llvm-capstone/llvm/utils/TableGen/AsmWriterEmitter.cpp

1007 lines
37 KiB
C++

//===- AsmWriterEmitter.cpp - Generate an assembly writer -----------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This tablegen backend emits an assembly printer for the current target.
// Note that this is currently fairly skeletal, but will grow over time.
//
//===----------------------------------------------------------------------===//
#include "AsmWriterInst.h"
#include "CodeGenInstAlias.h"
#include "CodeGenInstruction.h"
#include "CodeGenRegisters.h"
#include "CodeGenTarget.h"
#include "Printer.h"
#include "SequenceToOffsetTable.h"
#include "Types.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/Twine.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/Format.h"
#include "llvm/Support/FormatVariadic.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/TableGen/Error.h"
#include "llvm/TableGen/Record.h"
#include "llvm/TableGen/TableGenBackend.h"
#include <algorithm>
#include <cassert>
#include <cstddef>
#include <cstdint>
#include <deque>
#include <iterator>
#include <map>
#include <set>
#include <string>
#include <tuple>
#include <utility>
#include <vector>
using namespace llvm;
#define DEBUG_TYPE "asm-writer-emitter"
namespace {
class AsmWriterEmitter {
RecordKeeper &Records;
CodeGenTarget Target;
PrinterLLVM &PI;
ArrayRef<const CodeGenInstruction *> NumberedInstructions;
std::vector<AsmWriterInst> Instructions;
public:
AsmWriterEmitter(RecordKeeper &R, PrinterLLVM &PI);
void run();
private:
void EmitGetMnemonic(
std::vector<std::vector<std::string>> &TableDrivenOperandPrinters,
unsigned &BitsLeft, unsigned &AsmStrBits);
void EmitPrintInstruction(
std::vector<std::vector<std::string>> &TableDrivenOperandPrinters,
unsigned &BitsLeft, unsigned &AsmStrBits);
void EmitInstructions(std::vector<AsmWriterInst> &Insts,
bool PassSubtarget);
void EmitGetRegisterName();
void EmitRegisterNameString(StringRef AltName,
const std::deque<CodeGenRegister> &Registers);
void EmitPrintAliasInstruction();
void FindUniqueOperandCommands(std::vector<std::string> &UOC,
std::vector<std::vector<unsigned>> &InstIdxs,
std::vector<unsigned> &InstOpsUsed,
bool PassSubtarget) const;
};
} // end anonymous namespace
/// EmitInstructions - Emit the last instruction in the vector and any other
/// instructions that are suitably similar to it.
void AsmWriterEmitter::EmitInstructions(std::vector<AsmWriterInst> &Insts,
bool PassSubtarget) {
AsmWriterInst FirstInst = Insts.back();
Insts.pop_back();
std::vector<AsmWriterInst> SimilarInsts;
unsigned DifferingOperand = ~0;
for (unsigned i = Insts.size(); i != 0; --i) {
unsigned DiffOp = Insts[i-1].MatchesAllButOneOp(FirstInst);
if (DiffOp != ~1U) {
if (DifferingOperand == ~0U) // First match!
DifferingOperand = DiffOp;
// If this differs in the same operand as the rest of the instructions in
// this class, move it to the SimilarInsts list.
if (DifferingOperand == DiffOp || DiffOp == ~0U) {
SimilarInsts.push_back(Insts[i-1]);
Insts.erase(Insts.begin()+i-1);
}
}
}
PI.asmWriterEmitInstruction(FirstInst,
SimilarInsts,
DifferingOperand,
PassSubtarget);
}
void AsmWriterEmitter::
FindUniqueOperandCommands(std::vector<std::string> &UniqueOperandCommands,
std::vector<std::vector<unsigned>> &InstIdxs,
std::vector<unsigned> &InstOpsUsed,
bool PassSubtarget) const {
// This vector parallels UniqueOperandCommands, keeping track of which
// instructions each case are used for. It is a comma separated string of
// enums.
std::vector<std::string> InstrsForCase;
InstrsForCase.resize(UniqueOperandCommands.size());
InstOpsUsed.assign(UniqueOperandCommands.size(), 0);
for (size_t i = 0, e = Instructions.size(); i != e; ++i) {
const AsmWriterInst &Inst = Instructions[i];
if (Inst.Operands.empty())
continue; // Instruction already done.
std::string Command = " "+Inst.Operands[0].getCode(PassSubtarget)+"\n";
// Check to see if we already have 'Command' in UniqueOperandCommands.
// If not, add it.
auto I = llvm::find(UniqueOperandCommands, Command);
if (I != UniqueOperandCommands.end()) {
size_t idx = I - UniqueOperandCommands.begin();
InstrsForCase[idx] += ", ";
InstrsForCase[idx] += Inst.CGI->TheDef->getName();
InstIdxs[idx].push_back(i);
} else {
UniqueOperandCommands.push_back(std::move(Command));
InstrsForCase.push_back(std::string(Inst.CGI->TheDef->getName()));
InstIdxs.emplace_back();
InstIdxs.back().push_back(i);
// This command matches one operand so far.
InstOpsUsed.push_back(1);
}
}
// For each entry of UniqueOperandCommands, there is a set of instructions
// that uses it. If the next command of all instructions in the set are
// identical, fold it into the command.
for (size_t CommandIdx = 0, e = UniqueOperandCommands.size();
CommandIdx != e; ++CommandIdx) {
const auto &Idxs = InstIdxs[CommandIdx];
for (unsigned Op = 1; ; ++Op) {
// Find the first instruction in the set.
const AsmWriterInst &FirstInst = Instructions[Idxs.front()];
// If this instruction has no more operands, we isn't anything to merge
// into this command.
if (FirstInst.Operands.size() == Op)
break;
// Otherwise, scan to see if all of the other instructions in this command
// set share the operand.
if (any_of(drop_begin(Idxs), [&](unsigned Idx) {
const AsmWriterInst &OtherInst = Instructions[Idx];
return OtherInst.Operands.size() == Op ||
OtherInst.Operands[Op] != FirstInst.Operands[Op];
}))
break;
// Okay, everything in this command set has the same next operand. Add it
// to UniqueOperandCommands and remember that it was consumed.
std::string Command = " " +
FirstInst.Operands[Op].getCode(PassSubtarget) + "\n";
UniqueOperandCommands[CommandIdx] += Command;
InstOpsUsed[CommandIdx]++;
}
}
// Prepend some of the instructions each case is used for onto the case val.
for (unsigned i = 0, e = InstrsForCase.size(); i != e; ++i) {
std::string Instrs = InstrsForCase[i];
if (Instrs.size() > 70) {
Instrs.erase(Instrs.begin()+70, Instrs.end());
Instrs += "...";
}
if (!Instrs.empty())
UniqueOperandCommands[i] = " // " + Instrs + "\n" +
UniqueOperandCommands[i];
}
}
static void UnescapeString(std::string &Str) {
for (unsigned i = 0; i != Str.size(); ++i) {
if (Str[i] == '\\' && i != Str.size()-1) {
switch (Str[i+1]) {
default: continue; // Don't execute the code after the switch.
case 'a': Str[i] = '\a'; break;
case 'b': Str[i] = '\b'; break;
case 'e': Str[i] = 27; break;
case 'f': Str[i] = '\f'; break;
case 'n': Str[i] = '\n'; break;
case 'r': Str[i] = '\r'; break;
case 't': Str[i] = '\t'; break;
case 'v': Str[i] = '\v'; break;
case '"': Str[i] = '\"'; break;
case '\'': Str[i] = '\''; break;
case '\\': Str[i] = '\\'; break;
}
// Nuke the second character.
Str.erase(Str.begin()+i+1);
}
}
}
/// UnescapeAliasString - Supports literal braces in InstAlias asm string which
/// are escaped with '\\' to avoid being interpreted as variants. Braces must
/// be unescaped before c++ code is generated as (e.g.):
///
/// AsmString = "foo \{$\x01\}";
///
/// causes non-standard escape character warnings.
static void UnescapeAliasString(std::string &Str) {
for (unsigned i = 0; i != Str.size(); ++i) {
if (Str[i] == '\\' && i != Str.size()-1) {
switch (Str[i+1]) {
default: continue; // Don't execute the code after the switch.
case '{': Str[i] = '{'; break;
case '}': Str[i] = '}'; break;
}
// Nuke the second character.
Str.erase(Str.begin()+i+1);
}
}
}
void AsmWriterEmitter::EmitGetMnemonic(
std::vector<std::vector<std::string>> &TableDrivenOperandPrinters,
unsigned &BitsLeft, unsigned &AsmStrBits) {
Record *AsmWriter = Target.getAsmWriter();
StringRef ClassName = AsmWriter->getValueAsString("AsmWriterClassName");
bool PassSubtarget = AsmWriter->getValueAsInt("PassSubtarget");
PI.asmWriterEmitGetMnemonic(Target.getName().str(), ClassName);
// Build an aggregate string, and build a table of offsets into it.
SequenceToOffsetTable<std::string> StringTable(PrinterLLVM::getLanguage(), true);
/// OpcodeInfo - This encodes the index of the string to use for the first
/// chunk of the output as well as indices used for operand printing.
std::vector<uint64_t> OpcodeInfo(NumberedInstructions.size());
const unsigned OpcodeInfoBits = 64;
// Add all strings to the string table upfront so it can generate an optimized
// representation.
for (AsmWriterInst &AWI : Instructions) {
if (AWI.Operands[0].OperandType ==
AsmWriterOperand::isLiteralTextOperand &&
!AWI.Operands[0].Str.empty()) {
std::string Str = AWI.Operands[0].Str;
UnescapeString(Str);
StringTable.add(Str);
}
}
StringTable.layout();
unsigned MaxStringIdx = 0;
for (AsmWriterInst &AWI : Instructions) {
unsigned Idx;
if (AWI.Operands[0].OperandType != AsmWriterOperand::isLiteralTextOperand ||
AWI.Operands[0].Str.empty()) {
// Something handled by the asmwriter printer, but with no leading string.
Idx = StringTable.get("");
} else {
std::string Str = AWI.Operands[0].Str;
UnescapeString(Str);
Idx = StringTable.get(Str);
MaxStringIdx = std::max(MaxStringIdx, Idx);
// Nuke the string from the operand list. It is now handled!
AWI.Operands.erase(AWI.Operands.begin());
}
// Bias offset by one since we want 0 as a sentinel.
OpcodeInfo[AWI.CGIIndex] = Idx+1;
}
// Figure out how many bits we used for the string index.
AsmStrBits = Log2_32_Ceil(MaxStringIdx + 2);
// To reduce code size, we compactify common instructions into a few bits
// in the opcode-indexed table.
BitsLeft = OpcodeInfoBits - AsmStrBits;
while (true) {
std::vector<std::string> UniqueOperandCommands;
std::vector<std::vector<unsigned>> InstIdxs;
std::vector<unsigned> NumInstOpsHandled;
FindUniqueOperandCommands(UniqueOperandCommands, InstIdxs,
NumInstOpsHandled, PassSubtarget);
// If we ran out of operands to print, we're done.
if (UniqueOperandCommands.empty()) break;
// Compute the number of bits we need to represent these cases, this is
// ceil(log2(numentries)).
unsigned NumBits = Log2_32_Ceil(UniqueOperandCommands.size());
// If we don't have enough bits for this operand, don't include it.
if (NumBits > BitsLeft) {
LLVM_DEBUG(errs() << "Not enough bits to densely encode " << NumBits
<< " more bits\n");
break;
}
// Otherwise, we can include this in the initial lookup table. Add it in.
for (size_t i = 0, e = InstIdxs.size(); i != e; ++i) {
unsigned NumOps = NumInstOpsHandled[i];
for (unsigned Idx : InstIdxs[i]) {
OpcodeInfo[Instructions[Idx].CGIIndex] |=
(uint64_t)i << (OpcodeInfoBits-BitsLeft);
// Remove the info about this operand from the instruction.
AsmWriterInst &Inst = Instructions[Idx];
if (!Inst.Operands.empty()) {
assert(NumOps <= Inst.Operands.size() &&
"Can't remove this many ops!");
Inst.Operands.erase(Inst.Operands.begin(),
Inst.Operands.begin()+NumOps);
}
}
}
BitsLeft -= NumBits;
// Remember the handlers for this set of operands.
TableDrivenOperandPrinters.push_back(std::move(UniqueOperandCommands));
}
// Emit the string table itself.
PI.asmWriterEmitAsmStrs(StringTable);
PI.asmWriterEmitMnemonicDecodeTable(OpcodeInfoBits,
BitsLeft,
AsmStrBits,
NumberedInstructions,
OpcodeInfo);
}
/// EmitPrintInstruction - Generate the code for the "printInstruction" method
/// implementation. Destroys all instances of AsmWriterInst information, by
/// clearing the Instructions vector.
void AsmWriterEmitter::EmitPrintInstruction(
std::vector<std::vector<std::string>> &TableDrivenOperandPrinters,
unsigned &BitsLeft, unsigned &AsmStrBits) {
Record *AsmWriter = Target.getAsmWriter();
StringRef ClassName = AsmWriter->getValueAsString("AsmWriterClassName");
bool PassSubtarget = AsmWriter->getValueAsInt("PassSubtarget");
PI.asmWriterEmitPrintInstruction(Target.getName().str(),
TableDrivenOperandPrinters,
BitsLeft, AsmStrBits,
ClassName, PassSubtarget);
// Okay, delete instructions with no operand info left.
llvm::erase_if(Instructions,
[](AsmWriterInst &Inst) { return Inst.Operands.empty(); });
// Because this is a vector, we want to emit from the end. Reverse all of the
// elements in the vector.
std::reverse(Instructions.begin(), Instructions.end());
// Now that we've emitted all of the operand info that fit into 64 bits, emit
// information for those instructions that are left. This is a less dense
// encoding, but we expect the main 64-bit table to handle the majority of
// instructions.
if (!Instructions.empty()) {
// Find the opcode # of inline asm.
PI.asmWriterEmitInstrSwitch();
while (!Instructions.empty())
EmitInstructions(Instructions, PassSubtarget);
PI.asmWriterEmitCompoundClosure(2, true, false);
}
PI.asmWriterEmitCompoundClosure(0, true, false);
}
void AsmWriterEmitter::EmitRegisterNameString(
StringRef AltName,
const std::deque<CodeGenRegister> &Registers) {
SequenceToOffsetTable<std::string> StringTable(PrinterLLVM::getLanguage());
SmallVector<std::string, 4> AsmNames(Registers.size());
unsigned i = 0;
for (const auto &Reg : Registers) {
std::string &AsmName = AsmNames[i++];
// "NoRegAltName" is special. We don't need to do a lookup for that,
// as it's just a reference to the default register name.
if (AltName == "" || AltName == "NoRegAltName") {
AsmName = std::string(Reg.TheDef->getValueAsString("AsmName"));
if (AsmName.empty())
AsmName = std::string(Reg.getName());
} else {
// Make sure the register has an alternate name for this index.
std::vector<Record*> AltNameList =
Reg.TheDef->getValueAsListOfDefs("RegAltNameIndices");
unsigned Idx = 0, e;
for (e = AltNameList.size();
Idx < e && (AltNameList[Idx]->getName() != AltName);
++Idx)
;
// If the register has an alternate name for this index, use it.
// Otherwise, leave it empty as an error flag.
if (Idx < e) {
std::vector<StringRef> AltNames =
Reg.TheDef->getValueAsListOfStrings("AltNames");
if (AltNames.size() <= Idx)
PrintFatalError(Reg.TheDef->getLoc(),
"Register definition missing alt name for '" +
AltName + "'.");
AsmName = std::string(AltNames[Idx]);
}
}
StringTable.add(AsmName);
}
StringTable.layout();
PI.asmWriterEmitStringLiteralDef(StringTable, AltName);
PI.asmWriterEmitRegAsmOffsets(Registers.size(), AsmNames, StringTable, AltName);
}
void AsmWriterEmitter::EmitGetRegisterName() {
Record *AsmWriter = Target.getAsmWriter();
StringRef ClassName = AsmWriter->getValueAsString("AsmWriterClassName");
const auto &Registers = Target.getRegBank().getRegisters();
const std::vector<Record*> &AltNameIndices = Target.getRegAltNameIndices();
bool hasAltNames = AltNameIndices.size() > 1;
StringRef Namespace = Registers.front().TheDef->getValueAsString("Namespace");
PI.asmWriterEmitGetRegNameAssert(Target.getName().str(),
ClassName,
hasAltNames,
Registers.size());
if (hasAltNames) {
for (const Record *R : AltNameIndices)
EmitRegisterNameString(R->getName(), Registers);
} else
EmitRegisterNameString("", Registers);
PI.asmWriterEmitAltIdxSwitch(hasAltNames, AltNameIndices, Namespace);
}
namespace {
// IAPrinter - Holds information about an InstAlias. Two InstAliases match if
// they both have the same conditionals. In which case, we cannot print out the
// alias for that pattern.
class IAPrinter {
std::map<StringRef, std::pair<int, int>> OpMap;
std::vector<std::string> Conds;
std::string Result;
std::string AsmString;
unsigned NumMIOps;
public:
IAPrinter(std::string R, std::string AS, unsigned NumMIOps)
: Result(std::move(R)), AsmString(std::move(AS)), NumMIOps(NumMIOps) {}
void addCond(std::string C) { Conds.push_back(std::move(C)); }
ArrayRef<std::string> getConds() const { return Conds; }
size_t getCondCount() const { return Conds.size(); }
void addOperand(StringRef Op, int OpIdx, int PrintMethodIdx = -1) {
assert(OpIdx >= 0 && OpIdx < 0xFE && "Idx out of range");
assert(PrintMethodIdx >= -1 && PrintMethodIdx < 0xFF &&
"Idx out of range");
OpMap[Op] = std::make_pair(OpIdx, PrintMethodIdx);
}
unsigned getNumMIOps() { return NumMIOps; }
StringRef getResult() { return Result; }
bool isOpMapped(StringRef Op) { return OpMap.find(Op) != OpMap.end(); }
int getOpIndex(StringRef Op) { return OpMap[Op].first; }
std::pair<int, int> &getOpData(StringRef Op) { return OpMap[Op]; }
std::pair<StringRef, StringRef::iterator> parseName(StringRef::iterator Start,
StringRef::iterator End) {
StringRef::iterator I = Start;
StringRef::iterator Next;
if (*I == '{') {
// ${some_name}
Start = ++I;
while (I != End && *I != '}')
++I;
Next = I;
// eat the final '}'
if (Next != End)
++Next;
} else {
// $name, just eat the usual suspects.
while (I != End && (isAlnum(*I) || *I == '_'))
++I;
Next = I;
}
return std::make_pair(StringRef(Start, I - Start), Next);
}
std::string formatAliasString(uint32_t &UnescapedSize) {
// Directly mangle mapped operands into the string. Each operand is
// identified by a '$' sign followed by a byte identifying the number of the
// operand. We add one to the index to avoid zero bytes.
StringRef ASM(AsmString);
std::string OutString;
raw_string_ostream OS(OutString);
for (StringRef::iterator I = ASM.begin(), E = ASM.end(); I != E;) {
OS << *I;
++UnescapedSize;
if (*I == '$') {
StringRef Name;
std::tie(Name, I) = parseName(++I, E);
assert(isOpMapped(Name) && "Unmapped operand!");
int OpIndex, PrintIndex;
std::tie(OpIndex, PrintIndex) = getOpData(Name);
if (PrintIndex == -1) {
// Can use the default printOperand route.
OS << format("\\x%02X", (unsigned char)OpIndex + 1);
++UnescapedSize;
} else {
// 3 bytes if a PrintMethod is needed: 0xFF, the MCInst operand
// number, and which of our pre-detected Methods to call.
OS << format("\\xFF\\x%02X\\x%02X", OpIndex + 1, PrintIndex + 1);
UnescapedSize += 3;
}
} else {
++I;
}
}
return OutString;
}
bool operator==(const IAPrinter &RHS) const {
if (NumMIOps != RHS.NumMIOps)
return false;
if (Conds.size() != RHS.Conds.size())
return false;
unsigned Idx = 0;
for (const auto &str : Conds)
if (str != RHS.Conds[Idx++])
return false;
return true;
}
};
} // end anonymous namespace
static unsigned CountNumOperands(StringRef AsmString, unsigned Variant) {
return AsmString.count(' ') + AsmString.count('\t');
}
namespace {
struct AliasPriorityComparator {
typedef std::pair<CodeGenInstAlias, int> ValueType;
bool operator()(const ValueType &LHS, const ValueType &RHS) const {
if (LHS.second == RHS.second) {
// We don't actually care about the order, but for consistency it
// shouldn't depend on pointer comparisons.
return LessRecordByID()(LHS.first.TheDef, RHS.first.TheDef);
}
// Aliases with larger priorities should be considered first.
return LHS.second > RHS.second;
}
};
} // end anonymous namespace
void AsmWriterEmitter::EmitPrintAliasInstruction() {
Record *AsmWriter = Target.getAsmWriter();
PI.emitIncludeToggle("PRINT_ALIAS_INSTR", true);
//////////////////////////////
// Gather information about aliases we need to print
//////////////////////////////
// Emit the method that prints the alias instruction.
StringRef ClassName = AsmWriter->getValueAsString("AsmWriterClassName");
unsigned Variant = AsmWriter->getValueAsInt("Variant");
bool PassSubtarget = AsmWriter->getValueAsInt("PassSubtarget");
std::vector<Record*> AllInstAliases =
Records.getAllDerivedDefinitions("InstAlias");
// Create a map from the qualified name to a list of potential matches.
typedef std::set<std::pair<CodeGenInstAlias, int>, AliasPriorityComparator>
AliasWithPriority;
std::map<std::string, AliasWithPriority> AliasMap;
for (Record *R : AllInstAliases) {
int Priority = R->getValueAsInt("EmitPriority");
if (Priority < 1)
continue; // Aliases with priority 0 are never emitted.
const DagInit *DI = R->getValueAsDag("ResultInst");
AliasMap[getQualifiedName(DI->getOperatorAsDef(R->getLoc()))].insert(
std::make_pair(CodeGenInstAlias(R, Target), Priority));
}
// A map of which conditions need to be met for each instruction operand
// before it can be matched to the mnemonic.
std::map<std::string, std::vector<IAPrinter>> IAPrinterMap;
std::vector<std::pair<std::string, bool>> PrintMethods;
// A list of MCOperandPredicates for all operands in use, and the reverse map
std::vector<const Record*> MCOpPredicates;
DenseMap<const Record*, unsigned> MCOpPredicateMap;
for (auto &Aliases : AliasMap) {
// Collection of instruction alias rules. May contain ambiguous rules.
std::vector<IAPrinter> IAPs;
for (auto &Alias : Aliases.second) {
const CodeGenInstAlias &CGA = Alias.first;
unsigned LastOpNo = CGA.ResultInstOperandIndex.size();
std::string FlatInstAsmString =
CodeGenInstruction::FlattenAsmStringVariants(CGA.ResultInst->AsmString,
Variant);
unsigned NumResultOps = CountNumOperands(FlatInstAsmString, Variant);
std::string FlatAliasAsmString =
CodeGenInstruction::FlattenAsmStringVariants(CGA.AsmString, Variant);
UnescapeAliasString(FlatAliasAsmString);
// Don't emit the alias if it has more operands than what it's aliasing.
if (NumResultOps < CountNumOperands(FlatAliasAsmString, Variant))
continue;
StringRef Namespace = Target.getName();
unsigned NumMIOps = 0;
for (auto &ResultInstOpnd : CGA.ResultInst->Operands)
NumMIOps += ResultInstOpnd.MINumOperands;
IAPrinter IAP(CGA.Result->getAsString(), FlatAliasAsmString, NumMIOps);
unsigned MIOpNum = 0;
for (unsigned i = 0, e = LastOpNo; i != e; ++i) {
// Skip over tied operands as they're not part of an alias declaration.
auto &Operands = CGA.ResultInst->Operands;
while (true) {
unsigned OpNum = Operands.getSubOperandNumber(MIOpNum).first;
if (Operands[OpNum].MINumOperands == 1 &&
Operands[OpNum].getTiedRegister() != -1) {
// Tied operands of different RegisterClass should be explicit within
// an instruction's syntax and so cannot be skipped.
int TiedOpNum = Operands[OpNum].getTiedRegister();
if (Operands[OpNum].Rec->getName() ==
Operands[TiedOpNum].Rec->getName()) {
++MIOpNum;
continue;
}
}
break;
}
// Ignore unchecked result operands.
while (IAP.getCondCount() < MIOpNum)
IAP.addCond(PI.asmWriterGetPatCondKIgnore());
const CodeGenInstAlias::ResultOperand &RO = CGA.ResultOperands[i];
switch (RO.Kind) {
case CodeGenInstAlias::ResultOperand::K_Record: {
const Record *Rec = RO.getRecord();
StringRef ROName = RO.getName();
int PrintMethodIdx = -1;
// These two may have a PrintMethod, which we want to record (if it's
// the first time we've seen it) and provide an index for the aliasing
// code to use.
if (Rec->isSubClassOf("RegisterOperand") ||
Rec->isSubClassOf("Operand")) {
StringRef PrintMethod = Rec->getValueAsString("PrintMethod");
bool IsPCRel =
Rec->getValueAsString("OperandType") == "OPERAND_PCREL";
if (PrintMethod != "" && PrintMethod != "printOperand") {
PrintMethodIdx = llvm::find_if(PrintMethods,
[&](auto &X) {
return X.first == PrintMethod;
}) -
PrintMethods.begin();
if (static_cast<unsigned>(PrintMethodIdx) == PrintMethods.size())
PrintMethods.emplace_back(std::string(PrintMethod), IsPCRel);
}
}
if (Rec->isSubClassOf("RegisterOperand"))
Rec = Rec->getValueAsDef("RegClass");
if (Rec->isSubClassOf("RegisterClass")) {
if (!IAP.isOpMapped(ROName)) {
IAP.addOperand(ROName, MIOpNum, PrintMethodIdx);
Record *R = CGA.ResultOperands[i].getRecord();
if (R->isSubClassOf("RegisterOperand"))
R = R->getValueAsDef("RegClass");
IAP.addCond(std::string(
formatv(PI.asmWriterGetPatCondKRegClass(),
Namespace, R->getName())));
} else {
IAP.addCond(std::string(formatv(
PI.asmWriterGetPatCondKTiedReg(), IAP.getOpIndex(ROName))));
}
} else {
// Assume all printable operands are desired for now. This can be
// overridden in the InstAlias instantiation if necessary.
IAP.addOperand(ROName, MIOpNum, PrintMethodIdx);
// There might be an additional predicate on the MCOperand
unsigned Entry = MCOpPredicateMap[Rec];
if (!Entry) {
if (!Rec->isValueUnset("MCOperandPredicate")) {
MCOpPredicates.push_back(Rec);
Entry = MCOpPredicates.size();
MCOpPredicateMap[Rec] = Entry;
} else
break; // No conditions on this operand at all
}
IAP.addCond(
std::string(formatv(PI.asmWriterGetPatCondKCustom(), Entry)));
}
break;
}
case CodeGenInstAlias::ResultOperand::K_Imm: {
// Just because the alias has an immediate result, doesn't mean the
// MCInst will. An MCExpr could be present, for example.
auto Imm = CGA.ResultOperands[i].getImm();
int32_t Imm32 = int32_t(Imm);
if (Imm != Imm32)
PrintFatalError("Matching an alias with an immediate out of the "
"range of int32_t is not supported");
IAP.addCond(std::string(
formatv(PI.asmWriterGetPatCondKImm(), Imm32)));
break;
}
case CodeGenInstAlias::ResultOperand::K_Reg:
if (!CGA.ResultOperands[i].getRegister()) {
IAP.addCond(std::string(formatv(
PI.asmWriterGetPatCondKNoReg(), Namespace)));
break;
}
StringRef Reg = CGA.ResultOperands[i].getRegister()->getName();
IAP.addCond(std::string(
formatv(PI.asmWriterGetPatCondKReg(), Namespace, Reg)));
break;
}
MIOpNum += RO.getMINumOperands();
}
std::vector<Record *> ReqFeatures;
if (PassSubtarget) {
// We only consider ReqFeatures predicates if PassSubtarget
std::vector<Record *> RF =
CGA.TheDef->getValueAsListOfDefs("Predicates");
copy_if(RF, std::back_inserter(ReqFeatures), [](Record *R) {
return R->getValueAsBit("AssemblerMatcherPredicate");
});
}
for (Record *const R : ReqFeatures) {
const DagInit *D = R->getValueAsDag("AssemblerCondDag");
auto *Op = dyn_cast<DefInit>(D->getOperator());
if (!Op)
PrintFatalError(R->getLoc(), "Invalid AssemblerCondDag!");
StringRef CombineType = Op->getDef()->getName();
if (CombineType != "any_of" && CombineType != "all_of")
PrintFatalError(R->getLoc(), "Invalid AssemblerCondDag!");
if (D->getNumArgs() == 0)
PrintFatalError(R->getLoc(), "Invalid AssemblerCondDag!");
bool IsOr = CombineType == "any_of";
// Change (any_of FeatureAll, (any_of ...)) to (any_of FeatureAll, ...).
if (IsOr && D->getNumArgs() == 2 && isa<DagInit>(D->getArg(1))) {
DagInit *RHS = cast<DagInit>(D->getArg(1));
SmallVector<Init *> Args{D->getArg(0)};
SmallVector<StringInit *> ArgNames{D->getArgName(0)};
for (unsigned i = 0, e = RHS->getNumArgs(); i != e; ++i) {
Args.push_back(RHS->getArg(i));
ArgNames.push_back(RHS->getArgName(i));
}
D = DagInit::get(D->getOperator(), nullptr, Args, ArgNames);
}
for (auto *Arg : D->getArgs()) {
bool IsNeg = false;
if (auto *NotArg = dyn_cast<DagInit>(Arg)) {
if (NotArg->getOperator()->getAsString() != "not" ||
NotArg->getNumArgs() != 1)
PrintFatalError(R->getLoc(), "Invalid AssemblerCondDag!");
Arg = NotArg->getArg(0);
IsNeg = true;
}
if (!isa<DefInit>(Arg) ||
!cast<DefInit>(Arg)->getDef()->isSubClassOf("SubtargetFeature"))
PrintFatalError(R->getLoc(), "Invalid AssemblerCondDag!");
IAP.addCond(std::string(formatv(
PI.asmWriterGetPatCondKFeature(), IsOr ? "Or" : "",
IsNeg ? "Neg" : "", Namespace, Arg->getAsString())));
}
// If an AssemblerPredicate with ors is used, note end of list should
// these be combined.
if (IsOr)
IAP.addCond(PI.asmWriterGetPatCondKEndOrFeature());
}
IAPrinterMap[Aliases.first].push_back(std::move(IAP));
}
}
//////////////////////////////
// Write out the printAliasInstr function
//////////////////////////////
std::string PatternsForOpcode;
raw_string_ostream OpcodeO(PatternsForOpcode);
unsigned PatternCount = 0;
std::string Patterns;
raw_string_ostream PatternO(Patterns);
unsigned CondCount = 0;
std::string Conds;
raw_string_ostream CondO(Conds);
// All flattened alias strings.
std::map<std::string, uint32_t> AsmStringOffsets;
std::vector<std::pair<uint32_t, std::string>> AsmStrings;
size_t AsmStringsSize = 0;
// Iterate over the opcodes in enum order so they are sorted by opcode for
// binary search.
for (const CodeGenInstruction *Inst : NumberedInstructions) {
auto It = IAPrinterMap.find(getQualifiedName(Inst->TheDef));
if (It == IAPrinterMap.end())
continue;
std::vector<IAPrinter> &IAPs = It->second;
std::vector<IAPrinter*> UniqueIAPs;
// Remove any ambiguous alias rules.
for (auto &LHS : IAPs) {
bool IsDup = false;
for (const auto &RHS : IAPs) {
if (&LHS != &RHS && LHS == RHS) {
IsDup = true;
break;
}
}
if (!IsDup)
UniqueIAPs.push_back(&LHS);
}
if (UniqueIAPs.empty()) continue;
unsigned PatternStart = PatternCount;
// Insert the pattern start and opcode in the pattern list for debugging.
PatternO << formatv(PI.asmWriterGetPatOpcStart(), It->first, PatternStart);
for (IAPrinter *IAP : UniqueIAPs) {
// Start each condition list with a comment of the resulting pattern that
// we're trying to match.
unsigned CondStart = CondCount;
CondO << formatv(PI.asmWriterGetCondPatStart(), IAP->getResult(), CondStart);
for (const auto &Cond : IAP->getConds())
CondO << PI.asmWriterGetCond(Cond);
CondCount += IAP->getCondCount();
// After operands have been examined, re-encode the alias string with
// escapes indicating how operands should be printed.
uint32_t UnescapedSize = 0;
std::string EncodedAsmString = IAP->formatAliasString(UnescapedSize);
auto Insertion =
AsmStringOffsets.insert({EncodedAsmString, AsmStringsSize});
if (Insertion.second) {
// If the string is new, add it to the vector.
AsmStrings.push_back({AsmStringsSize, EncodedAsmString});
AsmStringsSize += UnescapedSize + 1;
}
unsigned AsmStrOffset = Insertion.first->second;
PatternO << formatv(PI.asmWriterGetPatternFormat(), AsmStrOffset,
CondStart, IAP->getNumMIOps(), IAP->getCondCount());
++PatternCount;
}
OpcodeO << formatv(PI.asmWriterGetOpcodeFormat(), It->first, PatternStart,
PatternCount - PatternStart);
}
if (OpcodeO.str().empty()) {
PI.asmWriterEmitPrintAliasInstrHeader(Target.getName().str(), ClassName, PassSubtarget);
PI.asmWriterEmitPrintAliasInstrBodyRetFalse();
PI.emitIncludeToggle("PRINT_ALIAS_INSTR", false, false);
return;
}
// Forward declare the validation method if needed.
if (!MCOpPredicates.empty())
PI.asmWriterEmitDeclValid(Target.getName().str(), ClassName);
PI.asmWriterEmitPrintAliasInstrHeader(Target.getName().str(),
ClassName,
PassSubtarget);
PI.asmWriterEmitPrintAliasInstrBody(OpcodeO,
PatternO,
CondO,
AsmStrings,
MCOpPredicates,
Target.getName().str(),
ClassName,
PassSubtarget);
//////////////////////////////
// Write out the printCustomAliasOperand function
//////////////////////////////
PI.asmWriterEmitPrintAliasOp(Target.getName().str(),
ClassName,
PrintMethods,
PassSubtarget);
PI.asmWriterEmitPrintMC(Target.getName().str(), ClassName, MCOpPredicates);
PI.emitIncludeToggle("PRINT_ALIAS_INSTR", false, false);
}
AsmWriterEmitter::AsmWriterEmitter(RecordKeeper &R, PrinterLLVM &PI) : Records(R), Target(R), PI(PI) {
Record *AsmWriter = Target.getAsmWriter();
unsigned Variant = AsmWriter->getValueAsInt("Variant");
// Get the instruction numbering.
NumberedInstructions = Target.getInstructionsByEnumValue();
for (unsigned i = 0, e = NumberedInstructions.size(); i != e; ++i) {
const CodeGenInstruction *I = NumberedInstructions[i];
if (!I->AsmString.empty() && I->TheDef->getName() != "PHI")
Instructions.emplace_back(*I, i, Variant);
}
}
void AsmWriterEmitter::run() {
std::vector<std::vector<std::string>> TableDrivenOperandPrinters;
unsigned BitsLeft = 0;
unsigned AsmStrBits = 0;
PI.asmWriterEmitSourceFileHeader(Records);
EmitGetMnemonic(TableDrivenOperandPrinters, BitsLeft, AsmStrBits);
EmitPrintInstruction(TableDrivenOperandPrinters, BitsLeft, AsmStrBits);
EmitGetRegisterName();
EmitPrintAliasInstruction();
}
void EmitAsmWriter(RecordKeeper &RK, raw_ostream &OS) {
CodeGenTarget CGTarget(RK);
PrinterLanguage const PL = PrinterLLVM::getLanguage();
PrinterLLVM *PI;
formatted_raw_ostream FOS(OS);
if (PL == PRINTER_LANG_CPP) {
PI = new PrinterLLVM(FOS, CGTarget.getName().str());
} else if (PL == PRINTER_LANG_CAPSTONE_C) {
PI = new PrinterCapstone(FOS, CGTarget.getName().str());
} else {
llvm_unreachable("AsmWriterEmitter does not support the given output language.");
}
AsmWriterEmitter(RK, *PI).run();
delete PI;
}
static TableGen::Emitter::Opt X("gen-asm-writer", EmitAsmWriter,
"Generate instruction descriptions");