLoc(SM.getFileID(Loc));
Offset = offsetInSelFile(Loc);
}
return Offset;
};
const syntax::Token *Start = llvm::partition_point(
Toks.expandedTokens(),
[&, First = SelectedSpelled.front().Offset](const syntax::Token &Tok) {
if (Tok.kind() == tok::eof)
return false;
// Implausible if upperbound(Tok) < First.
if (auto Offset = LastAffectedToken(Tok.location()))
return *Offset < First;
// A prefix of the expanded tokens may be from an implicit
// inclusion (e.g. preamble patch, or command-line -include).
return true;
});
bool EndInvalid = false;
const syntax::Token *End = std::partition_point(
Start, Toks.expandedTokens().end(),
[&, Last = SelectedSpelled.back().Offset](const syntax::Token &Tok) {
if (Tok.kind() == tok::eof)
return false;
// Plausible if lowerbound(Tok) <= Last.
if (auto Offset = FirstAffectedToken(Tok.location()))
return *Offset <= Last;
// Shouldn't happen: once we've seen tokens traceable to the main
// file, there shouldn't be any more implicit inclusions.
assert(false && "Expanded token could not be resolved to main file!");
EndInvalid = true;
return true; // conservatively assume this token can overlap
});
if (EndInvalid)
End = Toks.expandedTokens().end();
return llvm::ArrayRef(Start, End);
}
// Hit-test a consecutive range of tokens from a single file ID.
SelectionTree::Selection
testChunk(FileID FID, llvm::ArrayRef<syntax::Token> Batch) const {
assert(!Batch.empty());
SourceLocation StartLoc = Batch.front().location();
// There are several possible categories of FileID depending on how the
// preprocessor was used to generate these tokens:
// main file, #included file, macro args, macro bodies.
// We need to identify the main-file tokens that represent Batch, and
// determine whether we want to exclusively claim them. Regular tokens
// represent one AST construct, but a macro invocation can represent many.
// Handle tokens written directly in the main file.
if (FID == SelFile) {
return testTokenRange(*offsetInSelFile(Batch.front().location()),
*offsetInSelFile(Batch.back().location()));
}
// Handle tokens in another file #included into the main file.
// Check if the #include is selected, but don't claim it exclusively.
if (StartLoc.isFileID()) {
for (SourceLocation Loc = Batch.front().location(); Loc.isValid();
Loc = SM.getIncludeLoc(SM.getFileID(Loc))) {
if (auto Offset = offsetInSelFile(Loc))
// FIXME: use whole #include directive, not just the filename string.
return testToken(*Offset);
}
return NoTokens;
}
assert(StartLoc.isMacroID());
// Handle tokens that were passed as a macro argument.
SourceLocation ArgStart = SM.getTopMacroCallerLoc(StartLoc);
if (auto ArgOffset = offsetInSelFile(ArgStart)) {
if (isFirstExpansion(FID, ArgStart, SM)) {
SourceLocation ArgEnd =
SM.getTopMacroCallerLoc(Batch.back().location());
return testTokenRange(*ArgOffset, *offsetInSelFile(ArgEnd));
} else { // NOLINT(llvm-else-after-return)
/* fall through and treat as part of the macro body */
}
}
// Handle tokens produced by non-argument macro expansion.
// Check if the macro name is selected, don't claim it exclusively.
if (auto ExpansionOffset = offsetInSelFile(getExpansionStart(StartLoc)))
// FIXME: also check ( and ) for function-like macros?
return testToken(*ExpansionOffset);
return NoTokens;
}
// Is the closed token range [Begin, End] selected?
SelectionTree::Selection testTokenRange(unsigned Begin, unsigned End) const {
assert(Begin <= End);
// Outside the selection entirely?
if (End < SelectedSpelled.front().Offset ||
Begin > SelectedSpelled.back().Offset)
return SelectionTree::Unselected;
// Compute range of tokens.
auto B = llvm::partition_point(
SelectedSpelled, [&](const Tok &T) { return T.Offset < Begin; });
auto E = std::partition_point(B, SelectedSpelled.end(), [&](const Tok &T) {
return T.Offset <= End;
});
// Aggregate selectedness of tokens in range.
bool ExtendsOutsideSelection = Begin < SelectedSpelled.front().Offset ||
End > SelectedSpelled.back().Offset;
SelectionTree::Selection Result =
ExtendsOutsideSelection ? SelectionTree::Unselected : NoTokens;
for (auto It = B; It != E; ++It)
update(Result, It->Selected);
return Result;
}
// Is the token at `Offset` selected?
SelectionTree::Selection testToken(unsigned Offset) const {
// Outside the selection entirely?
if (Offset < SelectedSpelled.front().Offset ||
Offset > SelectedSpelled.back().Offset)
return SelectionTree::Unselected;
// Find the token, if it exists.
auto It = llvm::partition_point(
SelectedSpelled, [&](const Tok &T) { return T.Offset < Offset; });
if (It != SelectedSpelled.end() && It->Offset == Offset)
return It->Selected;
return NoTokens;
}
// Decomposes Loc and returns the offset if the file ID is SelFile.
std::optional<unsigned> offsetInSelFile(SourceLocation Loc) const {
// Decoding Loc with SM.getDecomposedLoc is relatively expensive.
// But SourceLocations for a file are numerically contiguous, so we
// can use cheap integer operations instead.
if (Loc < SelFileBounds.getBegin() || Loc >= SelFileBounds.getEnd())
return std::nullopt;
// FIXME: subtracting getRawEncoding() is dubious, move this logic into SM.
return Loc.getRawEncoding() - SelFileBounds.getBegin().getRawEncoding();
}
SourceLocation getExpansionStart(SourceLocation Loc) const {
while (Loc.isMacroID())
Loc = SM.getImmediateExpansionRange(Loc).getBegin();
return Loc;
}
struct Tok {
unsigned Offset;
SelectionTree::Selection Selected;
};
std::vector<Tok> SelectedSpelled;
llvm::ArrayRef<syntax::Token> MaybeSelectedExpanded;
FileID SelFile;
SourceRange SelFileBounds;
const SourceManager &SM;
};
// Show the type of a node for debugging.
void printNodeKind(llvm::raw_ostream &OS, const DynTypedNode &N) {
if (const TypeLoc *TL = N.get<TypeLoc>()) {
// TypeLoc is a hierarchy, but has only a single ASTNodeKind.
// Synthesize the name from the Type subclass (except for QualifiedTypeLoc).
if (TL->getTypeLocClass() == TypeLoc::Qualified)
OS << "QualifiedTypeLoc";
else
OS << TL->getType()->getTypeClassName() << "TypeLoc";
} else {
OS << N.getNodeKind().asStringRef();
}
}
#ifndef NDEBUG
std::string printNodeToString(const DynTypedNode &N, const PrintingPolicy &PP) {
std::string S;
llvm::raw_string_ostream OS(S);
printNodeKind(OS, N);
return std::move(OS.str());
}
#endif
bool isImplicit(const Stmt *S) {
// Some Stmts are implicit and shouldn't be traversed, but there's no
// "implicit" attribute on Stmt/Expr.
// Unwrap implicit casts first if present (other nodes too?).
if (auto *ICE = llvm::dyn_cast<ImplicitCastExpr>(S))
S = ICE->getSubExprAsWritten();
// Implicit this in a MemberExpr is not filtered out by RecursiveASTVisitor.
// It would be nice if RAV handled this (!shouldTraverseImplicitCode()).
if (auto *CTI = llvm::dyn_cast<CXXThisExpr>(S))
if (CTI->isImplicit())
return true;
// Make sure implicit access of anonymous structs don't end up owning tokens.
if (auto *ME = llvm::dyn_cast<MemberExpr>(S)) {
if (auto *FD = llvm::dyn_cast<FieldDecl>(ME->getMemberDecl()))
if (FD->isAnonymousStructOrUnion())
// If Base is an implicit CXXThis, then the whole MemberExpr has no
// tokens. If it's a normal e.g. DeclRef, we treat the MemberExpr like
// an implicit cast.
return isImplicit(ME->getBase());
}
// Refs to operator() and [] are (almost?) always implicit as part of calls.
if (auto *DRE = llvm::dyn_cast<DeclRefExpr>(S)) {
if (auto *FD = llvm::dyn_cast<FunctionDecl>(DRE->getDecl())) {
switch (FD->getOverloadedOperator()) {
case OO_Call:
case OO_Subscript:
return true;
default:
break;
}
}
}
return false;
}
// We find the selection by visiting written nodes in the AST, looking for nodes
// that intersect with the selected character range.
//
// While traversing, we maintain a parent stack. As nodes pop off the stack,
// we decide whether to keep them or not. To be kept, they must either be
// selected or contain some nodes that are.
//
// For simple cases (not inside macros) we prune subtrees that don't intersect.
class SelectionVisitor : public RecursiveASTVisitor<SelectionVisitor> {
public:
// Runs the visitor to gather selected nodes and their ancestors.
// If there is any selection, the root (TUDecl) is the first node.
static std::deque<Node> collect(ASTContext &AST,
const syntax::TokenBuffer &Tokens,
const PrintingPolicy &PP, unsigned Begin,
unsigned End, FileID File) {
SelectionVisitor V(AST, Tokens, PP, Begin, End, File);
V.TraverseAST(AST);
assert(V.Stack.size() == 1 && "Unpaired push/pop?");
assert(V.Stack.top() == &V.Nodes.front());
return std::move(V.Nodes);
}
// We traverse all "well-behaved" nodes the same way:
// - push the node onto the stack
// - traverse its children recursively
// - pop it from the stack
// - hit testing: is intersection(node, selection) - union(children) empty?
// - attach it to the tree if it or any children hit the selection
//
// Two categories of nodes are not "well-behaved":
// - those without source range information, we don't record those
// - those that can't be stored in DynTypedNode.
bool TraverseDecl(Decl *X) {
if (llvm::isa_and_nonnull<TranslationUnitDecl>(X))
return Base::TraverseDecl(X); // Already pushed by constructor.
// Base::TraverseDecl will suppress children, but not this node itself.
if (X && X->isImplicit()) {
// Most implicit nodes have only implicit children and can be skipped.
// However there are exceptions (`void foo(Concept auto x)`), and
// the base implementation knows how to find them.
return Base::TraverseDecl(X);
}
return traverseNode(X, [&] { return Base::TraverseDecl(X); });
}
bool TraverseTypeLoc(TypeLoc X) {
return traverseNode(&X, [&] { return Base::TraverseTypeLoc(X); });
}
bool TraverseTemplateArgumentLoc(const TemplateArgumentLoc &X) {
return traverseNode(&X,
[&] { return Base::TraverseTemplateArgumentLoc(X); });
}
bool TraverseNestedNameSpecifierLoc(NestedNameSpecifierLoc X) {
return traverseNode(
&X, [&] { return Base::TraverseNestedNameSpecifierLoc(X); });
}
bool TraverseConstructorInitializer(CXXCtorInitializer *X) {
return traverseNode(
X, [&] { return Base::TraverseConstructorInitializer(X); });
}
bool TraverseCXXBaseSpecifier(const CXXBaseSpecifier &X) {
return traverseNode(&X, [&] { return Base::TraverseCXXBaseSpecifier(X); });
}
bool TraverseAttr(Attr *X) {
return traverseNode(X, [&] { return Base::TraverseAttr(X); });
}
bool TraverseConceptReference(ConceptReference *X) {
return traverseNode(X, [&] { return Base::TraverseConceptReference(X); });
}
// Stmt is the same, but this form allows the data recursion optimization.
bool dataTraverseStmtPre(Stmt *X) {
if (!X || isImplicit(X))
return false;
auto N = DynTypedNode::create(*X);
if (canSafelySkipNode(N))
return false;
push(std::move(N));
if (shouldSkipChildren(X)) {
pop();
return false;
}
return true;
}
bool dataTraverseStmtPost(Stmt *X) {
pop();
return true;
}
// QualifiedTypeLoc is handled strangely in RecursiveASTVisitor: the derived
// TraverseTypeLoc is not called for the inner UnqualTypeLoc.
// This means we'd never see 'int' in 'const int'! Work around that here.
// (The reason for the behavior is to avoid traversing the nested Type twice,
// but we ignore TraverseType anyway).
bool TraverseQualifiedTypeLoc(QualifiedTypeLoc QX) {
return traverseNode<TypeLoc>(
&QX, [&] { return TraverseTypeLoc(QX.getUnqualifiedLoc()); });
}
bool TraverseObjCProtocolLoc(ObjCProtocolLoc PL) {
return traverseNode(&PL, [&] { return Base::TraverseObjCProtocolLoc(PL); });
}
// Uninteresting parts of the AST that don't have locations within them.
bool TraverseNestedNameSpecifier(NestedNameSpecifier *) { return true; }
bool TraverseType(QualType) { return true; }
// The DeclStmt for the loop variable claims to cover the whole range
// inside the parens, this causes the range-init expression to not be hit.
// Traverse the loop VarDecl instead, which has the right source range.
bool TraverseCXXForRangeStmt(CXXForRangeStmt *S) {
return traverseNode(S, [&] {
return TraverseStmt(S->getInit()) && TraverseDecl(S->getLoopVariable()) &&
TraverseStmt(S->getRangeInit()) && TraverseStmt(S->getBody());
});
}
// OpaqueValueExpr blocks traversal, we must explicitly traverse it.
bool TraverseOpaqueValueExpr(OpaqueValueExpr *E) {
return traverseNode(E, [&] { return TraverseStmt(E->getSourceExpr()); });
}
// We only want to traverse the *syntactic form* to understand the selection.
bool TraversePseudoObjectExpr(PseudoObjectExpr *E) {
return traverseNode(E, [&] { return TraverseStmt(E->getSyntacticForm()); });
}
bool TraverseTypeConstraint(const TypeConstraint *C) {
if (auto *E = C->getImmediatelyDeclaredConstraint()) {
// Technically this expression is 'implicit' and not traversed by the RAV.
// However, the range is correct, so we visit expression to avoid adding
// an extra kind to 'DynTypeNode' that hold 'TypeConstraint'.
return TraverseStmt(E);
}
return Base::TraverseTypeConstraint(C);
}
// Override child traversal for certain node types.
using RecursiveASTVisitor::getStmtChildren;
// PredefinedExpr like __func__ has a StringLiteral child for its value.
// It's not written, so don't traverse it.
Stmt::child_range getStmtChildren(PredefinedExpr *) {
return {StmtIterator{}, StmtIterator{}};
}
private:
using Base = RecursiveASTVisitor<SelectionVisitor>;
SelectionVisitor(ASTContext &AST, const syntax::TokenBuffer &Tokens,
const PrintingPolicy &PP, unsigned SelBegin, unsigned SelEnd,
FileID SelFile)
: SM(AST.getSourceManager()), LangOpts(AST.getLangOpts()),
#ifndef NDEBUG
PrintPolicy(PP),
#endif
TokenBuf(Tokens), SelChecker(Tokens, SelFile, SelBegin, SelEnd, SM),
UnclaimedExpandedTokens(Tokens.expandedTokens()) {
// Ensure we have a node for the TU decl, regardless of traversal scope.
Nodes.emplace_back();
Nodes.back().ASTNode = DynTypedNode::create(*AST.getTranslationUnitDecl());
Nodes.back().Parent = nullptr;
Nodes.back().Selected = SelectionTree::Unselected;
Stack.push(&Nodes.back());
}
// Generic case of TraverseFoo. Func should be the call to Base::TraverseFoo.
// Node is always a pointer so the generic code can handle any null checks.
template <typename T, typename Func>
bool traverseNode(T *Node, const Func &Body) {
if (Node == nullptr)
return true;
auto N = DynTypedNode::create(*Node);
if (canSafelySkipNode(N))
return true;
push(DynTypedNode::create(*Node));
bool Ret = Body();
pop();
return Ret;
}
// HIT TESTING
//
// We do rough hit testing on the way down the tree to avoid traversing
// subtrees that don't touch the selection (canSafelySkipNode), but
// fine-grained hit-testing is mostly done on the way back up (in pop()).
// This means children get to claim parts of the selection first, and parents
// are only selected if they own tokens that no child owned.
//
// Nodes *usually* nest nicely: a child's getSourceRange() lies within the
// parent's, and a node (transitively) owns all tokens in its range.
//
// Exception 1: when declarators nest, *inner* declarator is the *outer* type.
// e.g. void foo[5](int) is an array of functions.
// To handle this case, declarators are careful to only claim the tokens they
// own, rather than claim a range and rely on claim ordering.
//
// Exception 2: siblings both claim the same node.
// e.g. `int x, y;` produces two sibling VarDecls.
// ~~~~~ x
// ~~~~~~~~ y
// Here the first ("leftmost") sibling claims the tokens it wants, and the
// other sibling gets what's left. So selecting "int" only includes the left
// VarDecl in the selection tree.
// An optimization for a common case: nodes outside macro expansions that
// don't intersect the selection may be recursively skipped.
bool canSafelySkipNode(const DynTypedNode &N) {
SourceRange S = getSourceRange(N);
if (auto *TL = N.get<TypeLoc>()) {
// FIXME: TypeLoc::getBeginLoc()/getEndLoc() are pretty fragile
// heuristics. We should consider only pruning critical TypeLoc nodes, to
// be more robust.
// AttributedTypeLoc may point to the attribute's range, NOT the modified
// type's range.
if (auto AT = TL->getAs<AttributedTypeLoc>())
S = AT.getModifiedLoc().getSourceRange();
}
// SourceRange often doesn't manage to accurately cover attributes.
// Fortunately, attributes are rare.
if (llvm::any_of(getAttributes(N),
[](const Attr *A) { return !A->isImplicit(); }))
return false;
if (!SelChecker.mayHit(S)) {
dlog("{2}skip: {0} {1}", printNodeToString(N, PrintPolicy),
S.printToString(SM), indent());
return true;
}
return false;
}
// There are certain nodes we want to treat as leaves in the SelectionTree,
// although they do have children.
bool shouldSkipChildren(const Stmt *X) const {
// UserDefinedLiteral (e.g. 12_i) has two children (12 and _i).
// Unfortunately TokenBuffer sees 12_i as one token and can't split it.
// So we treat UserDefinedLiteral as a leaf node, owning the token.
return llvm::isa<UserDefinedLiteral>(X);
}
// Pushes a node onto the ancestor stack. Pairs with pop().
// Performs early hit detection for some nodes (on the earlySourceRange).
void push(DynTypedNode Node) {
SourceRange Early = earlySourceRange(Node);
dlog("{2}push: {0} {1}", printNodeToString(Node, PrintPolicy),
Node.getSourceRange().printToString(SM), indent());
Nodes.emplace_back();
Nodes.back().ASTNode = std::move(Node);
Nodes.back().Parent = Stack.top();
Nodes.back().Selected = NoTokens;
Stack.push(&Nodes.back());
claimRange(Early, Nodes.back().Selected);
}
// Pops a node off the ancestor stack, and finalizes it. Pairs with push().
// Performs primary hit detection.
void pop() {
Node &N = *Stack.top();
dlog("{1}pop: {0}", printNodeToString(N.ASTNode, PrintPolicy), indent(-1));
claimTokensFor(N.ASTNode, N.Selected);
if (N.Selected == NoTokens)
N.Selected = SelectionTree::Unselected;
if (N.Selected || !N.Children.empty()) {
// Attach to the tree.
N.Parent->Children.push_back(&N);
} else {
// Neither N any children are selected, it doesn't belong in the tree.
assert(&N == &Nodes.back());
Nodes.pop_back();
}
Stack.pop();
}
// Returns the range of tokens that this node will claim directly, and
// is not available to the node's children.
// Usually empty, but sometimes children cover tokens but shouldn't own them.
SourceRange earlySourceRange(const DynTypedNode &N) {
if (const Decl *VD = N.get<VarDecl>()) {
// We want the name in the var-decl to be claimed by the decl itself and
// not by any children. Ususally, we don't need this, because source
// ranges of children are not overlapped with their parent's.
// An exception is lambda captured var decl, where AutoTypeLoc is
// overlapped with the name loc.
// auto fun = [bar = foo]() { ... }
// ~~~~~~~~~ VarDecl
// ~~~ |- AutoTypeLoc
return VD->getLocation();
}
// When referring to a destructor ~Foo(), attribute Foo to the destructor
// rather than the TypeLoc nested inside it.
// We still traverse the TypeLoc, because it may contain other targeted
// things like the T in ~Foo<T>().
if (const auto *CDD = N.get<CXXDestructorDecl>())
return CDD->getNameInfo().getNamedTypeInfo()->getTypeLoc().getBeginLoc();
if (const auto *ME = N.get<MemberExpr>()) {
auto NameInfo = ME->getMemberNameInfo();
if (NameInfo.getName().getNameKind() ==
DeclarationName::CXXDestructorName)
return NameInfo.getNamedTypeInfo()->getTypeLoc().getBeginLoc();
}
return SourceRange();
}
// Claim tokens for N, after processing its children.
// By default this claims all unclaimed tokens in getSourceRange().
// We override this if we want to claim fewer tokens (e.g. there are gaps).
void claimTokensFor(const DynTypedNode &N, SelectionTree::Selection &Result) {
// CXXConstructExpr often shows implicit construction, like `string s;`.
// Don't associate any tokens with it unless there's some syntax like {}.
// This prevents it from claiming 's', its primary location.
if (const auto *CCE = N.get<CXXConstructExpr>()) {
claimRange(CCE->getParenOrBraceRange(), Result);
return;
}
// ExprWithCleanups is always implicit. It often wraps CXXConstructExpr.
// Prevent it claiming 's' in the case above.
if (N.get<ExprWithCleanups>())
return;
// Declarators nest "inside out", with parent types inside child ones.
// Instead of claiming the whole range (clobbering parent tokens), carefully
// claim the tokens owned by this node and non-declarator children.
// (We could manipulate traversal order instead, but this is easier).
//
// Non-declarator types nest normally, and are handled like other nodes.
//
// Example:
// Vec<R<int>(*[2])(A<char>)> is a Vec of arrays of pointers to functions,
// which accept A<char> and return R<int>.
// The TypeLoc hierarchy:
// Vec<R<int>(*[2])(A<char>)> m;
// Vec<#####################> TemplateSpecialization Vec
// --------[2]---------- `-Array
// -------*------------- `-Pointer
// ------(----)--------- `-Paren
// ------------(#######) `-Function
// R<###> |-TemplateSpecialization R
// int | `-Builtin int
// A<####> `-TemplateSpecialization A
// char `-Builtin char
//
// In each row
// --- represents unclaimed parts of the SourceRange.
// ### represents parts that children already claimed.
if (const auto *TL = N.get<TypeLoc>()) {
if (auto PTL = TL->getAs<ParenTypeLoc>()) {
claimRange(PTL.getLParenLoc(), Result);
claimRange(PTL.getRParenLoc(), Result);
return;
}
if (auto ATL = TL->getAs<ArrayTypeLoc>()) {
claimRange(ATL.getBracketsRange(), Result);
return;
}
if (auto PTL = TL->getAs<PointerTypeLoc>()) {
claimRange(PTL.getStarLoc(), Result);
return;
}
if (auto FTL = TL->getAs<FunctionTypeLoc>()) {
claimRange(SourceRange(FTL.getLParenLoc(), FTL.getEndLoc()), Result);
return;
}
}
claimRange(getSourceRange(N), Result);
}
// Perform hit-testing of a complete Node against the selection.
// This runs for every node in the AST, and must be fast in common cases.
// This is usually called from pop(), so we can take children into account.
// The existing state of Result is relevant.
void claimRange(SourceRange S, SelectionTree::Selection &Result) {
for (const auto &ClaimedRange :
UnclaimedExpandedTokens.erase(TokenBuf.expandedTokens(S)))
update(Result, SelChecker.test(ClaimedRange));
if (Result && Result != NoTokens)
dlog("{1}hit selection: {0}", S.printToString(SM), indent());
}
std::string indent(int Offset = 0) {
// Cast for signed arithmetic.
int Amount = int(Stack.size()) + Offset;
assert(Amount >= 0);
return std::string(Amount, ' ');
}
SourceManager &SM;
const LangOptions &LangOpts;
#ifndef NDEBUG
const PrintingPolicy &PrintPolicy;
#endif
const syntax::TokenBuffer &TokenBuf;
std::stack<Node *> Stack;
SelectionTester SelChecker;
IntervalSet<syntax::Token> UnclaimedExpandedTokens;
std::deque<Node> Nodes; // Stable pointers as we add more nodes.
};
} // namespace
llvm::SmallString<256> abbreviatedString(DynTypedNode N,
const PrintingPolicy &PP) {
llvm::SmallString<256> Result;
{
llvm::raw_svector_ostream OS(Result);
N.print(OS, PP);
}
auto Pos = Result.find('\n');
if (Pos != llvm::StringRef::npos) {
bool MoreText = !llvm::all_of(Result.str().drop_front(Pos), llvm::isSpace);
Result.resize(Pos);
if (MoreText)
Result.append("");
}
return Result;
}
void SelectionTree::print(llvm::raw_ostream &OS, const SelectionTree::Node &N,
int Indent) const {
if (N.Selected)
OS.indent(Indent - 1) << (N.Selected == SelectionTree::Complete ? '*'
: '.');
else
OS.indent(Indent);
printNodeKind(OS, N.ASTNode);
OS << ' ' << abbreviatedString(N.ASTNode, PrintPolicy) << "\n";
for (const Node *Child : N.Children)
print(OS, *Child, Indent + 2);
}
std::string SelectionTree::Node::kind() const {
std::string S;
llvm::raw_string_ostream OS(S);
printNodeKind(OS, ASTNode);
return std::move(OS.str());
}
// Decide which selections emulate a "point" query in between characters.
// If it's ambiguous (the neighboring characters are selectable tokens), returns
// both possibilities in preference order.
// Always returns at least one range - if no tokens touched, and empty range.
static llvm::SmallVector<std::pair<unsigned, unsigned>, 2>
pointBounds(unsigned Offset, const syntax::TokenBuffer &Tokens) {
const auto &SM = Tokens.sourceManager();
SourceLocation Loc = SM.getComposedLoc(SM.getMainFileID(), Offset);
llvm::SmallVector<std::pair<unsigned, unsigned>, 2> Result;
// Prefer right token over left.
for (const syntax::Token &Tok :
llvm::reverse(spelledTokensTouching(Loc, Tokens))) {
if (shouldIgnore(Tok))
continue;
unsigned Offset = Tokens.sourceManager().getFileOffset(Tok.location());
Result.emplace_back(Offset, Offset + Tok.length());
}
if (Result.empty())
Result.emplace_back(Offset, Offset);
return Result;
}
bool SelectionTree::createEach(ASTContext &AST,
const syntax::TokenBuffer &Tokens,
unsigned Begin, unsigned End,
llvm::function_ref<bool(SelectionTree)> Func) {
if (Begin != End)
return Func(SelectionTree(AST, Tokens, Begin, End));
for (std::pair<unsigned, unsigned> Bounds : pointBounds(Begin, Tokens))
if (Func(SelectionTree(AST, Tokens, Bounds.first, Bounds.second)))
return true;
return false;
}
SelectionTree SelectionTree::createRight(ASTContext &AST,
const syntax::TokenBuffer &Tokens,
unsigned int Begin, unsigned int End) {
std::optional<SelectionTree> Result;
createEach(AST, Tokens, Begin, End, [&](SelectionTree T) {
Result = std::move(T);
return true;
});
return std::move(*Result);
}
SelectionTree::SelectionTree(ASTContext &AST, const syntax::TokenBuffer &Tokens,
unsigned Begin, unsigned End)
: PrintPolicy(AST.getLangOpts()) {
// No fundamental reason the selection needs to be in the main file,
// but that's all clangd has needed so far.
const SourceManager &SM = AST.getSourceManager();
FileID FID = SM.getMainFileID();
PrintPolicy.TerseOutput = true;
PrintPolicy.IncludeNewlines = false;
dlog("Computing selection for {0}",
SourceRange(SM.getComposedLoc(FID, Begin), SM.getComposedLoc(FID, End))
.printToString(SM));
Nodes = SelectionVisitor::collect(AST, Tokens, PrintPolicy, Begin, End, FID);
Root = Nodes.empty() ? nullptr : &Nodes.front();
recordMetrics(*this, AST.getLangOpts());
dlog("Built selection tree\n{0}", *this);
}
const Node *SelectionTree::commonAncestor() const {
const Node *Ancestor = Root;
while (Ancestor->Children.size() == 1 && !Ancestor->Selected)
Ancestor = Ancestor->Children.front();
// Returning nullptr here is a bit unprincipled, but it makes the API safer:
// the TranslationUnitDecl contains all of the preamble, so traversing it is a
// performance cliff. Callers can check for null and use root() if they want.
return Ancestor != Root ? Ancestor : nullptr;
}
const DeclContext &SelectionTree::Node::getDeclContext() const {
for (const Node *CurrentNode = this; CurrentNode != nullptr;
CurrentNode = CurrentNode->Parent) {
if (const Decl *Current = CurrentNode->ASTNode.get<Decl>()) {
if (CurrentNode != this)
if (auto *DC = dyn_cast<DeclContext>(Current))
return *DC;
return *Current->getLexicalDeclContext();
}
if (const auto *LE = CurrentNode->ASTNode.get<LambdaExpr>())
if (CurrentNode != this)
return *LE->getCallOperator();
}
llvm_unreachable("A tree must always be rooted at TranslationUnitDecl.");
}
const SelectionTree::Node &SelectionTree::Node::ignoreImplicit() const {
if (Children.size() == 1 &&
getSourceRange(Children.front()->ASTNode) == getSourceRange(ASTNode))
return Children.front()->ignoreImplicit();
return *this;
}
const SelectionTree::Node &SelectionTree::Node::outerImplicit() const {
if (Parent && getSourceRange(Parent->ASTNode) == getSourceRange(ASTNode))
return Parent->outerImplicit();
return *this;
}
} // namespace clangd
} // namespace clang