Vassil Vassilev 2759e47067
[clang-repl] We do not need to call new in the object allocation. (#78843)
This test demonstrates template instantiation via the interpreter code.
In order to do that we can allocate the object on the stack and extend
its lifetime by boxing it into a clang::Value.

That avoids the subtle problem where we call the new operator on an
object only known to the interpreter and we cannot destroy it from
compiled code since there is not suitable facility in clang::Value yet.

That should resolve the asan issues that was reported in
llvm/llvm-project#76218.
2024-01-20 17:00:38 -08:00

421 lines
14 KiB
C++

//===- unittests/Interpreter/InterpreterTest.cpp --- Interpreter tests ----===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Unit tests for Clang's Interpreter library.
//
//===----------------------------------------------------------------------===//
#include "clang/Interpreter/Interpreter.h"
#include "clang/AST/Decl.h"
#include "clang/AST/DeclGroup.h"
#include "clang/AST/Mangle.h"
#include "clang/Frontend/CompilerInstance.h"
#include "clang/Frontend/TextDiagnosticPrinter.h"
#include "clang/Interpreter/Value.h"
#include "clang/Sema/Lookup.h"
#include "clang/Sema/Sema.h"
#include "llvm/ExecutionEngine/Orc/LLJIT.h"
#include "llvm/Support/ManagedStatic.h"
#include "llvm/Support/TargetSelect.h"
#include "gmock/gmock.h"
#include "gtest/gtest.h"
using namespace clang;
#if defined(_AIX)
#define CLANG_INTERPRETER_NO_SUPPORT_EXEC
#endif
int Global = 42;
// JIT reports symbol not found on Windows without the visibility attribute.
REPL_EXTERNAL_VISIBILITY int getGlobal() { return Global; }
REPL_EXTERNAL_VISIBILITY void setGlobal(int val) { Global = val; }
namespace {
using Args = std::vector<const char *>;
static std::unique_ptr<Interpreter>
createInterpreter(const Args &ExtraArgs = {},
DiagnosticConsumer *Client = nullptr) {
Args ClangArgs = {"-Xclang", "-emit-llvm-only"};
ClangArgs.insert(ClangArgs.end(), ExtraArgs.begin(), ExtraArgs.end());
auto CB = clang::IncrementalCompilerBuilder();
CB.SetCompilerArgs(ClangArgs);
auto CI = cantFail(CB.CreateCpp());
if (Client)
CI->getDiagnostics().setClient(Client, /*ShouldOwnClient=*/false);
return cantFail(clang::Interpreter::create(std::move(CI)));
}
static size_t DeclsSize(TranslationUnitDecl *PTUDecl) {
return std::distance(PTUDecl->decls().begin(), PTUDecl->decls().end());
}
TEST(InterpreterTest, Sanity) {
std::unique_ptr<Interpreter> Interp = createInterpreter();
using PTU = PartialTranslationUnit;
PTU &R1(cantFail(Interp->Parse("void g(); void g() {}")));
EXPECT_EQ(2U, DeclsSize(R1.TUPart));
PTU &R2(cantFail(Interp->Parse("int i;")));
EXPECT_EQ(1U, DeclsSize(R2.TUPart));
}
static std::string DeclToString(Decl *D) {
return llvm::cast<NamedDecl>(D)->getQualifiedNameAsString();
}
TEST(InterpreterTest, IncrementalInputTopLevelDecls) {
std::unique_ptr<Interpreter> Interp = createInterpreter();
auto R1 = Interp->Parse("int var1 = 42; int f() { return var1; }");
// gtest doesn't expand into explicit bool conversions.
EXPECT_TRUE(!!R1);
auto R1DeclRange = R1->TUPart->decls();
EXPECT_EQ(2U, DeclsSize(R1->TUPart));
EXPECT_EQ("var1", DeclToString(*R1DeclRange.begin()));
EXPECT_EQ("f", DeclToString(*(++R1DeclRange.begin())));
auto R2 = Interp->Parse("int var2 = f();");
EXPECT_TRUE(!!R2);
auto R2DeclRange = R2->TUPart->decls();
EXPECT_EQ(1U, DeclsSize(R2->TUPart));
EXPECT_EQ("var2", DeclToString(*R2DeclRange.begin()));
}
TEST(InterpreterTest, Errors) {
Args ExtraArgs = {"-Xclang", "-diagnostic-log-file", "-Xclang", "-"};
// Create the diagnostic engine with unowned consumer.
std::string DiagnosticOutput;
llvm::raw_string_ostream DiagnosticsOS(DiagnosticOutput);
auto DiagPrinter = std::make_unique<TextDiagnosticPrinter>(
DiagnosticsOS, new DiagnosticOptions());
auto Interp = createInterpreter(ExtraArgs, DiagPrinter.get());
auto Err = Interp->Parse("intentional_error v1 = 42; ").takeError();
using ::testing::HasSubstr;
EXPECT_THAT(DiagnosticsOS.str(),
HasSubstr("error: unknown type name 'intentional_error'"));
EXPECT_EQ("Parsing failed.", llvm::toString(std::move(Err)));
auto RecoverErr = Interp->Parse("int var1 = 42;");
EXPECT_TRUE(!!RecoverErr);
}
// Here we test whether the user can mix declarations and statements. The
// interpreter should be smart enough to recognize the declarations from the
// statements and wrap the latter into a declaration, producing valid code.
TEST(InterpreterTest, DeclsAndStatements) {
Args ExtraArgs = {"-Xclang", "-diagnostic-log-file", "-Xclang", "-"};
// Create the diagnostic engine with unowned consumer.
std::string DiagnosticOutput;
llvm::raw_string_ostream DiagnosticsOS(DiagnosticOutput);
auto DiagPrinter = std::make_unique<TextDiagnosticPrinter>(
DiagnosticsOS, new DiagnosticOptions());
auto Interp = createInterpreter(ExtraArgs, DiagPrinter.get());
auto R1 = Interp->Parse(
"int var1 = 42; extern \"C\" int printf(const char*, ...);");
// gtest doesn't expand into explicit bool conversions.
EXPECT_TRUE(!!R1);
auto *PTU1 = R1->TUPart;
EXPECT_EQ(2U, DeclsSize(PTU1));
auto R2 = Interp->Parse("var1++; printf(\"var1 value %d\\n\", var1);");
EXPECT_TRUE(!!R2);
}
TEST(InterpreterTest, UndoCommand) {
Args ExtraArgs = {"-Xclang", "-diagnostic-log-file", "-Xclang", "-"};
// Create the diagnostic engine with unowned consumer.
std::string DiagnosticOutput;
llvm::raw_string_ostream DiagnosticsOS(DiagnosticOutput);
auto DiagPrinter = std::make_unique<TextDiagnosticPrinter>(
DiagnosticsOS, new DiagnosticOptions());
auto Interp = createInterpreter(ExtraArgs, DiagPrinter.get());
// Fail to undo.
auto Err1 = Interp->Undo();
EXPECT_EQ("Operation failed. Too many undos",
llvm::toString(std::move(Err1)));
auto Err2 = Interp->Parse("int foo = 42;");
EXPECT_TRUE(!!Err2);
auto Err3 = Interp->Undo(2);
EXPECT_EQ("Operation failed. Too many undos",
llvm::toString(std::move(Err3)));
// Succeed to undo.
auto Err4 = Interp->Parse("int x = 42;");
EXPECT_TRUE(!!Err4);
auto Err5 = Interp->Undo();
EXPECT_FALSE(Err5);
auto Err6 = Interp->Parse("int x = 24;");
EXPECT_TRUE(!!Err6);
auto Err7 = Interp->Parse("#define X 42");
EXPECT_TRUE(!!Err7);
auto Err8 = Interp->Undo();
EXPECT_FALSE(Err8);
auto Err9 = Interp->Parse("#define X 24");
EXPECT_TRUE(!!Err9);
// Undo input contains errors.
auto Err10 = Interp->Parse("int y = ;");
EXPECT_FALSE(!!Err10);
EXPECT_EQ("Parsing failed.", llvm::toString(Err10.takeError()));
auto Err11 = Interp->Parse("int y = 42;");
EXPECT_TRUE(!!Err11);
auto Err12 = Interp->Undo();
EXPECT_FALSE(Err12);
}
static std::string MangleName(NamedDecl *ND) {
ASTContext &C = ND->getASTContext();
std::unique_ptr<MangleContext> MangleC(C.createMangleContext());
std::string mangledName;
llvm::raw_string_ostream RawStr(mangledName);
MangleC->mangleName(ND, RawStr);
return RawStr.str();
}
static bool HostSupportsJit() {
auto J = llvm::orc::LLJITBuilder().create();
if (J)
return true;
LLVMConsumeError(llvm::wrap(J.takeError()));
return false;
}
struct LLVMInitRAII {
LLVMInitRAII() {
llvm::InitializeNativeTarget();
llvm::InitializeNativeTargetAsmPrinter();
}
~LLVMInitRAII() { llvm::llvm_shutdown(); }
} LLVMInit;
#ifdef CLANG_INTERPRETER_NO_SUPPORT_EXEC
TEST(IncrementalProcessing, DISABLED_FindMangledNameSymbol) {
#else
TEST(IncrementalProcessing, FindMangledNameSymbol) {
#endif
std::unique_ptr<Interpreter> Interp = createInterpreter();
auto &PTU(cantFail(Interp->Parse("int f(const char*) {return 0;}")));
EXPECT_EQ(1U, DeclsSize(PTU.TUPart));
auto R1DeclRange = PTU.TUPart->decls();
// We cannot execute on the platform.
if (!HostSupportsJit()) {
return;
}
NamedDecl *FD = cast<FunctionDecl>(*R1DeclRange.begin());
// Lower the PTU
if (llvm::Error Err = Interp->Execute(PTU)) {
// We cannot execute on the platform.
consumeError(std::move(Err));
return;
}
std::string MangledName = MangleName(FD);
auto Addr = Interp->getSymbolAddress(MangledName);
EXPECT_FALSE(!Addr);
EXPECT_NE(0U, Addr->getValue());
GlobalDecl GD(FD);
EXPECT_EQ(*Addr, cantFail(Interp->getSymbolAddress(GD)));
cantFail(
Interp->ParseAndExecute("extern \"C\" int printf(const char*,...);"));
Addr = Interp->getSymbolAddress("printf");
EXPECT_FALSE(!Addr);
// FIXME: Re-enable when we investigate the way we handle dllimports on Win.
#ifndef _WIN32
EXPECT_EQ((uintptr_t)&printf, Addr->getValue());
#endif // _WIN32
}
static Value AllocateObject(TypeDecl *TD, Interpreter &Interp) {
std::string Name = TD->getQualifiedNameAsString();
Value Addr;
// FIXME: Consider providing an option in clang::Value to take ownership of
// the memory created from the interpreter.
// cantFail(Interp.ParseAndExecute("new " + Name + "()", &Addr));
// The lifetime of the temporary is extended by the clang::Value.
cantFail(Interp.ParseAndExecute(Name + "()", &Addr));
return Addr;
}
static NamedDecl *LookupSingleName(Interpreter &Interp, const char *Name) {
Sema &SemaRef = Interp.getCompilerInstance()->getSema();
ASTContext &C = SemaRef.getASTContext();
DeclarationName DeclName = &C.Idents.get(Name);
LookupResult R(SemaRef, DeclName, SourceLocation(), Sema::LookupOrdinaryName);
SemaRef.LookupName(R, SemaRef.TUScope);
assert(!R.empty());
return R.getFoundDecl();
}
#ifdef CLANG_INTERPRETER_NO_SUPPORT_EXEC
TEST(IncrementalProcessing, DISABLED_InstantiateTemplate) {
#else
TEST(IncrementalProcessing, InstantiateTemplate) {
#endif
// FIXME: We cannot yet handle delayed template parsing. If we run with
// -fdelayed-template-parsing we try adding the newly created decl to the
// active PTU which causes an assert.
std::vector<const char *> Args = {"-fno-delayed-template-parsing"};
std::unique_ptr<Interpreter> Interp = createInterpreter(Args);
llvm::cantFail(Interp->Parse("extern \"C\" int printf(const char*,...);"
"class A {};"
"struct B {"
" template<typename T>"
" static int callme(T) { return 42; }"
"};"));
auto &PTU = llvm::cantFail(Interp->Parse("auto _t = &B::callme<A*>;"));
auto PTUDeclRange = PTU.TUPart->decls();
EXPECT_EQ(1, std::distance(PTUDeclRange.begin(), PTUDeclRange.end()));
// We cannot execute on the platform.
if (!HostSupportsJit()) {
return;
}
// Lower the PTU
if (llvm::Error Err = Interp->Execute(PTU)) {
// We cannot execute on the platform.
consumeError(std::move(Err));
return;
}
TypeDecl *TD = cast<TypeDecl>(LookupSingleName(*Interp, "A"));
Value NewA = AllocateObject(TD, *Interp);
// Find back the template specialization
VarDecl *VD = static_cast<VarDecl *>(*PTUDeclRange.begin());
UnaryOperator *UO = llvm::cast<UnaryOperator>(VD->getInit());
NamedDecl *TmpltSpec = llvm::cast<DeclRefExpr>(UO->getSubExpr())->getDecl();
std::string MangledName = MangleName(TmpltSpec);
typedef int (*TemplateSpecFn)(void *);
auto fn =
cantFail(Interp->getSymbolAddress(MangledName)).toPtr<TemplateSpecFn>();
EXPECT_EQ(42, fn(NewA.getPtr()));
}
#ifdef CLANG_INTERPRETER_NO_SUPPORT_EXEC
TEST(InterpreterTest, DISABLED_Value) {
#else
TEST(InterpreterTest, Value) {
#endif
// We cannot execute on the platform.
if (!HostSupportsJit())
return;
std::unique_ptr<Interpreter> Interp = createInterpreter();
Value V1;
llvm::cantFail(Interp->ParseAndExecute("int x = 42;"));
llvm::cantFail(Interp->ParseAndExecute("x", &V1));
EXPECT_TRUE(V1.isValid());
EXPECT_TRUE(V1.hasValue());
EXPECT_EQ(V1.getInt(), 42);
EXPECT_EQ(V1.convertTo<int>(), 42);
EXPECT_TRUE(V1.getType()->isIntegerType());
EXPECT_EQ(V1.getKind(), Value::K_Int);
EXPECT_FALSE(V1.isManuallyAlloc());
Value V2;
llvm::cantFail(Interp->ParseAndExecute("double y = 3.14;"));
llvm::cantFail(Interp->ParseAndExecute("y", &V2));
EXPECT_TRUE(V2.isValid());
EXPECT_TRUE(V2.hasValue());
EXPECT_EQ(V2.getDouble(), 3.14);
EXPECT_EQ(V2.convertTo<double>(), 3.14);
EXPECT_TRUE(V2.getType()->isFloatingType());
EXPECT_EQ(V2.getKind(), Value::K_Double);
EXPECT_FALSE(V2.isManuallyAlloc());
Value V3;
llvm::cantFail(Interp->ParseAndExecute(
"struct S { int* p; S() { p = new int(42); } ~S() { delete p; }};"));
llvm::cantFail(Interp->ParseAndExecute("S{}", &V3));
EXPECT_TRUE(V3.isValid());
EXPECT_TRUE(V3.hasValue());
EXPECT_TRUE(V3.getType()->isRecordType());
EXPECT_EQ(V3.getKind(), Value::K_PtrOrObj);
EXPECT_TRUE(V3.isManuallyAlloc());
Value V4;
llvm::cantFail(Interp->ParseAndExecute("int getGlobal();"));
llvm::cantFail(Interp->ParseAndExecute("void setGlobal(int);"));
llvm::cantFail(Interp->ParseAndExecute("getGlobal()", &V4));
EXPECT_EQ(V4.getInt(), 42);
EXPECT_TRUE(V4.getType()->isIntegerType());
Value V5;
// Change the global from the compiled code.
setGlobal(43);
llvm::cantFail(Interp->ParseAndExecute("getGlobal()", &V5));
EXPECT_EQ(V5.getInt(), 43);
EXPECT_TRUE(V5.getType()->isIntegerType());
// Change the global from the interpreted code.
llvm::cantFail(Interp->ParseAndExecute("setGlobal(44);"));
EXPECT_EQ(getGlobal(), 44);
Value V6;
llvm::cantFail(Interp->ParseAndExecute("void foo() {}"));
llvm::cantFail(Interp->ParseAndExecute("foo()", &V6));
EXPECT_TRUE(V6.isValid());
EXPECT_FALSE(V6.hasValue());
EXPECT_TRUE(V6.getType()->isVoidType());
EXPECT_EQ(V6.getKind(), Value::K_Void);
EXPECT_FALSE(V2.isManuallyAlloc());
Value V7;
llvm::cantFail(Interp->ParseAndExecute("foo", &V7));
EXPECT_TRUE(V7.isValid());
EXPECT_TRUE(V7.hasValue());
EXPECT_TRUE(V7.getType()->isFunctionProtoType());
EXPECT_EQ(V7.getKind(), Value::K_PtrOrObj);
EXPECT_FALSE(V7.isManuallyAlloc());
Value V8;
llvm::cantFail(Interp->ParseAndExecute("struct SS{ void f() {} };"));
llvm::cantFail(Interp->ParseAndExecute("&SS::f", &V8));
EXPECT_TRUE(V8.isValid());
EXPECT_TRUE(V8.hasValue());
EXPECT_TRUE(V8.getType()->isMemberFunctionPointerType());
EXPECT_EQ(V8.getKind(), Value::K_PtrOrObj);
EXPECT_TRUE(V8.isManuallyAlloc());
Value V9;
llvm::cantFail(Interp->ParseAndExecute("struct A { virtual int f(); };"));
llvm::cantFail(
Interp->ParseAndExecute("struct B : A { int f() { return 42; }};"));
llvm::cantFail(Interp->ParseAndExecute("int (B::*ptr)() = &B::f;"));
llvm::cantFail(Interp->ParseAndExecute("ptr", &V9));
EXPECT_TRUE(V9.isValid());
EXPECT_TRUE(V9.hasValue());
EXPECT_TRUE(V9.getType()->isMemberFunctionPointerType());
EXPECT_EQ(V9.getKind(), Value::K_PtrOrObj);
EXPECT_TRUE(V9.isManuallyAlloc());
}
} // end anonymous namespace