mirror of
https://github.com/capstone-engine/llvm-capstone.git
synced 2024-11-26 23:21:11 +00:00
1205 lines
44 KiB
C++
1205 lines
44 KiB
C++
//===- InputFiles.cpp -----------------------------------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "InputFiles.h"
|
|
#include "COFFLinkerContext.h"
|
|
#include "Chunks.h"
|
|
#include "Config.h"
|
|
#include "DebugTypes.h"
|
|
#include "Driver.h"
|
|
#include "SymbolTable.h"
|
|
#include "Symbols.h"
|
|
#include "lld/Common/DWARF.h"
|
|
#include "llvm-c/lto.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/Twine.h"
|
|
#include "llvm/BinaryFormat/COFF.h"
|
|
#include "llvm/DebugInfo/CodeView/DebugSubsectionRecord.h"
|
|
#include "llvm/DebugInfo/CodeView/SymbolDeserializer.h"
|
|
#include "llvm/DebugInfo/CodeView/SymbolRecord.h"
|
|
#include "llvm/DebugInfo/CodeView/TypeDeserializer.h"
|
|
#include "llvm/DebugInfo/PDB/Native/NativeSession.h"
|
|
#include "llvm/DebugInfo/PDB/Native/PDBFile.h"
|
|
#include "llvm/LTO/LTO.h"
|
|
#include "llvm/Object/Binary.h"
|
|
#include "llvm/Object/COFF.h"
|
|
#include "llvm/Support/Casting.h"
|
|
#include "llvm/Support/Endian.h"
|
|
#include "llvm/Support/Error.h"
|
|
#include "llvm/Support/ErrorOr.h"
|
|
#include "llvm/Support/FileSystem.h"
|
|
#include "llvm/Support/Path.h"
|
|
#include "llvm/Target/TargetOptions.h"
|
|
#include "llvm/TargetParser/Triple.h"
|
|
#include <cstring>
|
|
#include <optional>
|
|
#include <system_error>
|
|
#include <utility>
|
|
|
|
using namespace llvm;
|
|
using namespace llvm::COFF;
|
|
using namespace llvm::codeview;
|
|
using namespace llvm::object;
|
|
using namespace llvm::support::endian;
|
|
using namespace lld;
|
|
using namespace lld::coff;
|
|
|
|
using llvm::Triple;
|
|
using llvm::support::ulittle32_t;
|
|
|
|
// Returns the last element of a path, which is supposed to be a filename.
|
|
static StringRef getBasename(StringRef path) {
|
|
return sys::path::filename(path, sys::path::Style::windows);
|
|
}
|
|
|
|
// Returns a string in the format of "foo.obj" or "foo.obj(bar.lib)".
|
|
std::string lld::toString(const coff::InputFile *file) {
|
|
if (!file)
|
|
return "<internal>";
|
|
if (file->parentName.empty() || file->kind() == coff::InputFile::ImportKind)
|
|
return std::string(file->getName());
|
|
|
|
return (getBasename(file->parentName) + "(" + getBasename(file->getName()) +
|
|
")")
|
|
.str();
|
|
}
|
|
|
|
/// Checks that Source is compatible with being a weak alias to Target.
|
|
/// If Source is Undefined and has no weak alias set, makes it a weak
|
|
/// alias to Target.
|
|
static void checkAndSetWeakAlias(COFFLinkerContext &ctx, InputFile *f,
|
|
Symbol *source, Symbol *target) {
|
|
if (auto *u = dyn_cast<Undefined>(source)) {
|
|
if (u->weakAlias && u->weakAlias != target) {
|
|
// Weak aliases as produced by GCC are named in the form
|
|
// .weak.<weaksymbol>.<othersymbol>, where <othersymbol> is the name
|
|
// of another symbol emitted near the weak symbol.
|
|
// Just use the definition from the first object file that defined
|
|
// this weak symbol.
|
|
if (ctx.config.allowDuplicateWeak)
|
|
return;
|
|
ctx.symtab.reportDuplicate(source, f);
|
|
}
|
|
u->weakAlias = target;
|
|
}
|
|
}
|
|
|
|
static bool ignoredSymbolName(StringRef name) {
|
|
return name == "@feat.00" || name == "@comp.id";
|
|
}
|
|
|
|
ArchiveFile::ArchiveFile(COFFLinkerContext &ctx, MemoryBufferRef m)
|
|
: InputFile(ctx, ArchiveKind, m) {}
|
|
|
|
void ArchiveFile::parse() {
|
|
// Parse a MemoryBufferRef as an archive file.
|
|
file = CHECK(Archive::create(mb), this);
|
|
|
|
// Read the symbol table to construct Lazy objects.
|
|
for (const Archive::Symbol &sym : file->symbols())
|
|
ctx.symtab.addLazyArchive(this, sym);
|
|
}
|
|
|
|
// Returns a buffer pointing to a member file containing a given symbol.
|
|
void ArchiveFile::addMember(const Archive::Symbol &sym) {
|
|
const Archive::Child &c =
|
|
CHECK(sym.getMember(),
|
|
"could not get the member for symbol " + toCOFFString(ctx, sym));
|
|
|
|
// Return an empty buffer if we have already returned the same buffer.
|
|
if (!seen.insert(c.getChildOffset()).second)
|
|
return;
|
|
|
|
ctx.driver.enqueueArchiveMember(c, sym, getName());
|
|
}
|
|
|
|
std::vector<MemoryBufferRef> lld::coff::getArchiveMembers(Archive *file) {
|
|
std::vector<MemoryBufferRef> v;
|
|
Error err = Error::success();
|
|
for (const Archive::Child &c : file->children(err)) {
|
|
MemoryBufferRef mbref =
|
|
CHECK(c.getMemoryBufferRef(),
|
|
file->getFileName() +
|
|
": could not get the buffer for a child of the archive");
|
|
v.push_back(mbref);
|
|
}
|
|
if (err)
|
|
fatal(file->getFileName() +
|
|
": Archive::children failed: " + toString(std::move(err)));
|
|
return v;
|
|
}
|
|
|
|
void ObjFile::parseLazy() {
|
|
// Native object file.
|
|
std::unique_ptr<Binary> coffObjPtr = CHECK(createBinary(mb), this);
|
|
COFFObjectFile *coffObj = cast<COFFObjectFile>(coffObjPtr.get());
|
|
uint32_t numSymbols = coffObj->getNumberOfSymbols();
|
|
for (uint32_t i = 0; i < numSymbols; ++i) {
|
|
COFFSymbolRef coffSym = check(coffObj->getSymbol(i));
|
|
if (coffSym.isUndefined() || !coffSym.isExternal() ||
|
|
coffSym.isWeakExternal())
|
|
continue;
|
|
StringRef name = check(coffObj->getSymbolName(coffSym));
|
|
if (coffSym.isAbsolute() && ignoredSymbolName(name))
|
|
continue;
|
|
ctx.symtab.addLazyObject(this, name);
|
|
i += coffSym.getNumberOfAuxSymbols();
|
|
}
|
|
}
|
|
|
|
void ObjFile::parse() {
|
|
// Parse a memory buffer as a COFF file.
|
|
std::unique_ptr<Binary> bin = CHECK(createBinary(mb), this);
|
|
|
|
if (auto *obj = dyn_cast<COFFObjectFile>(bin.get())) {
|
|
bin.release();
|
|
coffObj.reset(obj);
|
|
} else {
|
|
fatal(toString(this) + " is not a COFF file");
|
|
}
|
|
|
|
// Read section and symbol tables.
|
|
initializeChunks();
|
|
initializeSymbols();
|
|
initializeFlags();
|
|
initializeDependencies();
|
|
}
|
|
|
|
const coff_section *ObjFile::getSection(uint32_t i) {
|
|
auto sec = coffObj->getSection(i);
|
|
if (!sec)
|
|
fatal("getSection failed: #" + Twine(i) + ": " + toString(sec.takeError()));
|
|
return *sec;
|
|
}
|
|
|
|
// We set SectionChunk pointers in the SparseChunks vector to this value
|
|
// temporarily to mark comdat sections as having an unknown resolution. As we
|
|
// walk the object file's symbol table, once we visit either a leader symbol or
|
|
// an associative section definition together with the parent comdat's leader,
|
|
// we set the pointer to either nullptr (to mark the section as discarded) or a
|
|
// valid SectionChunk for that section.
|
|
static SectionChunk *const pendingComdat = reinterpret_cast<SectionChunk *>(1);
|
|
|
|
void ObjFile::initializeChunks() {
|
|
uint32_t numSections = coffObj->getNumberOfSections();
|
|
sparseChunks.resize(numSections + 1);
|
|
for (uint32_t i = 1; i < numSections + 1; ++i) {
|
|
const coff_section *sec = getSection(i);
|
|
if (sec->Characteristics & IMAGE_SCN_LNK_COMDAT)
|
|
sparseChunks[i] = pendingComdat;
|
|
else
|
|
sparseChunks[i] = readSection(i, nullptr, "");
|
|
}
|
|
}
|
|
|
|
SectionChunk *ObjFile::readSection(uint32_t sectionNumber,
|
|
const coff_aux_section_definition *def,
|
|
StringRef leaderName) {
|
|
const coff_section *sec = getSection(sectionNumber);
|
|
|
|
StringRef name;
|
|
if (Expected<StringRef> e = coffObj->getSectionName(sec))
|
|
name = *e;
|
|
else
|
|
fatal("getSectionName failed: #" + Twine(sectionNumber) + ": " +
|
|
toString(e.takeError()));
|
|
|
|
if (name == ".drectve") {
|
|
ArrayRef<uint8_t> data;
|
|
cantFail(coffObj->getSectionContents(sec, data));
|
|
directives = StringRef((const char *)data.data(), data.size());
|
|
return nullptr;
|
|
}
|
|
|
|
if (name == ".llvm_addrsig") {
|
|
addrsigSec = sec;
|
|
return nullptr;
|
|
}
|
|
|
|
if (name == ".llvm.call-graph-profile") {
|
|
callgraphSec = sec;
|
|
return nullptr;
|
|
}
|
|
|
|
// Object files may have DWARF debug info or MS CodeView debug info
|
|
// (or both).
|
|
//
|
|
// DWARF sections don't need any special handling from the perspective
|
|
// of the linker; they are just a data section containing relocations.
|
|
// We can just link them to complete debug info.
|
|
//
|
|
// CodeView needs linker support. We need to interpret debug info,
|
|
// and then write it to a separate .pdb file.
|
|
|
|
// Ignore DWARF debug info unless requested to be included.
|
|
if (!ctx.config.includeDwarfChunks && name.starts_with(".debug_"))
|
|
return nullptr;
|
|
|
|
if (sec->Characteristics & llvm::COFF::IMAGE_SCN_LNK_REMOVE)
|
|
return nullptr;
|
|
auto *c = make<SectionChunk>(this, sec);
|
|
if (def)
|
|
c->checksum = def->CheckSum;
|
|
|
|
// CodeView sections are stored to a different vector because they are not
|
|
// linked in the regular manner.
|
|
if (c->isCodeView())
|
|
debugChunks.push_back(c);
|
|
else if (name == ".gfids$y")
|
|
guardFidChunks.push_back(c);
|
|
else if (name == ".giats$y")
|
|
guardIATChunks.push_back(c);
|
|
else if (name == ".gljmp$y")
|
|
guardLJmpChunks.push_back(c);
|
|
else if (name == ".gehcont$y")
|
|
guardEHContChunks.push_back(c);
|
|
else if (name == ".sxdata")
|
|
sxDataChunks.push_back(c);
|
|
else if (ctx.config.tailMerge && sec->NumberOfRelocations == 0 &&
|
|
name == ".rdata" && leaderName.starts_with("??_C@"))
|
|
// COFF sections that look like string literal sections (i.e. no
|
|
// relocations, in .rdata, leader symbol name matches the MSVC name mangling
|
|
// for string literals) are subject to string tail merging.
|
|
MergeChunk::addSection(ctx, c);
|
|
else if (name == ".rsrc" || name.starts_with(".rsrc$"))
|
|
resourceChunks.push_back(c);
|
|
else
|
|
chunks.push_back(c);
|
|
|
|
return c;
|
|
}
|
|
|
|
void ObjFile::includeResourceChunks() {
|
|
chunks.insert(chunks.end(), resourceChunks.begin(), resourceChunks.end());
|
|
}
|
|
|
|
void ObjFile::readAssociativeDefinition(
|
|
COFFSymbolRef sym, const coff_aux_section_definition *def) {
|
|
readAssociativeDefinition(sym, def, def->getNumber(sym.isBigObj()));
|
|
}
|
|
|
|
void ObjFile::readAssociativeDefinition(COFFSymbolRef sym,
|
|
const coff_aux_section_definition *def,
|
|
uint32_t parentIndex) {
|
|
SectionChunk *parent = sparseChunks[parentIndex];
|
|
int32_t sectionNumber = sym.getSectionNumber();
|
|
|
|
auto diag = [&]() {
|
|
StringRef name = check(coffObj->getSymbolName(sym));
|
|
|
|
StringRef parentName;
|
|
const coff_section *parentSec = getSection(parentIndex);
|
|
if (Expected<StringRef> e = coffObj->getSectionName(parentSec))
|
|
parentName = *e;
|
|
error(toString(this) + ": associative comdat " + name + " (sec " +
|
|
Twine(sectionNumber) + ") has invalid reference to section " +
|
|
parentName + " (sec " + Twine(parentIndex) + ")");
|
|
};
|
|
|
|
if (parent == pendingComdat) {
|
|
// This can happen if an associative comdat refers to another associative
|
|
// comdat that appears after it (invalid per COFF spec) or to a section
|
|
// without any symbols.
|
|
diag();
|
|
return;
|
|
}
|
|
|
|
// Check whether the parent is prevailing. If it is, so are we, and we read
|
|
// the section; otherwise mark it as discarded.
|
|
if (parent) {
|
|
SectionChunk *c = readSection(sectionNumber, def, "");
|
|
sparseChunks[sectionNumber] = c;
|
|
if (c) {
|
|
c->selection = IMAGE_COMDAT_SELECT_ASSOCIATIVE;
|
|
parent->addAssociative(c);
|
|
}
|
|
} else {
|
|
sparseChunks[sectionNumber] = nullptr;
|
|
}
|
|
}
|
|
|
|
void ObjFile::recordPrevailingSymbolForMingw(
|
|
COFFSymbolRef sym, DenseMap<StringRef, uint32_t> &prevailingSectionMap) {
|
|
// For comdat symbols in executable sections, where this is the copy
|
|
// of the section chunk we actually include instead of discarding it,
|
|
// add the symbol to a map to allow using it for implicitly
|
|
// associating .[px]data$<func> sections to it.
|
|
// Use the suffix from the .text$<func> instead of the leader symbol
|
|
// name, for cases where the names differ (i386 mangling/decorations,
|
|
// cases where the leader is a weak symbol named .weak.func.default*).
|
|
int32_t sectionNumber = sym.getSectionNumber();
|
|
SectionChunk *sc = sparseChunks[sectionNumber];
|
|
if (sc && sc->getOutputCharacteristics() & IMAGE_SCN_MEM_EXECUTE) {
|
|
StringRef name = sc->getSectionName().split('$').second;
|
|
prevailingSectionMap[name] = sectionNumber;
|
|
}
|
|
}
|
|
|
|
void ObjFile::maybeAssociateSEHForMingw(
|
|
COFFSymbolRef sym, const coff_aux_section_definition *def,
|
|
const DenseMap<StringRef, uint32_t> &prevailingSectionMap) {
|
|
StringRef name = check(coffObj->getSymbolName(sym));
|
|
if (name.consume_front(".pdata$") || name.consume_front(".xdata$") ||
|
|
name.consume_front(".eh_frame$")) {
|
|
// For MinGW, treat .[px]data$<func> and .eh_frame$<func> as implicitly
|
|
// associative to the symbol <func>.
|
|
auto parentSym = prevailingSectionMap.find(name);
|
|
if (parentSym != prevailingSectionMap.end())
|
|
readAssociativeDefinition(sym, def, parentSym->second);
|
|
}
|
|
}
|
|
|
|
Symbol *ObjFile::createRegular(COFFSymbolRef sym) {
|
|
SectionChunk *sc = sparseChunks[sym.getSectionNumber()];
|
|
if (sym.isExternal()) {
|
|
StringRef name = check(coffObj->getSymbolName(sym));
|
|
if (sc)
|
|
return ctx.symtab.addRegular(this, name, sym.getGeneric(), sc,
|
|
sym.getValue());
|
|
// For MinGW symbols named .weak.* that point to a discarded section,
|
|
// don't create an Undefined symbol. If nothing ever refers to the symbol,
|
|
// everything should be fine. If something actually refers to the symbol
|
|
// (e.g. the undefined weak alias), linking will fail due to undefined
|
|
// references at the end.
|
|
if (ctx.config.mingw && name.starts_with(".weak."))
|
|
return nullptr;
|
|
return ctx.symtab.addUndefined(name, this, false);
|
|
}
|
|
if (sc)
|
|
return make<DefinedRegular>(this, /*Name*/ "", /*IsCOMDAT*/ false,
|
|
/*IsExternal*/ false, sym.getGeneric(), sc);
|
|
return nullptr;
|
|
}
|
|
|
|
void ObjFile::initializeSymbols() {
|
|
uint32_t numSymbols = coffObj->getNumberOfSymbols();
|
|
symbols.resize(numSymbols);
|
|
|
|
SmallVector<std::pair<Symbol *, uint32_t>, 8> weakAliases;
|
|
std::vector<uint32_t> pendingIndexes;
|
|
pendingIndexes.reserve(numSymbols);
|
|
|
|
DenseMap<StringRef, uint32_t> prevailingSectionMap;
|
|
std::vector<const coff_aux_section_definition *> comdatDefs(
|
|
coffObj->getNumberOfSections() + 1);
|
|
|
|
for (uint32_t i = 0; i < numSymbols; ++i) {
|
|
COFFSymbolRef coffSym = check(coffObj->getSymbol(i));
|
|
bool prevailingComdat;
|
|
if (coffSym.isUndefined()) {
|
|
symbols[i] = createUndefined(coffSym);
|
|
} else if (coffSym.isWeakExternal()) {
|
|
symbols[i] = createUndefined(coffSym);
|
|
uint32_t tagIndex = coffSym.getAux<coff_aux_weak_external>()->TagIndex;
|
|
weakAliases.emplace_back(symbols[i], tagIndex);
|
|
} else if (std::optional<Symbol *> optSym =
|
|
createDefined(coffSym, comdatDefs, prevailingComdat)) {
|
|
symbols[i] = *optSym;
|
|
if (ctx.config.mingw && prevailingComdat)
|
|
recordPrevailingSymbolForMingw(coffSym, prevailingSectionMap);
|
|
} else {
|
|
// createDefined() returns std::nullopt if a symbol belongs to a section
|
|
// that was pending at the point when the symbol was read. This can happen
|
|
// in two cases:
|
|
// 1) section definition symbol for a comdat leader;
|
|
// 2) symbol belongs to a comdat section associated with another section.
|
|
// In both of these cases, we can expect the section to be resolved by
|
|
// the time we finish visiting the remaining symbols in the symbol
|
|
// table. So we postpone the handling of this symbol until that time.
|
|
pendingIndexes.push_back(i);
|
|
}
|
|
i += coffSym.getNumberOfAuxSymbols();
|
|
}
|
|
|
|
for (uint32_t i : pendingIndexes) {
|
|
COFFSymbolRef sym = check(coffObj->getSymbol(i));
|
|
if (const coff_aux_section_definition *def = sym.getSectionDefinition()) {
|
|
if (def->Selection == IMAGE_COMDAT_SELECT_ASSOCIATIVE)
|
|
readAssociativeDefinition(sym, def);
|
|
else if (ctx.config.mingw)
|
|
maybeAssociateSEHForMingw(sym, def, prevailingSectionMap);
|
|
}
|
|
if (sparseChunks[sym.getSectionNumber()] == pendingComdat) {
|
|
StringRef name = check(coffObj->getSymbolName(sym));
|
|
log("comdat section " + name +
|
|
" without leader and unassociated, discarding");
|
|
continue;
|
|
}
|
|
symbols[i] = createRegular(sym);
|
|
}
|
|
|
|
for (auto &kv : weakAliases) {
|
|
Symbol *sym = kv.first;
|
|
uint32_t idx = kv.second;
|
|
checkAndSetWeakAlias(ctx, this, sym, symbols[idx]);
|
|
}
|
|
|
|
// Free the memory used by sparseChunks now that symbol loading is finished.
|
|
decltype(sparseChunks)().swap(sparseChunks);
|
|
}
|
|
|
|
Symbol *ObjFile::createUndefined(COFFSymbolRef sym) {
|
|
StringRef name = check(coffObj->getSymbolName(sym));
|
|
return ctx.symtab.addUndefined(name, this, sym.isWeakExternal());
|
|
}
|
|
|
|
static const coff_aux_section_definition *findSectionDef(COFFObjectFile *obj,
|
|
int32_t section) {
|
|
uint32_t numSymbols = obj->getNumberOfSymbols();
|
|
for (uint32_t i = 0; i < numSymbols; ++i) {
|
|
COFFSymbolRef sym = check(obj->getSymbol(i));
|
|
if (sym.getSectionNumber() != section)
|
|
continue;
|
|
if (const coff_aux_section_definition *def = sym.getSectionDefinition())
|
|
return def;
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
void ObjFile::handleComdatSelection(
|
|
COFFSymbolRef sym, COMDATType &selection, bool &prevailing,
|
|
DefinedRegular *leader,
|
|
const llvm::object::coff_aux_section_definition *def) {
|
|
if (prevailing)
|
|
return;
|
|
// There's already an existing comdat for this symbol: `Leader`.
|
|
// Use the comdats's selection field to determine if the new
|
|
// symbol in `Sym` should be discarded, produce a duplicate symbol
|
|
// error, etc.
|
|
|
|
SectionChunk *leaderChunk = leader->getChunk();
|
|
COMDATType leaderSelection = leaderChunk->selection;
|
|
|
|
assert(leader->data && "Comdat leader without SectionChunk?");
|
|
if (isa<BitcodeFile>(leader->file)) {
|
|
// If the leader is only a LTO symbol, we don't know e.g. its final size
|
|
// yet, so we can't do the full strict comdat selection checking yet.
|
|
selection = leaderSelection = IMAGE_COMDAT_SELECT_ANY;
|
|
}
|
|
|
|
if ((selection == IMAGE_COMDAT_SELECT_ANY &&
|
|
leaderSelection == IMAGE_COMDAT_SELECT_LARGEST) ||
|
|
(selection == IMAGE_COMDAT_SELECT_LARGEST &&
|
|
leaderSelection == IMAGE_COMDAT_SELECT_ANY)) {
|
|
// cl.exe picks "any" for vftables when building with /GR- and
|
|
// "largest" when building with /GR. To be able to link object files
|
|
// compiled with each flag, "any" and "largest" are merged as "largest".
|
|
leaderSelection = selection = IMAGE_COMDAT_SELECT_LARGEST;
|
|
}
|
|
|
|
// GCCs __declspec(selectany) doesn't actually pick "any" but "same size as".
|
|
// Clang on the other hand picks "any". To be able to link two object files
|
|
// with a __declspec(selectany) declaration, one compiled with gcc and the
|
|
// other with clang, we merge them as proper "same size as"
|
|
if (ctx.config.mingw && ((selection == IMAGE_COMDAT_SELECT_ANY &&
|
|
leaderSelection == IMAGE_COMDAT_SELECT_SAME_SIZE) ||
|
|
(selection == IMAGE_COMDAT_SELECT_SAME_SIZE &&
|
|
leaderSelection == IMAGE_COMDAT_SELECT_ANY))) {
|
|
leaderSelection = selection = IMAGE_COMDAT_SELECT_SAME_SIZE;
|
|
}
|
|
|
|
// Other than that, comdat selections must match. This is a bit more
|
|
// strict than link.exe which allows merging "any" and "largest" if "any"
|
|
// is the first symbol the linker sees, and it allows merging "largest"
|
|
// with everything (!) if "largest" is the first symbol the linker sees.
|
|
// Making this symmetric independent of which selection is seen first
|
|
// seems better though.
|
|
// (This behavior matches ModuleLinker::getComdatResult().)
|
|
if (selection != leaderSelection) {
|
|
log(("conflicting comdat type for " + toString(ctx, *leader) + ": " +
|
|
Twine((int)leaderSelection) + " in " + toString(leader->getFile()) +
|
|
" and " + Twine((int)selection) + " in " + toString(this))
|
|
.str());
|
|
ctx.symtab.reportDuplicate(leader, this);
|
|
return;
|
|
}
|
|
|
|
switch (selection) {
|
|
case IMAGE_COMDAT_SELECT_NODUPLICATES:
|
|
ctx.symtab.reportDuplicate(leader, this);
|
|
break;
|
|
|
|
case IMAGE_COMDAT_SELECT_ANY:
|
|
// Nothing to do.
|
|
break;
|
|
|
|
case IMAGE_COMDAT_SELECT_SAME_SIZE:
|
|
if (leaderChunk->getSize() != getSection(sym)->SizeOfRawData) {
|
|
if (!ctx.config.mingw) {
|
|
ctx.symtab.reportDuplicate(leader, this);
|
|
} else {
|
|
const coff_aux_section_definition *leaderDef = nullptr;
|
|
if (leaderChunk->file)
|
|
leaderDef = findSectionDef(leaderChunk->file->getCOFFObj(),
|
|
leaderChunk->getSectionNumber());
|
|
if (!leaderDef || leaderDef->Length != def->Length)
|
|
ctx.symtab.reportDuplicate(leader, this);
|
|
}
|
|
}
|
|
break;
|
|
|
|
case IMAGE_COMDAT_SELECT_EXACT_MATCH: {
|
|
SectionChunk newChunk(this, getSection(sym));
|
|
// link.exe only compares section contents here and doesn't complain
|
|
// if the two comdat sections have e.g. different alignment.
|
|
// Match that.
|
|
if (leaderChunk->getContents() != newChunk.getContents())
|
|
ctx.symtab.reportDuplicate(leader, this, &newChunk, sym.getValue());
|
|
break;
|
|
}
|
|
|
|
case IMAGE_COMDAT_SELECT_ASSOCIATIVE:
|
|
// createDefined() is never called for IMAGE_COMDAT_SELECT_ASSOCIATIVE.
|
|
// (This means lld-link doesn't produce duplicate symbol errors for
|
|
// associative comdats while link.exe does, but associate comdats
|
|
// are never extern in practice.)
|
|
llvm_unreachable("createDefined not called for associative comdats");
|
|
|
|
case IMAGE_COMDAT_SELECT_LARGEST:
|
|
if (leaderChunk->getSize() < getSection(sym)->SizeOfRawData) {
|
|
// Replace the existing comdat symbol with the new one.
|
|
StringRef name = check(coffObj->getSymbolName(sym));
|
|
// FIXME: This is incorrect: With /opt:noref, the previous sections
|
|
// make it into the final executable as well. Correct handling would
|
|
// be to undo reading of the whole old section that's being replaced,
|
|
// or doing one pass that determines what the final largest comdat
|
|
// is for all IMAGE_COMDAT_SELECT_LARGEST comdats and then reading
|
|
// only the largest one.
|
|
replaceSymbol<DefinedRegular>(leader, this, name, /*IsCOMDAT*/ true,
|
|
/*IsExternal*/ true, sym.getGeneric(),
|
|
nullptr);
|
|
prevailing = true;
|
|
}
|
|
break;
|
|
|
|
case IMAGE_COMDAT_SELECT_NEWEST:
|
|
llvm_unreachable("should have been rejected earlier");
|
|
}
|
|
}
|
|
|
|
std::optional<Symbol *> ObjFile::createDefined(
|
|
COFFSymbolRef sym,
|
|
std::vector<const coff_aux_section_definition *> &comdatDefs,
|
|
bool &prevailing) {
|
|
prevailing = false;
|
|
auto getName = [&]() { return check(coffObj->getSymbolName(sym)); };
|
|
|
|
if (sym.isCommon()) {
|
|
auto *c = make<CommonChunk>(sym);
|
|
chunks.push_back(c);
|
|
return ctx.symtab.addCommon(this, getName(), sym.getValue(),
|
|
sym.getGeneric(), c);
|
|
}
|
|
|
|
if (sym.isAbsolute()) {
|
|
StringRef name = getName();
|
|
|
|
if (name == "@feat.00")
|
|
feat00Flags = sym.getValue();
|
|
// Skip special symbols.
|
|
if (ignoredSymbolName(name))
|
|
return nullptr;
|
|
|
|
if (sym.isExternal())
|
|
return ctx.symtab.addAbsolute(name, sym);
|
|
return make<DefinedAbsolute>(ctx, name, sym);
|
|
}
|
|
|
|
int32_t sectionNumber = sym.getSectionNumber();
|
|
if (sectionNumber == llvm::COFF::IMAGE_SYM_DEBUG)
|
|
return nullptr;
|
|
|
|
if (llvm::COFF::isReservedSectionNumber(sectionNumber))
|
|
fatal(toString(this) + ": " + getName() +
|
|
" should not refer to special section " + Twine(sectionNumber));
|
|
|
|
if ((uint32_t)sectionNumber >= sparseChunks.size())
|
|
fatal(toString(this) + ": " + getName() +
|
|
" should not refer to non-existent section " + Twine(sectionNumber));
|
|
|
|
// Comdat handling.
|
|
// A comdat symbol consists of two symbol table entries.
|
|
// The first symbol entry has the name of the section (e.g. .text), fixed
|
|
// values for the other fields, and one auxiliary record.
|
|
// The second symbol entry has the name of the comdat symbol, called the
|
|
// "comdat leader".
|
|
// When this function is called for the first symbol entry of a comdat,
|
|
// it sets comdatDefs and returns std::nullopt, and when it's called for the
|
|
// second symbol entry it reads comdatDefs and then sets it back to nullptr.
|
|
|
|
// Handle comdat leader.
|
|
if (const coff_aux_section_definition *def = comdatDefs[sectionNumber]) {
|
|
comdatDefs[sectionNumber] = nullptr;
|
|
DefinedRegular *leader;
|
|
|
|
if (sym.isExternal()) {
|
|
std::tie(leader, prevailing) =
|
|
ctx.symtab.addComdat(this, getName(), sym.getGeneric());
|
|
} else {
|
|
leader = make<DefinedRegular>(this, /*Name*/ "", /*IsCOMDAT*/ false,
|
|
/*IsExternal*/ false, sym.getGeneric());
|
|
prevailing = true;
|
|
}
|
|
|
|
if (def->Selection < (int)IMAGE_COMDAT_SELECT_NODUPLICATES ||
|
|
// Intentionally ends at IMAGE_COMDAT_SELECT_LARGEST: link.exe
|
|
// doesn't understand IMAGE_COMDAT_SELECT_NEWEST either.
|
|
def->Selection > (int)IMAGE_COMDAT_SELECT_LARGEST) {
|
|
fatal("unknown comdat type " + std::to_string((int)def->Selection) +
|
|
" for " + getName() + " in " + toString(this));
|
|
}
|
|
COMDATType selection = (COMDATType)def->Selection;
|
|
|
|
if (leader->isCOMDAT)
|
|
handleComdatSelection(sym, selection, prevailing, leader, def);
|
|
|
|
if (prevailing) {
|
|
SectionChunk *c = readSection(sectionNumber, def, getName());
|
|
sparseChunks[sectionNumber] = c;
|
|
if (!c)
|
|
return nullptr;
|
|
c->sym = cast<DefinedRegular>(leader);
|
|
c->selection = selection;
|
|
cast<DefinedRegular>(leader)->data = &c->repl;
|
|
} else {
|
|
sparseChunks[sectionNumber] = nullptr;
|
|
}
|
|
return leader;
|
|
}
|
|
|
|
// Prepare to handle the comdat leader symbol by setting the section's
|
|
// ComdatDefs pointer if we encounter a non-associative comdat.
|
|
if (sparseChunks[sectionNumber] == pendingComdat) {
|
|
if (const coff_aux_section_definition *def = sym.getSectionDefinition()) {
|
|
if (def->Selection != IMAGE_COMDAT_SELECT_ASSOCIATIVE)
|
|
comdatDefs[sectionNumber] = def;
|
|
}
|
|
return std::nullopt;
|
|
}
|
|
|
|
return createRegular(sym);
|
|
}
|
|
|
|
MachineTypes ObjFile::getMachineType() {
|
|
if (coffObj)
|
|
return static_cast<MachineTypes>(coffObj->getMachine());
|
|
return IMAGE_FILE_MACHINE_UNKNOWN;
|
|
}
|
|
|
|
ArrayRef<uint8_t> ObjFile::getDebugSection(StringRef secName) {
|
|
if (SectionChunk *sec = SectionChunk::findByName(debugChunks, secName))
|
|
return sec->consumeDebugMagic();
|
|
return {};
|
|
}
|
|
|
|
// OBJ files systematically store critical information in a .debug$S stream,
|
|
// even if the TU was compiled with no debug info. At least two records are
|
|
// always there. S_OBJNAME stores a 32-bit signature, which is loaded into the
|
|
// PCHSignature member. S_COMPILE3 stores compile-time cmd-line flags. This is
|
|
// currently used to initialize the hotPatchable member.
|
|
void ObjFile::initializeFlags() {
|
|
ArrayRef<uint8_t> data = getDebugSection(".debug$S");
|
|
if (data.empty())
|
|
return;
|
|
|
|
DebugSubsectionArray subsections;
|
|
|
|
BinaryStreamReader reader(data, llvm::endianness::little);
|
|
ExitOnError exitOnErr;
|
|
exitOnErr(reader.readArray(subsections, data.size()));
|
|
|
|
for (const DebugSubsectionRecord &ss : subsections) {
|
|
if (ss.kind() != DebugSubsectionKind::Symbols)
|
|
continue;
|
|
|
|
unsigned offset = 0;
|
|
|
|
// Only parse the first two records. We are only looking for S_OBJNAME
|
|
// and S_COMPILE3, and they usually appear at the beginning of the
|
|
// stream.
|
|
for (unsigned i = 0; i < 2; ++i) {
|
|
Expected<CVSymbol> sym = readSymbolFromStream(ss.getRecordData(), offset);
|
|
if (!sym) {
|
|
consumeError(sym.takeError());
|
|
return;
|
|
}
|
|
if (sym->kind() == SymbolKind::S_COMPILE3) {
|
|
auto cs =
|
|
cantFail(SymbolDeserializer::deserializeAs<Compile3Sym>(sym.get()));
|
|
hotPatchable =
|
|
(cs.Flags & CompileSym3Flags::HotPatch) != CompileSym3Flags::None;
|
|
}
|
|
if (sym->kind() == SymbolKind::S_OBJNAME) {
|
|
auto objName = cantFail(SymbolDeserializer::deserializeAs<ObjNameSym>(
|
|
sym.get()));
|
|
if (objName.Signature)
|
|
pchSignature = objName.Signature;
|
|
}
|
|
offset += sym->length();
|
|
}
|
|
}
|
|
}
|
|
|
|
// Depending on the compilation flags, OBJs can refer to external files,
|
|
// necessary to merge this OBJ into the final PDB. We currently support two
|
|
// types of external files: Precomp/PCH OBJs, when compiling with /Yc and /Yu.
|
|
// And PDB type servers, when compiling with /Zi. This function extracts these
|
|
// dependencies and makes them available as a TpiSource interface (see
|
|
// DebugTypes.h). Both cases only happen with cl.exe: clang-cl produces regular
|
|
// output even with /Yc and /Yu and with /Zi.
|
|
void ObjFile::initializeDependencies() {
|
|
if (!ctx.config.debug)
|
|
return;
|
|
|
|
bool isPCH = false;
|
|
|
|
ArrayRef<uint8_t> data = getDebugSection(".debug$P");
|
|
if (!data.empty())
|
|
isPCH = true;
|
|
else
|
|
data = getDebugSection(".debug$T");
|
|
|
|
// symbols but no types, make a plain, empty TpiSource anyway, because it
|
|
// simplifies adding the symbols later.
|
|
if (data.empty()) {
|
|
if (!debugChunks.empty())
|
|
debugTypesObj = makeTpiSource(ctx, this);
|
|
return;
|
|
}
|
|
|
|
// Get the first type record. It will indicate if this object uses a type
|
|
// server (/Zi) or a PCH file (/Yu).
|
|
CVTypeArray types;
|
|
BinaryStreamReader reader(data, llvm::endianness::little);
|
|
cantFail(reader.readArray(types, reader.getLength()));
|
|
CVTypeArray::Iterator firstType = types.begin();
|
|
if (firstType == types.end())
|
|
return;
|
|
|
|
// Remember the .debug$T or .debug$P section.
|
|
debugTypes = data;
|
|
|
|
// This object file is a PCH file that others will depend on.
|
|
if (isPCH) {
|
|
debugTypesObj = makePrecompSource(ctx, this);
|
|
return;
|
|
}
|
|
|
|
// This object file was compiled with /Zi. Enqueue the PDB dependency.
|
|
if (firstType->kind() == LF_TYPESERVER2) {
|
|
TypeServer2Record ts = cantFail(
|
|
TypeDeserializer::deserializeAs<TypeServer2Record>(firstType->data()));
|
|
debugTypesObj = makeUseTypeServerSource(ctx, this, ts);
|
|
enqueuePdbFile(ts.getName(), this);
|
|
return;
|
|
}
|
|
|
|
// This object was compiled with /Yu. It uses types from another object file
|
|
// with a matching signature.
|
|
if (firstType->kind() == LF_PRECOMP) {
|
|
PrecompRecord precomp = cantFail(
|
|
TypeDeserializer::deserializeAs<PrecompRecord>(firstType->data()));
|
|
// We're better off trusting the LF_PRECOMP signature. In some cases the
|
|
// S_OBJNAME record doesn't contain a valid PCH signature.
|
|
if (precomp.Signature)
|
|
pchSignature = precomp.Signature;
|
|
debugTypesObj = makeUsePrecompSource(ctx, this, precomp);
|
|
// Drop the LF_PRECOMP record from the input stream.
|
|
debugTypes = debugTypes.drop_front(firstType->RecordData.size());
|
|
return;
|
|
}
|
|
|
|
// This is a plain old object file.
|
|
debugTypesObj = makeTpiSource(ctx, this);
|
|
}
|
|
|
|
// Make a PDB path assuming the PDB is in the same folder as the OBJ
|
|
static std::string getPdbBaseName(ObjFile *file, StringRef tSPath) {
|
|
StringRef localPath =
|
|
!file->parentName.empty() ? file->parentName : file->getName();
|
|
SmallString<128> path = sys::path::parent_path(localPath);
|
|
|
|
// Currently, type server PDBs are only created by MSVC cl, which only runs
|
|
// on Windows, so we can assume type server paths are Windows style.
|
|
sys::path::append(path,
|
|
sys::path::filename(tSPath, sys::path::Style::windows));
|
|
return std::string(path);
|
|
}
|
|
|
|
// The casing of the PDB path stamped in the OBJ can differ from the actual path
|
|
// on disk. With this, we ensure to always use lowercase as a key for the
|
|
// pdbInputFileInstances map, at least on Windows.
|
|
static std::string normalizePdbPath(StringRef path) {
|
|
#if defined(_WIN32)
|
|
return path.lower();
|
|
#else // LINUX
|
|
return std::string(path);
|
|
#endif
|
|
}
|
|
|
|
// If existing, return the actual PDB path on disk.
|
|
static std::optional<std::string> findPdbPath(StringRef pdbPath,
|
|
ObjFile *dependentFile) {
|
|
// Ensure the file exists before anything else. In some cases, if the path
|
|
// points to a removable device, Driver::enqueuePath() would fail with an
|
|
// error (EAGAIN, "resource unavailable try again") which we want to skip
|
|
// silently.
|
|
if (llvm::sys::fs::exists(pdbPath))
|
|
return normalizePdbPath(pdbPath);
|
|
std::string ret = getPdbBaseName(dependentFile, pdbPath);
|
|
if (llvm::sys::fs::exists(ret))
|
|
return normalizePdbPath(ret);
|
|
return std::nullopt;
|
|
}
|
|
|
|
PDBInputFile::PDBInputFile(COFFLinkerContext &ctx, MemoryBufferRef m)
|
|
: InputFile(ctx, PDBKind, m) {}
|
|
|
|
PDBInputFile::~PDBInputFile() = default;
|
|
|
|
PDBInputFile *PDBInputFile::findFromRecordPath(const COFFLinkerContext &ctx,
|
|
StringRef path,
|
|
ObjFile *fromFile) {
|
|
auto p = findPdbPath(path.str(), fromFile);
|
|
if (!p)
|
|
return nullptr;
|
|
auto it = ctx.pdbInputFileInstances.find(*p);
|
|
if (it != ctx.pdbInputFileInstances.end())
|
|
return it->second;
|
|
return nullptr;
|
|
}
|
|
|
|
void PDBInputFile::parse() {
|
|
ctx.pdbInputFileInstances[mb.getBufferIdentifier().str()] = this;
|
|
|
|
std::unique_ptr<pdb::IPDBSession> thisSession;
|
|
Error E = pdb::NativeSession::createFromPdb(
|
|
MemoryBuffer::getMemBuffer(mb, false), thisSession);
|
|
if (E) {
|
|
loadErrorStr.emplace(toString(std::move(E)));
|
|
return; // fail silently at this point - the error will be handled later,
|
|
// when merging the debug type stream
|
|
}
|
|
|
|
session.reset(static_cast<pdb::NativeSession *>(thisSession.release()));
|
|
|
|
pdb::PDBFile &pdbFile = session->getPDBFile();
|
|
auto expectedInfo = pdbFile.getPDBInfoStream();
|
|
// All PDB Files should have an Info stream.
|
|
if (!expectedInfo) {
|
|
loadErrorStr.emplace(toString(expectedInfo.takeError()));
|
|
return;
|
|
}
|
|
debugTypesObj = makeTypeServerSource(ctx, this);
|
|
}
|
|
|
|
// Used only for DWARF debug info, which is not common (except in MinGW
|
|
// environments). This returns an optional pair of file name and line
|
|
// number for where the variable was defined.
|
|
std::optional<std::pair<StringRef, uint32_t>>
|
|
ObjFile::getVariableLocation(StringRef var) {
|
|
if (!dwarf) {
|
|
dwarf = make<DWARFCache>(DWARFContext::create(*getCOFFObj()));
|
|
if (!dwarf)
|
|
return std::nullopt;
|
|
}
|
|
if (ctx.config.machine == I386)
|
|
var.consume_front("_");
|
|
std::optional<std::pair<std::string, unsigned>> ret =
|
|
dwarf->getVariableLoc(var);
|
|
if (!ret)
|
|
return std::nullopt;
|
|
return std::make_pair(saver().save(ret->first), ret->second);
|
|
}
|
|
|
|
// Used only for DWARF debug info, which is not common (except in MinGW
|
|
// environments).
|
|
std::optional<DILineInfo> ObjFile::getDILineInfo(uint32_t offset,
|
|
uint32_t sectionIndex) {
|
|
if (!dwarf) {
|
|
dwarf = make<DWARFCache>(DWARFContext::create(*getCOFFObj()));
|
|
if (!dwarf)
|
|
return std::nullopt;
|
|
}
|
|
|
|
return dwarf->getDILineInfo(offset, sectionIndex);
|
|
}
|
|
|
|
void ObjFile::enqueuePdbFile(StringRef path, ObjFile *fromFile) {
|
|
auto p = findPdbPath(path.str(), fromFile);
|
|
if (!p)
|
|
return;
|
|
auto it = ctx.pdbInputFileInstances.emplace(*p, nullptr);
|
|
if (!it.second)
|
|
return; // already scheduled for load
|
|
ctx.driver.enqueuePDB(*p);
|
|
}
|
|
|
|
ImportFile::ImportFile(COFFLinkerContext &ctx, MemoryBufferRef m)
|
|
: InputFile(ctx, ImportKind, m), live(!ctx.config.doGC), thunkLive(live) {}
|
|
|
|
void ImportFile::parse() {
|
|
const char *buf = mb.getBufferStart();
|
|
const auto *hdr = reinterpret_cast<const coff_import_header *>(buf);
|
|
|
|
// Check if the total size is valid.
|
|
if (mb.getBufferSize() != sizeof(*hdr) + hdr->SizeOfData)
|
|
fatal("broken import library");
|
|
|
|
// Read names and create an __imp_ symbol.
|
|
StringRef name = saver().save(StringRef(buf + sizeof(*hdr)));
|
|
StringRef impName = saver().save("__imp_" + name);
|
|
const char *nameStart = buf + sizeof(coff_import_header) + name.size() + 1;
|
|
dllName = std::string(StringRef(nameStart));
|
|
StringRef extName;
|
|
switch (hdr->getNameType()) {
|
|
case IMPORT_ORDINAL:
|
|
extName = "";
|
|
break;
|
|
case IMPORT_NAME:
|
|
extName = name;
|
|
break;
|
|
case IMPORT_NAME_NOPREFIX:
|
|
extName = ltrim1(name, "?@_");
|
|
break;
|
|
case IMPORT_NAME_UNDECORATE:
|
|
extName = ltrim1(name, "?@_");
|
|
extName = extName.substr(0, extName.find('@'));
|
|
break;
|
|
}
|
|
|
|
this->hdr = hdr;
|
|
externalName = extName;
|
|
|
|
impSym = ctx.symtab.addImportData(impName, this);
|
|
// If this was a duplicate, we logged an error but may continue;
|
|
// in this case, impSym is nullptr.
|
|
if (!impSym)
|
|
return;
|
|
|
|
if (hdr->getType() == llvm::COFF::IMPORT_CONST)
|
|
static_cast<void>(ctx.symtab.addImportData(name, this));
|
|
|
|
// If type is function, we need to create a thunk which jump to an
|
|
// address pointed by the __imp_ symbol. (This allows you to call
|
|
// DLL functions just like regular non-DLL functions.)
|
|
if (hdr->getType() == llvm::COFF::IMPORT_CODE)
|
|
thunkSym = ctx.symtab.addImportThunk(
|
|
name, cast_or_null<DefinedImportData>(impSym), hdr->Machine);
|
|
}
|
|
|
|
BitcodeFile::BitcodeFile(COFFLinkerContext &ctx, MemoryBufferRef mb,
|
|
StringRef archiveName, uint64_t offsetInArchive,
|
|
bool lazy)
|
|
: InputFile(ctx, BitcodeKind, mb, lazy) {
|
|
std::string path = mb.getBufferIdentifier().str();
|
|
if (ctx.config.thinLTOIndexOnly)
|
|
path = replaceThinLTOSuffix(mb.getBufferIdentifier(),
|
|
ctx.config.thinLTOObjectSuffixReplace.first,
|
|
ctx.config.thinLTOObjectSuffixReplace.second);
|
|
|
|
// ThinLTO assumes that all MemoryBufferRefs given to it have a unique
|
|
// name. If two archives define two members with the same name, this
|
|
// causes a collision which result in only one of the objects being taken
|
|
// into consideration at LTO time (which very likely causes undefined
|
|
// symbols later in the link stage). So we append file offset to make
|
|
// filename unique.
|
|
MemoryBufferRef mbref(mb.getBuffer(),
|
|
saver().save(archiveName.empty()
|
|
? path
|
|
: archiveName +
|
|
sys::path::filename(path) +
|
|
utostr(offsetInArchive)));
|
|
|
|
obj = check(lto::InputFile::create(mbref));
|
|
}
|
|
|
|
BitcodeFile::~BitcodeFile() = default;
|
|
|
|
void BitcodeFile::parse() {
|
|
llvm::StringSaver &saver = lld::saver();
|
|
|
|
std::vector<std::pair<Symbol *, bool>> comdat(obj->getComdatTable().size());
|
|
for (size_t i = 0; i != obj->getComdatTable().size(); ++i)
|
|
// FIXME: Check nodeduplicate
|
|
comdat[i] =
|
|
ctx.symtab.addComdat(this, saver.save(obj->getComdatTable()[i].first));
|
|
for (const lto::InputFile::Symbol &objSym : obj->symbols()) {
|
|
StringRef symName = saver.save(objSym.getName());
|
|
int comdatIndex = objSym.getComdatIndex();
|
|
Symbol *sym;
|
|
SectionChunk *fakeSC = nullptr;
|
|
if (objSym.isExecutable())
|
|
fakeSC = &ctx.ltoTextSectionChunk.chunk;
|
|
else
|
|
fakeSC = &ctx.ltoDataSectionChunk.chunk;
|
|
if (objSym.isUndefined()) {
|
|
sym = ctx.symtab.addUndefined(symName, this, false);
|
|
if (objSym.isWeak())
|
|
sym->deferUndefined = true;
|
|
// If one LTO object file references (i.e. has an undefined reference to)
|
|
// a symbol with an __imp_ prefix, the LTO compilation itself sees it
|
|
// as unprefixed but with a dllimport attribute instead, and doesn't
|
|
// understand the relation to a concrete IR symbol with the __imp_ prefix.
|
|
//
|
|
// For such cases, mark the symbol as used in a regular object (i.e. the
|
|
// symbol must be retained) so that the linker can associate the
|
|
// references in the end. If the symbol is defined in an import library
|
|
// or in a regular object file, this has no effect, but if it is defined
|
|
// in another LTO object file, this makes sure it is kept, to fulfill
|
|
// the reference when linking the output of the LTO compilation.
|
|
if (symName.starts_with("__imp_"))
|
|
sym->isUsedInRegularObj = true;
|
|
} else if (objSym.isCommon()) {
|
|
sym = ctx.symtab.addCommon(this, symName, objSym.getCommonSize());
|
|
} else if (objSym.isWeak() && objSym.isIndirect()) {
|
|
// Weak external.
|
|
sym = ctx.symtab.addUndefined(symName, this, true);
|
|
std::string fallback = std::string(objSym.getCOFFWeakExternalFallback());
|
|
Symbol *alias = ctx.symtab.addUndefined(saver.save(fallback));
|
|
checkAndSetWeakAlias(ctx, this, sym, alias);
|
|
} else if (comdatIndex != -1) {
|
|
if (symName == obj->getComdatTable()[comdatIndex].first) {
|
|
sym = comdat[comdatIndex].first;
|
|
if (cast<DefinedRegular>(sym)->data == nullptr)
|
|
cast<DefinedRegular>(sym)->data = &fakeSC->repl;
|
|
} else if (comdat[comdatIndex].second) {
|
|
sym = ctx.symtab.addRegular(this, symName, nullptr, fakeSC);
|
|
} else {
|
|
sym = ctx.symtab.addUndefined(symName, this, false);
|
|
}
|
|
} else {
|
|
sym = ctx.symtab.addRegular(this, symName, nullptr, fakeSC, 0,
|
|
objSym.isWeak());
|
|
}
|
|
symbols.push_back(sym);
|
|
if (objSym.isUsed())
|
|
ctx.config.gcroot.push_back(sym);
|
|
}
|
|
directives = saver.save(obj->getCOFFLinkerOpts());
|
|
}
|
|
|
|
void BitcodeFile::parseLazy() {
|
|
for (const lto::InputFile::Symbol &sym : obj->symbols())
|
|
if (!sym.isUndefined())
|
|
ctx.symtab.addLazyObject(this, sym.getName());
|
|
}
|
|
|
|
MachineTypes BitcodeFile::getMachineType() {
|
|
switch (Triple(obj->getTargetTriple()).getArch()) {
|
|
case Triple::x86_64:
|
|
return AMD64;
|
|
case Triple::x86:
|
|
return I386;
|
|
case Triple::arm:
|
|
case Triple::thumb:
|
|
return ARMNT;
|
|
case Triple::aarch64:
|
|
return ARM64;
|
|
default:
|
|
return IMAGE_FILE_MACHINE_UNKNOWN;
|
|
}
|
|
}
|
|
|
|
std::string lld::coff::replaceThinLTOSuffix(StringRef path, StringRef suffix,
|
|
StringRef repl) {
|
|
if (path.consume_back(suffix))
|
|
return (path + repl).str();
|
|
return std::string(path);
|
|
}
|
|
|
|
static bool isRVACode(COFFObjectFile *coffObj, uint64_t rva, InputFile *file) {
|
|
for (size_t i = 1, e = coffObj->getNumberOfSections(); i <= e; i++) {
|
|
const coff_section *sec = CHECK(coffObj->getSection(i), file);
|
|
if (rva >= sec->VirtualAddress &&
|
|
rva <= sec->VirtualAddress + sec->VirtualSize) {
|
|
return (sec->Characteristics & COFF::IMAGE_SCN_CNT_CODE) != 0;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void DLLFile::parse() {
|
|
// Parse a memory buffer as a PE-COFF executable.
|
|
std::unique_ptr<Binary> bin = CHECK(createBinary(mb), this);
|
|
|
|
if (auto *obj = dyn_cast<COFFObjectFile>(bin.get())) {
|
|
bin.release();
|
|
coffObj.reset(obj);
|
|
} else {
|
|
error(toString(this) + " is not a COFF file");
|
|
return;
|
|
}
|
|
|
|
if (!coffObj->getPE32Header() && !coffObj->getPE32PlusHeader()) {
|
|
error(toString(this) + " is not a PE-COFF executable");
|
|
return;
|
|
}
|
|
|
|
for (const auto &exp : coffObj->export_directories()) {
|
|
StringRef dllName, symbolName;
|
|
uint32_t exportRVA;
|
|
checkError(exp.getDllName(dllName));
|
|
checkError(exp.getSymbolName(symbolName));
|
|
checkError(exp.getExportRVA(exportRVA));
|
|
|
|
if (symbolName.empty())
|
|
continue;
|
|
|
|
bool code = isRVACode(coffObj.get(), exportRVA, this);
|
|
|
|
Symbol *s = make<Symbol>();
|
|
s->dllName = dllName;
|
|
s->symbolName = symbolName;
|
|
s->importType = code ? ImportType::IMPORT_CODE : ImportType::IMPORT_DATA;
|
|
s->nameType = ImportNameType::IMPORT_NAME;
|
|
|
|
if (coffObj->getMachine() == I386) {
|
|
s->symbolName = symbolName = saver().save("_" + symbolName);
|
|
s->nameType = ImportNameType::IMPORT_NAME_NOPREFIX;
|
|
}
|
|
|
|
StringRef impName = saver().save("__imp_" + symbolName);
|
|
ctx.symtab.addLazyDLLSymbol(this, s, impName);
|
|
if (code)
|
|
ctx.symtab.addLazyDLLSymbol(this, s, symbolName);
|
|
}
|
|
}
|
|
|
|
MachineTypes DLLFile::getMachineType() {
|
|
if (coffObj)
|
|
return static_cast<MachineTypes>(coffObj->getMachine());
|
|
return IMAGE_FILE_MACHINE_UNKNOWN;
|
|
}
|
|
|
|
void DLLFile::makeImport(DLLFile::Symbol *s) {
|
|
if (!seen.insert(s->symbolName).second)
|
|
return;
|
|
|
|
size_t impSize = s->dllName.size() + s->symbolName.size() + 2; // +2 for NULs
|
|
size_t size = sizeof(coff_import_header) + impSize;
|
|
char *buf = bAlloc().Allocate<char>(size);
|
|
memset(buf, 0, size);
|
|
char *p = buf;
|
|
auto *imp = reinterpret_cast<coff_import_header *>(p);
|
|
p += sizeof(*imp);
|
|
imp->Sig2 = 0xFFFF;
|
|
imp->Machine = coffObj->getMachine();
|
|
imp->SizeOfData = impSize;
|
|
imp->OrdinalHint = 0; // Only linking by name
|
|
imp->TypeInfo = (s->nameType << 2) | s->importType;
|
|
|
|
// Write symbol name and DLL name.
|
|
memcpy(p, s->symbolName.data(), s->symbolName.size());
|
|
p += s->symbolName.size() + 1;
|
|
memcpy(p, s->dllName.data(), s->dllName.size());
|
|
MemoryBufferRef mbref = MemoryBufferRef(StringRef(buf, size), s->dllName);
|
|
ImportFile *impFile = make<ImportFile>(ctx, mbref);
|
|
ctx.symtab.addFile(impFile);
|
|
}
|