Aaron Ballman 0f1c1be196 [clang] Remove rdar links; NFC
We have a new policy in place making links to private resources
something we try to avoid in source and test files. Normally, we'd
organically switch to the new policy rather than make a sweeping change
across a project. However, Clang is in a somewhat special circumstance
currently: recently, I've had several new contributors run into rdar
links around test code which their patch was changing the behavior of.
This turns out to be a surprisingly bad experience, especially for
newer folks, for a handful of reasons: not understanding what the link
is and feeling intimidated by it, wondering whether their changes are
actually breaking something important to a downstream in some way,
having to hunt down strangers not involved with the patch to impose on
them for help, accidental pressure from asking for potentially private
IP to be made public, etc. Because folks run into these links entirely
by chance (through fixing bugs or working on new features), there's not
really a set of problematic links to focus on -- all of the links have
basically the same potential for causing these problems. As a result,
this is an omnibus patch to remove all such links.

This was not a mechanical change; it was done by manually searching for
rdar, radar, radr, and other variants to find all the various
problematic links. From there, I tried to retain or reword the
surrounding comments so that we would lose as little context as
possible. However, because most links were just a plain link with no
supporting context, the majority of the changes are simple removals.

Differential Review: https://reviews.llvm.org/D158071
2023-08-28 12:13:42 -04:00

257 lines
8.0 KiB
C

// RUN: %clang_cc1 -triple i386-unknown-unknown -emit-llvm %s -o - | FileCheck %s
struct I { int k[3]; };
struct M { struct I o[2]; };
struct M v1[1] = { [0].o[0 ... 1].k[0 ... 1] = 4, 5 };
unsigned v2[2][3] = {[0 ... 1][0 ... 1] = 2222, 3333};
// CHECK-DAG: %struct.M = type { [2 x %struct.I] }
// CHECK-DAG: %struct.I = type { [3 x i32] }
// CHECK-DAG: [1 x %struct.M] [%struct.M { [2 x %struct.I] [%struct.I { [3 x i32] [i32 4, i32 4, i32 0] }, %struct.I { [3 x i32] [i32 4, i32 4, i32 5] }] }],
// CHECK-DAG: [2 x [3 x i32]] {{[[][[]}}3 x i32] [i32 2222, i32 2222, i32 0], [3 x i32] [i32 2222, i32 2222, i32 3333]],
// CHECK-DAG: [[INIT14:.*]] = private constant [16 x i32] [i32 0, i32 0, i32 0, i32 0, i32 0, i32 17, i32 17, i32 17, i32 17, i32 17, i32 17, i32 17, i32 0, i32 0, i32 0, i32 0], align 4
void f1(void) {
// Scalars in braces.
int a = { 1 };
}
void f2(void) {
int a[2][2] = { { 1, 2 }, { 3, 4 } };
int b[3][3] = { { 1, 2 }, { 3, 4 } };
int *c[2] = { &a[1][1], &b[2][2] };
int *d[2][2] = { {&a[1][1], &b[2][2]}, {&a[0][0], &b[1][1]} };
int *e[3][3] = { {&a[1][1], &b[2][2]}, {&a[0][0], &b[1][1]} };
char ext[3][3] = {".Y",".U",".V"};
}
typedef void (* F)(void);
extern void foo(void);
struct S { F f; };
void f3(void) {
struct S a[1] = { { foo } };
}
// Constants
// CHECK-DAG: @g3 ={{.*}} constant i32 10
// CHECK-DAG: @f4.g4 = internal constant i32 12
const int g3 = 10;
int f4(void) {
static const int g4 = 12;
return g4;
}
// PR6537
typedef union vec3 {
struct { double x, y, z; };
double component[3];
} vec3;
vec3 f5(vec3 value) {
return (vec3) {{
.x = value.x
}};
}
void f6(void) {
int x;
long ids[] = { (long) &x };
}
// CHECK-DAG: @test7 ={{.*}} global{{.*}}{ i32 0, [4 x i8] c"bar\00" }
// PR8217
struct a7 {
int b;
char v[];
};
struct a7 test7 = { .b = 0, .v = "bar" };
// CHECK-DAG: @huge_array ={{.*}} global {{.*}} <{ i32 1, i32 0, i32 2, i32 0, i32 3, [999999995 x i32] zeroinitializer }>
int huge_array[1000000000] = {1, 0, 2, 0, 3, 0, 0, 0};
// CHECK-DAG: @huge_struct ={{.*}} global {{.*}} { i32 1, <{ i32, [999999999 x i32] }> <{ i32 2, [999999999 x i32] zeroinitializer }> }
struct Huge {
int a;
int arr[1000 * 1000 * 1000];
} huge_struct = {1, {2, 0, 0, 0}};
// CHECK-DAG: @large_array_with_zeroes ={{.*}} constant <{ [21 x i8], [979 x i8] }> <{ [21 x i8] c"abc\01\02\03xyzzy\00\00\00\00\00\00\00\00\00q", [979 x i8] zeroinitializer }>
const char large_array_with_zeroes[1000] = {
'a', 'b', 'c', 1, 2, 3, 'x', 'y', 'z', 'z', 'y', [20] = 'q'
};
char global;
// CHECK-DAG: @large_array_with_zeroes_2 ={{.*}} global <{ [10 x ptr], [90 x ptr] }> <{ [10 x ptr] [ptr null, ptr null, ptr null, ptr null, ptr null, ptr null, ptr null, ptr null, ptr null, ptr @global], [90 x ptr] zeroinitializer }>
const void *large_array_with_zeroes_2[100] = {
[9] = &global
};
// CHECK-DAG: @large_array_with_zeroes_3 ={{.*}} global <{ [10 x ptr], [990 x ptr] }> <{ [10 x ptr] [ptr null, ptr null, ptr null, ptr null, ptr null, ptr null, ptr null, ptr null, ptr null, ptr @global], [990 x ptr] zeroinitializer }>
const void *large_array_with_zeroes_3[1000] = {
[9] = &global
};
// PR279 comment #3
char test8(int X) {
char str[100000] = "abc"; // tail should be memset.
return str[X];
// CHECK-LABEL: @test8(
// CHECK: call void @llvm.memset
// CHECK: store i8 97, ptr %{{[0-9]*}}, align 1
// CHECK: store i8 98, ptr %{{[0-9]*}}, align 1
// CHECK: store i8 99, ptr %{{[0-9]*}}, align 1
// CHECK-NOT: getelementptr
// CHECK: load
}
void bar(void*);
// PR279
void test9(int X) {
int Arr[100] = { X }; // Should use memset
bar(Arr);
// CHECK-LABEL: @test9(
// CHECK: call void @llvm.memset
// CHECK-NOT: store i32 0
// CHECK: call void @bar
}
struct a {
int a, b, c, d, e, f, g, h, i, j, k, *p;
};
struct b {
struct a a,b,c,d,e,f,g;
};
void test10(int X) {
struct b S = { .a.a = X, .d.e = X, .f.e = 0, .f.f = 0, .f.p = 0 };
bar(&S);
// CHECK-LABEL: @test10(
// CHECK: call void @llvm.memset
// CHECK-NOT: store i32 0
// CHECK: call void @bar
}
void nonzeroMemseti8(void) {
char arr[33] = { 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, };
// CHECK-LABEL: @nonzeroMemseti8(
// CHECK-NOT: store
// CHECK-NOT: memcpy
// CHECK: call void @llvm.memset.p0.i32(ptr {{.*}}, i8 42, i32 33, i1 false)
}
void nonzeroMemseti16(void) {
unsigned short arr[17] = { 0x4242, 0x4242, 0x4242, 0x4242, 0x4242, 0x4242, 0x4242, 0x4242, 0x4242, 0x4242, 0x4242, 0x4242, 0x4242, 0x4242, 0x4242, 0x4242, 0x4242, };
// CHECK-LABEL: @nonzeroMemseti16(
// CHECK-NOT: store
// CHECK-NOT: memcpy
// CHECK: call void @llvm.memset.p0.i32(ptr {{.*}}, i8 66, i32 34, i1 false)
}
void nonzeroMemseti32(void) {
unsigned arr[9] = { 0xF0F0F0F0, 0xF0F0F0F0, 0xF0F0F0F0, 0xF0F0F0F0, 0xF0F0F0F0, 0xF0F0F0F0, 0xF0F0F0F0, 0xF0F0F0F0, 0xF0F0F0F0, };
// CHECK-LABEL: @nonzeroMemseti32(
// CHECK-NOT: store
// CHECK-NOT: memcpy
// CHECK: call void @llvm.memset.p0.i32(ptr {{.*}}, i8 -16, i32 36, i1 false)
}
void nonzeroMemseti64(void) {
unsigned long long arr[7] = { 0xAAAAAAAAAAAAAAAA, 0xAAAAAAAAAAAAAAAA, 0xAAAAAAAAAAAAAAAA, 0xAAAAAAAAAAAAAAAA, 0xAAAAAAAAAAAAAAAA, 0xAAAAAAAAAAAAAAAA, 0xAAAAAAAAAAAAAAAA, };
// CHECK-LABEL: @nonzeroMemseti64(
// CHECK-NOT: store
// CHECK-NOT: memcpy
// CHECK: call void @llvm.memset.p0.i32(ptr {{.*}}, i8 -86, i32 56, i1 false)
}
void nonzeroMemsetf32(void) {
float arr[9] = { 0x1.cacacap+75, 0x1.cacacap+75, 0x1.cacacap+75, 0x1.cacacap+75, 0x1.cacacap+75, 0x1.cacacap+75, 0x1.cacacap+75, 0x1.cacacap+75, 0x1.cacacap+75, };
// CHECK-LABEL: @nonzeroMemsetf32(
// CHECK-NOT: store
// CHECK-NOT: memcpy
// CHECK: call void @llvm.memset.p0.i32(ptr {{.*}}, i8 101, i32 36, i1 false)
}
void nonzeroMemsetf64(void) {
double arr[7] = { 0x1.4444444444444p+69, 0x1.4444444444444p+69, 0x1.4444444444444p+69, 0x1.4444444444444p+69, 0x1.4444444444444p+69, 0x1.4444444444444p+69, 0x1.4444444444444p+69, };
// CHECK-LABEL: @nonzeroMemsetf64(
// CHECK-NOT: store
// CHECK-NOT: memcpy
// CHECK: call void @llvm.memset.p0.i32(ptr {{.*}}, i8 68, i32 56, i1 false)
}
void nonzeroPaddedUnionMemset(void) {
union U { char c; int i; };
union U arr[9] = { 0xF0, 0xF0, 0xF0, 0xF0, 0xF0, 0xF0, 0xF0, 0xF0, 0xF0, };
// CHECK-LABEL: @nonzeroPaddedUnionMemset(
// CHECK-NOT: store
// CHECK-NOT: memcpy
// CHECK: call void @llvm.memset.p0.i32(ptr {{.*}}, i8 -16, i32 36, i1 false)
}
void nonzeroNestedMemset(void) {
union U { char c; int i; };
struct S { union U u; short i; };
struct S arr[5] = { { {0xF0}, 0xF0F0 }, { {0xF0}, 0xF0F0 }, { {0xF0}, 0xF0F0 }, { {0xF0}, 0xF0F0 }, { {0xF0}, 0xF0F0 }, };
// CHECK-LABEL: @nonzeroNestedMemset(
// CHECK-NOT: store
// CHECK-NOT: memcpy
// CHECK: call void @llvm.memset.p0.i32(ptr {{.*}}, i8 -16, i32 40, i1 false)
}
// PR9257
struct test11S {
int A[10];
};
void test11(struct test11S *P) {
*P = (struct test11S) { .A = { [0 ... 3] = 4 } };
// CHECK-LABEL: @test11(
// CHECK: store i32 4, ptr %{{.*}}, align 4
// CHECK: store i32 4, ptr %{{.*}}, align 4
// CHECK: store i32 4, ptr %{{.*}}, align 4
// CHECK: store i32 4, ptr %{{.*}}, align 4
// CHECK: ret void
}
// Verify that we can convert a recursive struct with a memory that returns
// an instance of the struct we're converting.
struct test12 {
struct test12 (*p)(void);
} test12g;
void test13(int x) {
struct X { int a; int b : 10; int c; };
struct X y = {.c = x};
// CHECK-LABEL: @test13(
// CHECK: and i16 {{.*}}, -1024
}
// CHECK-LABEL: @PR20473(
void PR20473(void) {
// CHECK: memcpy{{.*}}
bar((char[2]) {""});
// CHECK: memcpy{{.*}}
bar((char[3]) {""});
}
// Test that we initialize large member arrays by copying from a global and not
// with a series of stores.
struct S14 { int a[16]; };
void test14(struct S14 *s14) {
// CHECK-LABEL: @test14(
// CHECK: call void @llvm.memcpy.p0.p0.i32(ptr align 4 {{.*}}, ptr align 4 [[INIT14]], i32 64, i1 false)
// CHECK-NOT: store
// CHECK: ret void
*s14 = (struct S14) { { [5 ... 11] = 17 } };
}