llvm-capstone/clang/test/Layout/ms-x86-empty-nonvirtual-bases.cpp
David Blaikie aee4925507 Recommit: Compress formatting of array type names (int [4] -> int[4])
Based on post-commit review discussion on
2bd84938470bf2e337801faafb8a67710f46429d with Richard Smith.

Other uses of forcing HasEmptyPlaceHolder to false seem OK to me -
they're all around pointer/reference types where the pointer/reference
token will appear at the rightmost side of the left side of the type
name, so they make nested types (eg: the "int" in "int *") behave as
though there is a non-empty placeholder (because the "*" is essentially
the placeholder as far as the "int" is concerned).

This was originally committed in 277623f4d5a672d707390e2c3eaf30a9eb4b075c

Reverted in f9ad1d1c775a8e264bebc15d75e0c6e5c20eefc7 due to breakages
outside of clang - lldb seems to have some strange/strong dependence on
"char [N]" versus "char[N]" when printing strings (not due to that name
appearing in DWARF, but probably due to using clang to stringify type
names) that'll need to be addressed, plus a few other odds and ends in
other subprojects (clang-tools-extra, compiler-rt, etc).
2021-10-21 11:34:43 -07:00

177 lines
5.3 KiB
C++

// RUN: %clang_cc1 -fno-rtti -emit-llvm-only -triple i686-pc-win32 -fms-extensions -fdump-record-layouts -fsyntax-only %s 2>/dev/null \
// RUN: | FileCheck %s --strict-whitespace
// RUN: %clang_cc1 -fno-rtti -emit-llvm-only -triple x86_64-pc-win32 -fms-extensions -fdump-record-layouts -fsyntax-only %s 2>/dev/null \
// RUN: | FileCheck %s --strict-whitespace
extern "C" int printf(const char *fmt, ...);
struct __declspec(align(8)) B0 { B0() {printf("B0 : %p\n", this);} };
struct __declspec(align(8)) B1 { B1() {printf("B1 : %p\n", this);} };
struct __declspec(align(8)) B2 { B2() {printf("B2 : %p\n", this);} };
struct __declspec(align(8)) B3 { B3() {printf("B3 : %p\n", this);} };
struct __declspec(align(8)) B4 { B4() {printf("B4 : %p\n", this);} };
struct C0 { int a; C0() : a(0xf00000C0) {printf("C0 : %p\n", this);} };
struct C1 { int a; C1() : a(0xf00000C1) {printf("C1 : %p\n", this);} };
struct C2 { int a; C2() : a(0xf00000C2) {printf("C2 : %p\n", this);} };
struct C3 { int a; C3() : a(0xf00000C3) {printf("C3 : %p\n", this);} };
struct C4 { int a; C4() : a(0xf00000C4) {printf("C4 : %p\n", this);} };
struct A : B0 {
int a;
A() : a(0xf000000A) {printf("X : %p\n", this);}
};
// CHECK-LABEL: 0 | struct A{{$}}
// CHECK-NEXT: 0 | struct B0 (base) (empty)
// CHECK-NEXT: 0 | int a
// CHECK-NEXT: | [sizeof=8, align=8
// CHECK-NEXT: | nvsize=8, nvalign=8]
struct B : B0 {
B0 b0;
int a;
B() : a(0xf000000B) {printf("X : %p\n", this);}
};
// CHECK-LABEL: 0 | struct B{{$}}
// CHECK-NEXT: 0 | struct B0 (base) (empty)
// CHECK-NEXT: 0 | struct B0 b0 (empty)
// CHECK: 8 | int a
// CHECK-NEXT: | [sizeof=16, align=8
// CHECK-NEXT: | nvsize=16, nvalign=8]
struct C : B0, B1, B2, B3, B4 {
int a;
C() : a(0xf000000C) {printf("X : %p\n", this);}
};
// CHECK-LABEL: 0 | struct C{{$}}
// CHECK-NEXT: 0 | struct B0 (base) (empty)
// CHECK-NEXT: 8 | struct B1 (base) (empty)
// CHECK-NEXT: 16 | struct B2 (base) (empty)
// CHECK-NEXT: 24 | struct B3 (base) (empty)
// CHECK-NEXT: 32 | struct B4 (base) (empty)
// CHECK-NEXT: 32 | int a
// CHECK-NEXT: | [sizeof=40, align=8
// CHECK-NEXT: | nvsize=40, nvalign=8]
struct D {
B0 b0;
C0 c0;
C1 c1;
C2 c2;
B1 b1;
int a;
D() : a(0xf000000D) {printf("X : %p\n", this);}
};
// CHECK-LABEL: 0 | struct D{{$}}
// CHECK-NEXT: 0 | struct B0 b0 (empty)
// CHECK: 8 | struct C0 c0
// CHECK-NEXT: 8 | int a
// CHECK: 12 | struct C1 c1
// CHECK-NEXT: 12 | int a
// CHECK: 16 | struct C2 c2
// CHECK-NEXT: 16 | int a
// CHECK: 24 | struct B1 b1 (empty)
// CHECK: 32 | int a
// CHECK-NEXT: | [sizeof=40, align=8
// CHECK-NEXT: | nvsize=40, nvalign=8]
struct E : B0, C0, C1, C2, B1 {
int a;
E() : a(0xf000000E) {printf("X : %p\n", this);}
};
// CHECK-LABEL: 0 | struct E{{$}}
// CHECK-NEXT: 0 | struct B0 (base) (empty)
// CHECK-NEXT: 0 | struct C0 (base)
// CHECK-NEXT: 0 | int a
// CHECK-NEXT: 4 | struct C1 (base)
// CHECK-NEXT: 4 | int a
// CHECK-NEXT: 8 | struct C2 (base)
// CHECK-NEXT: 8 | int a
// CHECK-NEXT: 16 | struct B1 (base) (empty)
// CHECK-NEXT: 16 | int a
// CHECK-NEXT: | [sizeof=24, align=8
// CHECK-NEXT: | nvsize=24, nvalign=8]
struct F : C0, B0, B1, C1 {
int a;
F() : a(0xf000000F) {printf("X : %p\n", this);}
};
// CHECK-LABEL: 0 | struct F{{$}}
// CHECK-NEXT: 0 | struct C0 (base)
// CHECK-NEXT: 0 | int a
// CHECK-NEXT: 8 | struct B0 (base) (empty)
// CHECK-NEXT: 16 | struct B1 (base) (empty)
// CHECK-NEXT: 16 | struct C1 (base)
// CHECK-NEXT: 16 | int a
// CHECK-NEXT: 20 | int a
// CHECK-NEXT: | [sizeof=24, align=8
// CHECK-NEXT: | nvsize=24, nvalign=8]
struct G : B0, B1, B2, B3, B4 {
__declspec(align(32)) int a;
G() : a(0xf0000011) {printf("X : %p\n", this);}
};
// CHECK-LABEL: 0 | struct G{{$}}
// CHECK-NEXT: 0 | struct B0 (base) (empty)
// CHECK-NEXT: 8 | struct B1 (base) (empty)
// CHECK-NEXT: 16 | struct B2 (base) (empty)
// CHECK-NEXT: 24 | struct B3 (base) (empty)
// CHECK-NEXT: 32 | struct B4 (base) (empty)
// CHECK-NEXT: 32 | int a
// CHECK-NEXT: | [sizeof=64, align=32
// CHECK-NEXT: | nvsize=64, nvalign=32]
struct __declspec(align(32)) H : B0, B1, B2, B3, B4 {
int a;
H() : a(0xf0000011) {printf("X : %p\n", this);}
};
// CHECK-LABEL: 0 | struct H{{$}}
// CHECK-NEXT: 0 | struct B0 (base) (empty)
// CHECK-NEXT: 8 | struct B1 (base) (empty)
// CHECK-NEXT: 16 | struct B2 (base) (empty)
// CHECK-NEXT: 24 | struct B3 (base) (empty)
// CHECK-NEXT: 32 | struct B4 (base) (empty)
// CHECK-NEXT: 32 | int a
// CHECK-NEXT: | [sizeof=64, align=32
// CHECK-NEXT: | nvsize=40, nvalign=32]
struct I {
int i0[0];
};
// CHECK-LABEL: 0 | struct I{{$}}
// CHECK-NEXT: 0 | int[0] i0
// CHECK-NEXT: | [sizeof={{1|4}}, align=4,
// CHECK-NEXT: | nvsize=0, nvalign=4]
struct J : I {
int j;
};
// CHECK-LABEL: 0 | struct J{{$}}
// CHECK-NEXT: 0 | struct I (base)
// CHECK-NEXT: 0 | int[0] i0
// CHECK-NEXT: 0 | int j
// CHECK-NEXT: | [sizeof=4, align=4,
// CHECK-NEXT: | nvsize=4, nvalign=4]
int a[
sizeof(A)+
sizeof(B)+
sizeof(C)+
sizeof(D)+
sizeof(E)+
sizeof(F)+
sizeof(G)+
sizeof(H)+
sizeof(I)+
sizeof(J)];