llvm-capstone/llvm/utils/TableGen/SubtargetEmitter.cpp
2024-05-29 08:31:35 +00:00

1313 lines
48 KiB
C++

//===- SubtargetEmitter.cpp - Generate subtarget enumerations -------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This tablegen backend emits subtarget enumerations.
//
//===----------------------------------------------------------------------===//
#include "Printer.h"
#include "PrinterTypes.h"
#include "SubtargetEmitterTypes.h"
using namespace llvm;
#define DEBUG_TYPE "subtarget-emitter"
namespace {
/// Sorting predicate to sort record pointers by their
/// FieldName field.
struct LessRecordFieldFieldName {
bool operator()(const Record *Rec1, const Record *Rec2) const {
return Rec1->getValueAsString("FieldName") <
Rec2->getValueAsString("FieldName");
}
};
class SubtargetEmitter {
SchedClassTablesT SchedClassTables;
struct LessWriteProcResources {
bool operator()(const MCWriteProcResEntry &LHS,
const MCWriteProcResEntry &RHS) {
return LHS.ProcResourceIdx < RHS.ProcResourceIdx;
}
};
CodeGenTarget TGT;
RecordKeeper &Records;
CodeGenSchedModels &SchedModels;
std::string Target;
PrinterLLVM &PI;
void Enumeration(DenseMap<Record *, unsigned> &FeatureMap);
void EmitSubtargetInfoMacroCalls();
unsigned FeatureKeyValues(
const DenseMap<Record *, unsigned> &FeatureMap);
unsigned CPUKeyValues(
const DenseMap<Record *, unsigned> &FeatureMap);
void EmitStageAndOperandCycleData(
std::vector<std::vector<InstrItinerary>>
&ProcItinLists);
void EmitItineraries(
std::vector<std::vector<InstrItinerary>>
&ProcItinLists);
void EmitLoadStoreQueueInfo(const CodeGenProcModel &ProcModel);
void EmitExtraProcessorInfo(const CodeGenProcModel &ProcModel);
void EmitProcessorResources(const CodeGenProcModel &ProcModel);
Record *FindWriteResources(const CodeGenSchedRW &SchedWrite,
const CodeGenProcModel &ProcModel);
Record *FindReadAdvance(const CodeGenSchedRW &SchedRead,
const CodeGenProcModel &ProcModel);
void ExpandProcResources(RecVec &PRVec, std::vector<int64_t> &ReleaseAtCycles,
std::vector<int64_t> &AcquireAtCycles,
const CodeGenProcModel &ProcModel);
void GenSchedClassTables(const CodeGenProcModel &ProcModel,
SchedClassTablesT &SchedTables);
void EmitSchedClassTables(SchedClassTablesT &SchedTables);
void EmitProcessorModels();
void EmitSchedModelHelpers(const std::string &ClassName);
void emitSchedModelHelpersImpl(bool OnlyExpandMCInstPredicates = false);
void emitGenMCSubtargetInfo();
void EmitMCInstrAnalysisPredicateFunctions();
void EmitSchedModel();
void emitGetMacroFusions(const std::string &ClassName);
void EmitHwModeCheck(const std::string &ClassName);
void ParseFeaturesFunction();
public:
SubtargetEmitter(RecordKeeper &R, PrinterLLVM &PI)
: TGT(R), Records(R), SchedModels(TGT.getSchedModels()),
Target(TGT.getName()), PI(PI) {}
void run();
};
} // end anonymous namespace
//
// Enumeration - Emit the specified class as an enumeration.
//
void SubtargetEmitter::Enumeration(
DenseMap<Record *, unsigned> &FeatureMap) {
// Get all records of class and sort
std::vector<Record*> DefList =
Records.getAllDerivedDefinitions("SubtargetFeature");
llvm::sort(DefList, LessRecord());
unsigned N = DefList.size();
if (N == 0)
return;
if (N + 1 > MAX_SUBTARGET_FEATURES)
PrintFatalError("Too many subtarget features! Bump MAX_SUBTARGET_FEATURES.");
PI.emitNamespace(Target, true);
PI.subtargetEmitFeatureEnum(FeatureMap, DefList, N);
PI.emitNamespace(Target, false);
}
static void printFeatureMask(PrinterLLVM const &PI, RecVec &FeatureList,
const DenseMap<Record *, unsigned> &FeatureMap) {
std::array<uint64_t, MAX_SUBTARGET_WORDS> Mask = {};
for (const Record *Feature : FeatureList) {
unsigned Bit = FeatureMap.lookup(Feature);
Mask[Bit / 64] |= 1ULL << (Bit % 64);
}
PI.subtargetEmitPrintFeatureMask(Mask);
}
/// Emit some information about the SubtargetFeature as calls to a macro so
/// that they can be used from C++.
void SubtargetEmitter::EmitSubtargetInfoMacroCalls() {
PI.emitIncludeToggle("GET_SUBTARGETINFO_MACRO", true, true, true);
std::vector<Record *> FeatureList =
Records.getAllDerivedDefinitions("SubtargetFeature");
llvm::sort(FeatureList, LessRecordFieldFieldName());
for (const Record *Feature : FeatureList) {
const StringRef FieldName = Feature->getValueAsString("FieldName");
const StringRef Value = Feature->getValueAsString("Value");
// Only handle boolean features for now, excluding BitVectors and enums.
const bool IsBool = (Value == "false" || Value == "true") &&
!StringRef(FieldName).contains('[');
if (!IsBool)
continue;
PI.subtargetEmitGetSTIMacro(Value, FieldName);
}
PI.emitIncludeToggle("GET_SUBTARGETINFO_MACRO", false, true, true);
}
//
// FeatureKeyValues - Emit data of all the subtarget features. Used by the
// command line.
//
unsigned SubtargetEmitter::FeatureKeyValues(
const DenseMap<Record *, unsigned> &FeatureMap) {
// Gather and sort all the features
std::vector<Record*> FeatureList =
Records.getAllDerivedDefinitions("SubtargetFeature");
if (FeatureList.empty())
return 0;
llvm::sort(FeatureList, LessRecordFieldName());
// Begin feature table
PI.subtargetEmitFeatureKVHeader(Target);
// For each feature
unsigned NumFeatures = 0;
for (const Record *Feature : FeatureList) {
// Next feature
StringRef Name = Feature->getName();
StringRef CommandLineName = Feature->getValueAsString("Name");
StringRef Desc = Feature->getValueAsString("Desc");
if (CommandLineName.empty()) continue;
PI.subtargetEmitFeatureKVPartI(Target, CommandLineName, Name, Desc);
RecVec ImpliesList = Feature->getValueAsListOfDefs("Implies");
printFeatureMask(PI, ImpliesList, FeatureMap);
PI.subtargetEmitFeatureKVPartII();
++NumFeatures;
}
// End feature table
PI.subtargetEmitFeatureKVEnd();
return NumFeatures;
}
//
// CPUKeyValues - Emit data of all the subtarget processors. Used by command
// line.
//
unsigned
SubtargetEmitter::CPUKeyValues(
const DenseMap<Record *, unsigned> &FeatureMap) {
// Gather and sort processor information
std::vector<Record*> ProcessorList =
Records.getAllDerivedDefinitions("Processor");
llvm::sort(ProcessorList, LessRecordFieldName());
// Begin processor table
PI.subtargetEmitCPUKVHeader(Target);
// For each processor
for (Record *Processor : ProcessorList) {
StringRef Name = Processor->getValueAsString("Name");
RecVec FeatureList = Processor->getValueAsListOfDefs("Features");
RecVec TuneFeatureList = Processor->getValueAsListOfDefs("TuneFeatures");
PI.subtargetEmitCPUKVPartI(Name);
printFeatureMask(PI, FeatureList, FeatureMap);
PI.subtargetEmitCPUKVPartII();
printFeatureMask(PI, TuneFeatureList, FeatureMap);
// Emit the scheduler model pointer.
const std::string &ProcModelName =
SchedModels.getModelForProc(Processor).ModelName;
PI.subtargetEmitCPUKVPartIII(ProcModelName);
}
// End processor table
PI.subtargetEmitCPUKVEnd();
return ProcessorList.size();
}
//
// EmitStageAndOperandCycleData - Generate unique itinerary stages and operand
// cycle tables. Create a list of InstrItinerary objects (ProcItinLists) indexed
// by CodeGenSchedClass::Index.
//
void SubtargetEmitter::
EmitStageAndOperandCycleData(std::vector<std::vector<InstrItinerary>>
&ProcItinLists) {
PI.subtargetEmitFunctionalItinaryUnits(SchedModels);
// Begin stages table
std::string StageTable = PI.subtargetGetBeginStageTable(Target);
// Begin operand cycle table
std::string OperandCycleTable = PI.subtargetGetBeginOperandCycleTable(Target);
// Begin pipeline bypass table
std::string BypassTable = PI.subtargetGetBeginBypassTable(Target);
// For each Itinerary across all processors, add a unique entry to the stages,
// operand cycles, and pipeline bypass tables. Then add the new Itinerary
// object with computed offsets to the ProcItinLists result.
unsigned StageCount = 1, OperandCycleCount = 1;
std::map<std::string, unsigned> ItinStageMap, ItinOperandMap;
for (const CodeGenProcModel &ProcModel : SchedModels.procModels()) {
// Add process itinerary to the list.
ProcItinLists.resize(ProcItinLists.size()+1);
// If this processor defines no itineraries, then leave the itinerary list
// empty.
std::vector<InstrItinerary> &ItinList = ProcItinLists.back();
if (!ProcModel.hasItineraries())
continue;
StringRef Name = ProcModel.ItinsDef->getName();
ItinList.resize(SchedModels.numInstrSchedClasses());
assert(ProcModel.ItinDefList.size() == ItinList.size() && "bad Itins");
for (unsigned SchedClassIdx = 0, SchedClassEnd = ItinList.size();
SchedClassIdx < SchedClassEnd; ++SchedClassIdx) {
// Next itinerary data
Record *ItinData = ProcModel.ItinDefList[SchedClassIdx];
// Get string and stage count
std::string ItinStageString;
unsigned NStages = 0;
if (ItinData)
PI.subtargetFormItineraryStageString(std::string(Name),
ItinData,
ItinStageString,
NStages);
// Get string and operand cycle count
std::string ItinOperandCycleString;
unsigned NOperandCycles = 0;
std::string ItinBypassString;
if (ItinData) {
PI.subtargetFormItineraryOperandCycleString(ItinData,
ItinOperandCycleString,
NOperandCycles);
PI.subtargetFormItineraryBypassString(std::string(Name),
ItinData,
ItinBypassString,
NOperandCycles);
}
// Check to see if stage already exists and create if it doesn't
uint16_t FindStage = 0;
if (NStages > 0) {
FindStage = ItinStageMap[ItinStageString];
if (FindStage == 0) {
// Emit as { cycles, u1 | u2 | ... | un, timeinc }, // indices
StageTable += PI.subtargetGetStageEntryPartI(ItinStageString, StageCount);
if (NStages > 1)
StageTable += PI.subtargetGetStageEntryPartII(StageCount, NStages);
StageTable += PI.subtargetGetStageEntryPartIII();
// Record Itin class number.
ItinStageMap[ItinStageString] = FindStage = StageCount;
StageCount += NStages;
}
}
// Check to see if operand cycle already exists and create if it doesn't
uint16_t FindOperandCycle = 0;
if (NOperandCycles > 0) {
std::string ItinOperandString = ItinOperandCycleString+ItinBypassString;
FindOperandCycle = ItinOperandMap[ItinOperandString];
if (FindOperandCycle == 0) {
// Emit as cycle, // index
OperandCycleTable += PI.subtargetGetOperandCycleEntryPartI(
ItinOperandCycleString);
std::string OperandIdxComment = itostr(OperandCycleCount);
if (NOperandCycles > 1)
OperandIdxComment += PI.subtargetGetOperandCycleEntryPartII(
OperandCycleCount, NOperandCycles);
OperandCycleTable += PI.subtargetGetOperandCycleEntryPartIII(
OperandIdxComment);
// Record Itin class number.
ItinOperandMap[ItinOperandCycleString] =
FindOperandCycle = OperandCycleCount;
// Emit as bypass, // index
BypassTable += PI.subtargetGetOperandCycleEntryPartIV(
ItinBypassString, OperandIdxComment);
OperandCycleCount += NOperandCycles;
}
}
// Set up itinerary as location and location + stage count
int16_t NumUOps = ItinData ? ItinData->getValueAsInt("NumMicroOps") : 0;
InstrItinerary Intinerary = {
NumUOps,
FindStage,
uint16_t(FindStage + NStages),
FindOperandCycle,
uint16_t(FindOperandCycle + NOperandCycles),
};
// Inject - empty slots will be 0, 0
ItinList[SchedClassIdx] = Intinerary;
}
}
// Closing stage
StageTable += PI.subtargetGetEndStageTable();
// Closing operand cycles
OperandCycleTable += PI.subtargetGetEndOperandCycleTable();
BypassTable += PI.subtargetGetEndBypassTable();
// Emit tables.
PI.subtargetEmitStageAndSycleTables(StageTable, OperandCycleTable, BypassTable);
}
//
// EmitProcessorData - Generate data for processor itineraries that were
// computed during EmitStageAndOperandCycleData(). ProcItinLists lists all
// Itineraries for each processor. The Itinerary lists are indexed on
// CodeGenSchedClass::Index.
//
void SubtargetEmitter::
EmitItineraries(
std::vector<std::vector<InstrItinerary>> &ProcItinLists) {
// Multiple processor models may share an itinerary record. Emit it once.
SmallPtrSet<Record*, 8> ItinsDefSet;
// For each processor's machine model
std::vector<std::vector<InstrItinerary>>::iterator
ProcItinListsIter = ProcItinLists.begin();
for (CodeGenSchedModels::ProcIter PIM = SchedModels.procModelBegin(),
PE = SchedModels.procModelEnd(); PIM != PE; ++PIM, ++ProcItinListsIter) {
Record *ItinsDef = PIM->ItinsDef;
if (!ItinsDefSet.insert(ItinsDef).second)
continue;
// Get the itinerary list for the processor.
assert(ProcItinListsIter != ProcItinLists.end() && "bad iterator");
std::vector<InstrItinerary> &ItinList = *ProcItinListsIter;
// Empty itineraries aren't referenced anywhere in the tablegen output
// so don't emit them.
if (ItinList.empty())
continue;
PI.subtargetEmitProcessorItineraryTable(ItinsDef->getName().str(),
ItinList,
SchedModels);
}
}
static void EmitRetireControlUnitInfo(const CodeGenProcModel &ProcModel,
PrinterLLVM &PI) {
int64_t ReorderBufferSize = 0, MaxRetirePerCycle = 0;
if (Record *RCU = ProcModel.RetireControlUnit) {
ReorderBufferSize =
std::max(ReorderBufferSize, RCU->getValueAsInt("ReorderBufferSize"));
MaxRetirePerCycle =
std::max(MaxRetirePerCycle, RCU->getValueAsInt("MaxRetirePerCycle"));
}
PI.subtargetEmitReorderBufferSize(ReorderBufferSize);
PI.subtargetEmitMaxRetirePerCycle(MaxRetirePerCycle);
}
void SubtargetEmitter::EmitLoadStoreQueueInfo(const CodeGenProcModel &ProcModel) {
unsigned QueueID = 0;
if (ProcModel.LoadQueue) {
const Record *Queue = ProcModel.LoadQueue->getValueAsDef("QueueDescriptor");
QueueID = 1 + std::distance(ProcModel.ProcResourceDefs.begin(),
find(ProcModel.ProcResourceDefs, Queue));
}
PI.subtargetEmitResourceDescriptorLoadQueue(QueueID);
QueueID = 0;
if (ProcModel.StoreQueue) {
const Record *Queue =
ProcModel.StoreQueue->getValueAsDef("QueueDescriptor");
QueueID = 1 + std::distance(ProcModel.ProcResourceDefs.begin(),
find(ProcModel.ProcResourceDefs, Queue));
}
PI.subtargetEmitResourceDescriptorStoreQueue(QueueID);
}
void SubtargetEmitter::EmitExtraProcessorInfo(const CodeGenProcModel &ProcModel) {
// Generate a table of register file descriptors (one entry per each user
// defined register file), and a table of register costs.
unsigned NumCostEntries;
if (llvm::all_of(ProcModel.RegisterFiles, [](const CodeGenRegisterFile &RF) {
return RF.hasDefaultCosts();
}))
NumCostEntries = 0;
else
NumCostEntries = PI.subtargetEmitRegisterFileTables(ProcModel);
// Now generate a table for the extra processor info.
PI.subtargetEmitMCExtraProcInfoTableHeader(ProcModel.ModelName);
// Add information related to the retire control unit.
EmitRetireControlUnitInfo(ProcModel, PI);
// Add information related to the register files (i.e. where to find register
// file descriptors and register costs).
PI.subtargetEmitRegisterFileInfo(ProcModel, ProcModel.RegisterFiles.size(),
NumCostEntries);
// Add information about load/store queues.
EmitLoadStoreQueueInfo(ProcModel);
PI.subtargetEmitMCExtraProcInfoTableEnd();
}
void SubtargetEmitter::EmitProcessorResources(const CodeGenProcModel &ProcModel) {
PI.subtargetEmitProcessorResourceSubUnits(ProcModel, SchedModels);
PI.subtargetEmitMCProcResourceDescHeader(ProcModel.ModelName);
unsigned SubUnitsOffset = 1;
for (unsigned i = 0, e = ProcModel.ProcResourceDefs.size(); i < e; ++i) {
Record *PRDef = ProcModel.ProcResourceDefs[i];
Record *SuperDef = nullptr;
unsigned SuperIdx = 0;
unsigned NumUnits = 0;
const unsigned SubUnitsBeginOffset = SubUnitsOffset;
int BufferSize = PRDef->getValueAsInt("BufferSize");
if (PRDef->isSubClassOf("ProcResGroup")) {
RecVec ResUnits = PRDef->getValueAsListOfDefs("Resources");
for (Record *RU : ResUnits) {
NumUnits += RU->getValueAsInt("NumUnits");
SubUnitsOffset += RU->getValueAsInt("NumUnits");
}
}
else {
// Find the SuperIdx
if (PRDef->getValueInit("Super")->isComplete()) {
SuperDef =
SchedModels.findProcResUnits(PRDef->getValueAsDef("Super"),
ProcModel, PRDef->getLoc());
SuperIdx = ProcModel.getProcResourceIdx(SuperDef);
}
NumUnits = PRDef->getValueAsInt("NumUnits");
}
PI.subtargetEmitMCProcResourceDesc(PRDef,
SuperDef,
ProcModel.ModelName,
SubUnitsOffset,
SuperIdx,
NumUnits,
BufferSize,
i, SubUnitsBeginOffset);
}
PI.subtargetEmitMCProcResourceDescEnd();
}
// Find the WriteRes Record that defines processor resources for this
// SchedWrite.
Record *SubtargetEmitter::FindWriteResources(
const CodeGenSchedRW &SchedWrite, const CodeGenProcModel &ProcModel) {
// Check if the SchedWrite is already subtarget-specific and directly
// specifies a set of processor resources.
if (SchedWrite.TheDef->isSubClassOf("SchedWriteRes"))
return SchedWrite.TheDef;
Record *AliasDef = nullptr;
for (Record *A : SchedWrite.Aliases) {
const CodeGenSchedRW &AliasRW =
SchedModels.getSchedRW(A->getValueAsDef("AliasRW"));
if (AliasRW.TheDef->getValueInit("SchedModel")->isComplete()) {
Record *ModelDef = AliasRW.TheDef->getValueAsDef("SchedModel");
if (&SchedModels.getProcModel(ModelDef) != &ProcModel)
continue;
}
if (AliasDef)
PrintFatalError(AliasRW.TheDef->getLoc(), "Multiple aliases "
"defined for processor " + ProcModel.ModelName +
" Ensure only one SchedAlias exists per RW.");
AliasDef = AliasRW.TheDef;
}
if (AliasDef && AliasDef->isSubClassOf("SchedWriteRes"))
return AliasDef;
// Check this processor's list of write resources.
Record *ResDef = nullptr;
for (Record *WR : ProcModel.WriteResDefs) {
if (!WR->isSubClassOf("WriteRes"))
continue;
if (AliasDef == WR->getValueAsDef("WriteType")
|| SchedWrite.TheDef == WR->getValueAsDef("WriteType")) {
if (ResDef) {
PrintFatalError(WR->getLoc(), "Resources are defined for both "
"SchedWrite and its alias on processor " +
ProcModel.ModelName);
}
ResDef = WR;
}
}
// TODO: If ProcModel has a base model (previous generation processor),
// then call FindWriteResources recursively with that model here.
if (!ResDef) {
PrintFatalError(ProcModel.ModelDef->getLoc(),
Twine("Processor does not define resources for ") +
SchedWrite.TheDef->getName());
}
return ResDef;
}
/// Find the ReadAdvance record for the given SchedRead on this processor or
/// return NULL.
Record *SubtargetEmitter::FindReadAdvance(const CodeGenSchedRW &SchedRead,
const CodeGenProcModel &ProcModel) {
// Check for SchedReads that directly specify a ReadAdvance.
if (SchedRead.TheDef->isSubClassOf("SchedReadAdvance"))
return SchedRead.TheDef;
// Check this processor's list of aliases for SchedRead.
Record *AliasDef = nullptr;
for (Record *A : SchedRead.Aliases) {
const CodeGenSchedRW &AliasRW =
SchedModels.getSchedRW(A->getValueAsDef("AliasRW"));
if (AliasRW.TheDef->getValueInit("SchedModel")->isComplete()) {
Record *ModelDef = AliasRW.TheDef->getValueAsDef("SchedModel");
if (&SchedModels.getProcModel(ModelDef) != &ProcModel)
continue;
}
if (AliasDef)
PrintFatalError(AliasRW.TheDef->getLoc(), "Multiple aliases "
"defined for processor " + ProcModel.ModelName +
" Ensure only one SchedAlias exists per RW.");
AliasDef = AliasRW.TheDef;
}
if (AliasDef && AliasDef->isSubClassOf("SchedReadAdvance"))
return AliasDef;
// Check this processor's ReadAdvanceList.
Record *ResDef = nullptr;
for (Record *RA : ProcModel.ReadAdvanceDefs) {
if (!RA->isSubClassOf("ReadAdvance"))
continue;
if (AliasDef == RA->getValueAsDef("ReadType")
|| SchedRead.TheDef == RA->getValueAsDef("ReadType")) {
if (ResDef) {
PrintFatalError(RA->getLoc(), "Resources are defined for both "
"SchedRead and its alias on processor " +
ProcModel.ModelName);
}
ResDef = RA;
}
}
// TODO: If ProcModel has a base model (previous generation processor),
// then call FindReadAdvance recursively with that model here.
if (!ResDef && SchedRead.TheDef->getName() != "ReadDefault") {
PrintFatalError(ProcModel.ModelDef->getLoc(),
Twine("Processor does not define resources for ") +
SchedRead.TheDef->getName());
}
return ResDef;
}
// Expand an explicit list of processor resources into a full list of implied
// resource groups and super resources that cover them.
void SubtargetEmitter::ExpandProcResources(
RecVec &PRVec, std::vector<int64_t> &ReleaseAtCycles,
std::vector<int64_t> &AcquireAtCycles, const CodeGenProcModel &PM) {
assert(PRVec.size() == ReleaseAtCycles.size() && "failed precondition");
for (unsigned i = 0, e = PRVec.size(); i != e; ++i) {
Record *PRDef = PRVec[i];
RecVec SubResources;
if (PRDef->isSubClassOf("ProcResGroup"))
SubResources = PRDef->getValueAsListOfDefs("Resources");
else {
SubResources.push_back(PRDef);
PRDef = SchedModels.findProcResUnits(PRDef, PM, PRDef->getLoc());
for (Record *SubDef = PRDef;
SubDef->getValueInit("Super")->isComplete();) {
if (SubDef->isSubClassOf("ProcResGroup")) {
// Disallow this for simplicitly.
PrintFatalError(SubDef->getLoc(), "Processor resource group "
" cannot be a super resources.");
}
Record *SuperDef =
SchedModels.findProcResUnits(SubDef->getValueAsDef("Super"), PM,
SubDef->getLoc());
PRVec.push_back(SuperDef);
ReleaseAtCycles.push_back(ReleaseAtCycles[i]);
AcquireAtCycles.push_back(AcquireAtCycles[i]);
SubDef = SuperDef;
}
}
for (Record *PR : PM.ProcResourceDefs) {
if (PR == PRDef || !PR->isSubClassOf("ProcResGroup"))
continue;
RecVec SuperResources = PR->getValueAsListOfDefs("Resources");
RecIter SubI = SubResources.begin(), SubE = SubResources.end();
for( ; SubI != SubE; ++SubI) {
if (!is_contained(SuperResources, *SubI)) {
break;
}
}
if (SubI == SubE) {
PRVec.push_back(PR);
ReleaseAtCycles.push_back(ReleaseAtCycles[i]);
AcquireAtCycles.push_back(AcquireAtCycles[i]);
}
}
}
}
// Generate the SchedClass table for this processor and update global
// tables. Must be called for each processor in order.
void SubtargetEmitter::GenSchedClassTables(const CodeGenProcModel &ProcModel,
SchedClassTablesT &SchedTables) {
SchedTables.ProcSchedClasses.resize(SchedTables.ProcSchedClasses.size() + 1);
if (!ProcModel.hasInstrSchedModel())
return;
std::vector<MCSchedClassDesc> &SCTab = SchedTables.ProcSchedClasses.back();
LLVM_DEBUG(dbgs() << "\n+++ SCHED CLASSES (GenSchedClassTables) +++\n");
for (const CodeGenSchedClass &SC : SchedModels.schedClasses()) {
LLVM_DEBUG(SC.dump(&SchedModels));
SCTab.resize(SCTab.size() + 1);
MCSchedClassDesc &SCDesc = SCTab.back();
// SCDesc.Name is guarded by NDEBUG
SCDesc.NumMicroOps = 0;
SCDesc.BeginGroup = false;
SCDesc.EndGroup = false;
SCDesc.RetireOOO = false;
SCDesc.WriteProcResIdx = 0;
SCDesc.WriteLatencyIdx = 0;
SCDesc.ReadAdvanceIdx = 0;
// A Variant SchedClass has no resources of its own.
bool HasVariants = false;
for (const CodeGenSchedTransition &CGT :
make_range(SC.Transitions.begin(), SC.Transitions.end())) {
if (CGT.ProcIndex == ProcModel.Index) {
HasVariants = true;
break;
}
}
if (HasVariants) {
SCDesc.NumMicroOps = MCSchedClassDesc::VariantNumMicroOps;
continue;
}
// Determine if the SchedClass is actually reachable on this processor. If
// not don't try to locate the processor resources, it will fail.
// If ProcIndices contains 0, this class applies to all processors.
assert(!SC.ProcIndices.empty() && "expect at least one procidx");
if (SC.ProcIndices[0] != 0) {
if (!is_contained(SC.ProcIndices, ProcModel.Index))
continue;
}
IdxVec Writes = SC.Writes;
IdxVec Reads = SC.Reads;
if (!SC.InstRWs.empty()) {
// This class has a default ReadWrite list which can be overridden by
// InstRW definitions.
Record *RWDef = nullptr;
for (Record *RW : SC.InstRWs) {
Record *RWModelDef = RW->getValueAsDef("SchedModel");
if (&ProcModel == &SchedModels.getProcModel(RWModelDef)) {
RWDef = RW;
break;
}
}
if (RWDef) {
Writes.clear();
Reads.clear();
SchedModels.findRWs(RWDef->getValueAsListOfDefs("OperandReadWrites"),
Writes, Reads);
}
}
if (Writes.empty()) {
// Check this processor's itinerary class resources.
for (Record *I : ProcModel.ItinRWDefs) {
RecVec Matched = I->getValueAsListOfDefs("MatchedItinClasses");
if (is_contained(Matched, SC.ItinClassDef)) {
SchedModels.findRWs(I->getValueAsListOfDefs("OperandReadWrites"),
Writes, Reads);
break;
}
}
if (Writes.empty()) {
LLVM_DEBUG(dbgs() << ProcModel.ModelName
<< " does not have resources for class " << SC.Name
<< '\n');
SCDesc.NumMicroOps = MCSchedClassDesc::InvalidNumMicroOps;
}
}
// Sum resources across all operand writes.
std::vector<MCWriteProcResEntry> WriteProcResources;
std::vector<MCWriteLatencyEntry> WriteLatencies;
std::vector<std::string> WriterNames;
std::vector<MCReadAdvanceEntry> ReadAdvanceEntries;
for (unsigned W : Writes) {
IdxVec WriteSeq;
SchedModels.expandRWSeqForProc(W, WriteSeq, /*IsRead=*/false,
ProcModel);
// For each operand, create a latency entry.
MCWriteLatencyEntry WLEntry;
WLEntry.Cycles = 0;
unsigned WriteID = WriteSeq.back();
WriterNames.push_back(SchedModels.getSchedWrite(WriteID).Name);
// If this Write is not referenced by a ReadAdvance, don't distinguish it
// from other WriteLatency entries.
if (!SchedModels.hasReadOfWrite(
SchedModels.getSchedWrite(WriteID).TheDef)) {
WriteID = 0;
}
WLEntry.WriteResourceID = WriteID;
for (unsigned WS : WriteSeq) {
Record *WriteRes =
FindWriteResources(SchedModels.getSchedWrite(WS), ProcModel);
// Mark the parent class as invalid for unsupported write types.
if (WriteRes->getValueAsBit("Unsupported")) {
SCDesc.NumMicroOps = MCSchedClassDesc::InvalidNumMicroOps;
break;
}
WLEntry.Cycles += WriteRes->getValueAsInt("Latency");
SCDesc.NumMicroOps += WriteRes->getValueAsInt("NumMicroOps");
SCDesc.BeginGroup |= WriteRes->getValueAsBit("BeginGroup");
SCDesc.EndGroup |= WriteRes->getValueAsBit("EndGroup");
SCDesc.BeginGroup |= WriteRes->getValueAsBit("SingleIssue");
SCDesc.EndGroup |= WriteRes->getValueAsBit("SingleIssue");
SCDesc.RetireOOO |= WriteRes->getValueAsBit("RetireOOO");
// Create an entry for each ProcResource listed in WriteRes.
RecVec PRVec = WriteRes->getValueAsListOfDefs("ProcResources");
std::vector<int64_t> ReleaseAtCycles =
WriteRes->getValueAsListOfInts("ReleaseAtCycles");
std::vector<int64_t> AcquireAtCycles =
WriteRes->getValueAsListOfInts("AcquireAtCycles");
// Check consistency of the two vectors carrying the start and
// stop cycles of the resources.
if (!ReleaseAtCycles.empty() &&
ReleaseAtCycles.size() != PRVec.size()) {
// If ReleaseAtCycles is provided, check consistency.
PrintFatalError(
WriteRes->getLoc(),
Twine("Inconsistent release at cycles: size(ReleaseAtCycles) != "
"size(ProcResources): ")
.concat(Twine(PRVec.size()))
.concat(" vs ")
.concat(Twine(ReleaseAtCycles.size())));
}
if (!AcquireAtCycles.empty() && AcquireAtCycles.size() != PRVec.size()) {
PrintFatalError(
WriteRes->getLoc(),
Twine("Inconsistent resource cycles: size(AcquireAtCycles) != "
"size(ProcResources): ")
.concat(Twine(AcquireAtCycles.size()))
.concat(" vs ")
.concat(Twine(PRVec.size())));
}
if (ReleaseAtCycles.empty()) {
// If ReleaseAtCycles is not provided, default to one cycle
// per resource.
ReleaseAtCycles.resize(PRVec.size(), 1);
}
if (AcquireAtCycles.empty()) {
// If AcquireAtCycles is not provided, reserve the resource
// starting from cycle 0.
AcquireAtCycles.resize(PRVec.size(), 0);
}
assert(AcquireAtCycles.size() == ReleaseAtCycles.size());
ExpandProcResources(PRVec, ReleaseAtCycles, AcquireAtCycles, ProcModel);
assert(AcquireAtCycles.size() == ReleaseAtCycles.size());
for (unsigned PRIdx = 0, PREnd = PRVec.size();
PRIdx != PREnd; ++PRIdx) {
MCWriteProcResEntry WPREntry;
WPREntry.ProcResourceIdx = ProcModel.getProcResourceIdx(PRVec[PRIdx]);
assert(WPREntry.ProcResourceIdx && "Bad ProcResourceIdx");
WPREntry.ReleaseAtCycle = ReleaseAtCycles[PRIdx];
WPREntry.AcquireAtCycle = AcquireAtCycles[PRIdx];
if (AcquireAtCycles[PRIdx] > ReleaseAtCycles[PRIdx]) {
PrintFatalError(
WriteRes->getLoc(),
Twine("Inconsistent resource cycles: AcquireAtCycles "
"< ReleaseAtCycles must hold."));
}
if (AcquireAtCycles[PRIdx] < 0) {
PrintFatalError(WriteRes->getLoc(),
Twine("Invalid value: AcquireAtCycle "
"must be a non-negative value."));
}
// If this resource is already used in this sequence, add the current
// entry's cycles so that the same resource appears to be used
// serially, rather than multiple parallel uses. This is important for
// in-order machine where the resource consumption is a hazard.
unsigned WPRIdx = 0, WPREnd = WriteProcResources.size();
for( ; WPRIdx != WPREnd; ++WPRIdx) {
if (WriteProcResources[WPRIdx].ProcResourceIdx
== WPREntry.ProcResourceIdx) {
// TODO: multiple use of the same resources would
// require either 1. thinking of how to handle multiple
// intervals for the same resource in
// `<Target>WriteProcResTable` (see
// `SubtargetEmitter::EmitSchedClassTables`), or
// 2. thinking how to merge multiple intervals into a
// single interval.
assert(WPREntry.AcquireAtCycle == 0 &&
"multiple use ofthe same resource is not yet handled");
WriteProcResources[WPRIdx].ReleaseAtCycle +=
WPREntry.ReleaseAtCycle;
break;
}
}
if (WPRIdx == WPREnd)
WriteProcResources.push_back(WPREntry);
}
}
WriteLatencies.push_back(WLEntry);
}
// Create an entry for each operand Read in this SchedClass.
// Entries must be sorted first by UseIdx then by WriteResourceID.
for (unsigned UseIdx = 0, EndIdx = Reads.size();
UseIdx != EndIdx; ++UseIdx) {
Record *ReadAdvance =
FindReadAdvance(SchedModels.getSchedRead(Reads[UseIdx]), ProcModel);
if (!ReadAdvance)
continue;
// Mark the parent class as invalid for unsupported write types.
if (ReadAdvance->getValueAsBit("Unsupported")) {
SCDesc.NumMicroOps = MCSchedClassDesc::InvalidNumMicroOps;
break;
}
RecVec ValidWrites = ReadAdvance->getValueAsListOfDefs("ValidWrites");
IdxVec WriteIDs;
if (ValidWrites.empty())
WriteIDs.push_back(0);
else {
for (Record *VW : ValidWrites) {
WriteIDs.push_back(SchedModels.getSchedRWIdx(VW, /*IsRead=*/false));
}
}
llvm::sort(WriteIDs);
for(unsigned W : WriteIDs) {
MCReadAdvanceEntry RAEntry;
RAEntry.UseIdx = UseIdx;
RAEntry.WriteResourceID = W;
RAEntry.Cycles = ReadAdvance->getValueAsInt("Cycles");
ReadAdvanceEntries.push_back(RAEntry);
}
}
if (SCDesc.NumMicroOps == MCSchedClassDesc::InvalidNumMicroOps) {
WriteProcResources.clear();
WriteLatencies.clear();
ReadAdvanceEntries.clear();
}
// Add the information for this SchedClass to the global tables using basic
// compression.
//
// WritePrecRes entries are sorted by ProcResIdx.
llvm::sort(WriteProcResources, LessWriteProcResources());
SCDesc.NumWriteProcResEntries = WriteProcResources.size();
std::vector<MCWriteProcResEntry>::iterator WPRPos =
std::search(SchedTables.WriteProcResources.begin(),
SchedTables.WriteProcResources.end(),
WriteProcResources.begin(), WriteProcResources.end());
if (WPRPos != SchedTables.WriteProcResources.end())
SCDesc.WriteProcResIdx = WPRPos - SchedTables.WriteProcResources.begin();
else {
SCDesc.WriteProcResIdx = SchedTables.WriteProcResources.size();
SchedTables.WriteProcResources.insert(WPRPos, WriteProcResources.begin(),
WriteProcResources.end());
}
// Latency entries must remain in operand order.
SCDesc.NumWriteLatencyEntries = WriteLatencies.size();
std::vector<MCWriteLatencyEntry>::iterator WLPos =
std::search(SchedTables.WriteLatencies.begin(),
SchedTables.WriteLatencies.end(),
WriteLatencies.begin(), WriteLatencies.end());
if (WLPos != SchedTables.WriteLatencies.end()) {
unsigned idx = WLPos - SchedTables.WriteLatencies.begin();
SCDesc.WriteLatencyIdx = idx;
for (unsigned i = 0, e = WriteLatencies.size(); i < e; ++i)
if (SchedTables.WriterNames[idx + i].find(WriterNames[i]) ==
std::string::npos) {
SchedTables.WriterNames[idx + i] += std::string("_") + WriterNames[i];
}
}
else {
SCDesc.WriteLatencyIdx = SchedTables.WriteLatencies.size();
llvm::append_range(SchedTables.WriteLatencies, WriteLatencies);
llvm::append_range(SchedTables.WriterNames, WriterNames);
}
// ReadAdvanceEntries must remain in operand order.
SCDesc.NumReadAdvanceEntries = ReadAdvanceEntries.size();
std::vector<MCReadAdvanceEntry>::iterator RAPos =
std::search(SchedTables.ReadAdvanceEntries.begin(),
SchedTables.ReadAdvanceEntries.end(),
ReadAdvanceEntries.begin(), ReadAdvanceEntries.end());
if (RAPos != SchedTables.ReadAdvanceEntries.end())
SCDesc.ReadAdvanceIdx = RAPos - SchedTables.ReadAdvanceEntries.begin();
else {
SCDesc.ReadAdvanceIdx = SchedTables.ReadAdvanceEntries.size();
llvm::append_range(SchedTables.ReadAdvanceEntries, ReadAdvanceEntries);
}
}
}
void SubtargetEmitter::EmitProcessorModels() {
// For each processor model.
for (const CodeGenProcModel &PM : SchedModels.procModels()) {
// Emit extra processor info if available.
if (PM.hasExtraProcessorInfo())
EmitExtraProcessorInfo(PM);
// Emit processor resource table.
if (PM.hasInstrSchedModel())
EmitProcessorResources(PM);
else if(!PM.ProcResourceDefs.empty())
PrintFatalError(PM.ModelDef->getLoc(), "SchedMachineModel defines "
"ProcResources without defining WriteRes SchedWriteRes");
// Begin processor itinerary properties
PI.subtargetEmitProcModelHeader(PM.ModelName);
PI.subtargetEmitProcessorProp(PM.ModelDef, "IssueWidth", ',');
PI.subtargetEmitProcessorProp(PM.ModelDef, "MicroOpBufferSize", ',');
PI.subtargetEmitProcessorProp(PM.ModelDef, "LoopMicroOpBufferSize", ',');
PI.subtargetEmitProcessorProp(PM.ModelDef, "LoadLatency", ',');
PI.subtargetEmitProcessorProp(PM.ModelDef, "HighLatency", ',');
PI.subtargetEmitProcessorProp(PM.ModelDef, "MispredictPenalty", ',');
PI.subtargetEmitProcModel(PM, SchedModels);
}
}
//
// EmitSchedModel - Emits all scheduling model tables, folding common patterns.
//
void SubtargetEmitter::EmitSchedModel() {
PI.subtargetEmitDBGMacrosBegin();
if (SchedModels.hasItineraries()) {
std::vector<std::vector<InstrItinerary>> ProcItinLists;
// Emit the stage data
EmitStageAndOperandCycleData(ProcItinLists);
EmitItineraries(ProcItinLists);
}
PI.subtargetEmitPreOperandTableComment();
SchedClassTablesT SchedTables;
for (const CodeGenProcModel &ProcModel : SchedModels.procModels()) {
GenSchedClassTables(ProcModel, SchedTables);
}
PI.subtargetEmitSchedClassTables(SchedTables, Target, SchedModels);
PI.subtargetEmitDBGMacrosEnd();
// Emit the processor machine model
EmitProcessorModels();
}
static bool isTruePredicate(const Record *Rec) {
return Rec->isSubClassOf("MCSchedPredicate") &&
Rec->getValueAsDef("Pred")->isSubClassOf("MCTrue");
}
static bool hasMCSchedPredicates(const CodeGenSchedTransition &T) {
return all_of(T.PredTerm, [](const Record *Rec) {
return Rec->isSubClassOf("MCSchedPredicate");
});
}
static void collectVariantClasses(const CodeGenSchedModels &SchedModels,
IdxVec &VariantClasses,
bool OnlyExpandMCInstPredicates) {
for (const CodeGenSchedClass &SC : SchedModels.schedClasses()) {
// Ignore non-variant scheduling classes.
if (SC.Transitions.empty())
continue;
if (OnlyExpandMCInstPredicates) {
// Ignore this variant scheduling class no transitions use any meaningful
// MCSchedPredicate definitions.
if (llvm::none_of(SC.Transitions, hasMCSchedPredicates))
continue;
}
VariantClasses.push_back(SC.Index);
}
}
static void collectProcessorIndices(const CodeGenSchedClass &SC,
IdxVec &ProcIndices) {
// A variant scheduling class may define transitions for multiple
// processors. This function identifies wich processors are associated with
// transition rules specified by variant class `SC`.
for (const CodeGenSchedTransition &T : SC.Transitions) {
IdxVec PI;
std::set_union(&T.ProcIndex, &T.ProcIndex + 1, ProcIndices.begin(),
ProcIndices.end(), std::back_inserter(PI));
ProcIndices.swap(PI);
}
}
static bool isAlwaysTrue(const CodeGenSchedTransition &T) {
return llvm::all_of(T.PredTerm, isTruePredicate);
}
void SubtargetEmitter::emitSchedModelHelpersImpl(
bool OnlyExpandMCInstPredicates) {
IdxVec VariantClasses;
collectVariantClasses(SchedModels, VariantClasses,
OnlyExpandMCInstPredicates);
if (VariantClasses.empty()) {
PI.subtargetEmitSchedModelHelperEpilogue(OnlyExpandMCInstPredicates);
return;
}
// Construct a switch statement where the condition is a check on the
// scheduling class identifier. There is a `case` for every variant class
// defined by the processor models of this target.
// Each `case` implements a number of rules to resolve (i.e. to transition from)
// a variant scheduling class to another scheduling class. Rules are
// described by instances of CodeGenSchedTransition. Note that transitions may
// not be valid for all processors.
PI.subtargetEmitSchedClassSwitch();
for (unsigned VC : VariantClasses) {
IdxVec ProcIndices;
const CodeGenSchedClass &SC = SchedModels.getSchedClass(VC);
collectProcessorIndices(SC, ProcIndices);
PI.subtargetEmitSchedClassCase(VC, SC.Name);
PI.subtargetPrepareSchedClassPreds(Target, OnlyExpandMCInstPredicates);
for (unsigned Pi : ProcIndices) {
PI.subtargetEmitSchedClassProcGuard(Pi, OnlyExpandMCInstPredicates,
(SchedModels.procModelBegin() + Pi)->ModelName);
// Now emit transitions associated with processor PI.
const CodeGenSchedTransition *FinalT = nullptr;
for (const CodeGenSchedTransition &T : SC.Transitions) {
if (Pi != 0 && T.ProcIndex != Pi)
continue;
// Emit only transitions based on MCSchedPredicate, if it's the case.
// At least the transition specified by NoSchedPred is emitted,
// which becomes the default transition for those variants otherwise
// not based on MCSchedPredicate.
// FIXME: preferably, llvm-mca should instead assume a reasonable
// default when a variant transition is not based on MCSchedPredicate
// for a given processor.
if (OnlyExpandMCInstPredicates && !hasMCSchedPredicates(T))
continue;
// If transition is folded to 'return X' it should be the last one.
if (isAlwaysTrue(T)) {
FinalT = &T;
continue;
}
PI.subtargetEmitPredicates(T, SchedModels.getSchedClass(T.ToClassIdx),
isTruePredicate, 3);
}
if (FinalT)
PI.subtargetEmitPredicates(*FinalT, SchedModels.getSchedClass(FinalT->ToClassIdx),
isTruePredicate);
PI.subtargetEmitProcTransitionEnd();
if (Pi == 0)
break;
}
PI.subtargetEmitSchedClassCaseEnd(SC);
}
PI.subtargetEmitSchedClassSwitchEnd();
PI.subtargetEmitSchedModelHelperEpilogue(OnlyExpandMCInstPredicates);
}
void SubtargetEmitter::EmitSchedModelHelpers(const std::string &ClassName) {
PI.subtargetEmitResolveSchedClassHdr(ClassName);
// Emit the predicate prolog code.
PI.subtargetEmitPredicateProlog(Records);
// Emit target predicates.
emitSchedModelHelpersImpl();
PI.subtargetEmitResolveSchedClassEnd(ClassName);
PI.subtargetEmitResolveVariantSchedClass(Target, ClassName);
PI.subtargetEmitExpandedSTIPreds(Target, ClassName, SchedModels);
}
void SubtargetEmitter::EmitHwModeCheck(const std::string &ClassName) {
const CodeGenHwModes &CGH = TGT.getHwModes();
assert(CGH.getNumModeIds() > 0);
if (CGH.getNumModeIds() == 1)
return;
PI.subtargetEmitHwModes(CGH, ClassName);
}
// Produces a subtarget specific function for parsing
// the subtarget features string.
void SubtargetEmitter::ParseFeaturesFunction() {
std::vector<Record*> Features =
Records.getAllDerivedDefinitions("SubtargetFeature");
llvm::sort(Features, LessRecord());
PI.subtargetEmitParseFeaturesFunction(Target, Features);
}
void SubtargetEmitter::emitGenMCSubtargetInfo() {
PI.emitNamespace(Target + "_MC", true);
PI.subtargetEmitResolveVariantSchedClassImplHdr();
emitSchedModelHelpersImpl(/* OnlyExpandMCPredicates */ true);
PI.subtargetEmitResolveVariantSchedClassImplEnd();
PI.emitNamespace(Target + "_MC", false);
PI.subtargetEmitGenMCSubtargetInfoClass(Target, TGT.getHwModes().getNumModeIds() > 1);
EmitHwModeCheck(Target + "GenMCSubtargetInfo");
}
void SubtargetEmitter::EmitMCInstrAnalysisPredicateFunctions() {
PI.emitIncludeToggle("GET_STIPREDICATE_DECLS_FOR_MC_ANALYSIS", true);
PI.subtargetEmitExpandedSTIPredsMCAnaDecl(Target, SchedModels);
PI.emitIncludeToggle("GET_STIPREDICATE_DECLS_FOR_MC_ANALYSIS", false);
PI.emitIncludeToggle("GET_STIPREDICATE_DEFS_FOR_MC_ANALYSIS", true);
std::string ClassPrefix = Target + "MCInstrAnalysis";
PI.subtargetEmitExpandedSTIPreds(Target, ClassPrefix, SchedModels);
PI.emitIncludeToggle("GET_STIPREDICATE_DEFS_FOR_MC_ANALYSIS", false);
}
//
// SubtargetEmitter::run - Main subtarget enumeration emitter.
//
void SubtargetEmitter::run() {
PI.subtargetEmitSourceFileHeader();
PI.emitIncludeToggle("GET_SUBTARGETINFO_ENUM", true);
DenseMap<Record *, unsigned> FeatureMap;
PI.emitNamespace("llvm", true);
Enumeration(FeatureMap);
PI.emitNamespace("llvm", false);
PI.emitIncludeToggle("GET_SUBTARGETINFO_ENUM", false);
EmitSubtargetInfoMacroCalls();
PI.emitIncludeToggle("GET_SUBTARGETINFO_MC_DESC", true);
PI.emitNamespace("llvm", true);
#if 0
PI.emitNamespace("", true);
#endif
unsigned NumFeatures = FeatureKeyValues(FeatureMap);
EmitSchedModel();
PI.emitString("\n");
unsigned NumProcs = CPUKeyValues(FeatureMap);
PI.emitString("\n");
#if 0
PI.emitNamespace("", false);
#endif
// MCInstrInfo initialization routine.
emitGenMCSubtargetInfo();
PI.subtargetEmitMCSubtargetInfoImpl(Target, NumFeatures, NumProcs, SchedModels.hasItineraries());
PI.emitNamespace("llvm", false);
PI.emitIncludeToggle("GET_SUBTARGETINFO_MC_DESC", false);
PI.emitIncludeToggle("GET_SUBTARGETINFO_TARGET_DESC", true);
PI.subtargetEmitIncludeSTIDesc();
ParseFeaturesFunction();
PI.emitIncludeToggle("GET_SUBTARGETINFO_TARGET_DESC", false);
// Create a TargetSubtargetInfo subclass to hide the MC layer initialization.
PI.emitIncludeToggle("GET_SUBTARGETINFO_HEADER", true);
std::string ClassName = Target + "GenSubtargetInfo";
PI.emitNamespace("llvm", true);
PI.subtargetEmitDFAPacketizerClass(TGT, Target, ClassName);
PI.subtargetEmitExpandedSTIPredsHeader(Target, SchedModels);
PI.subtargetEmitDFAPacketizerClassEnd();
PI.emitNamespace("llvm", false);
PI.emitIncludeToggle("GET_SUBTARGETINFO_HEADER", false);
PI.emitIncludeToggle("GET_SUBTARGETINFO_CTOR", true);
PI.subtargetEmitSTICtor();
PI.emitNamespace("llvm", true);
PI.subtargetEmitExternKVArrays(Target, SchedModels.hasItineraries());
PI.subtargetEmitClassDefs(Target,
ClassName,
NumFeatures,
NumProcs,
SchedModels.hasItineraries());
EmitSchedModelHelpers(ClassName);
EmitHwModeCheck(ClassName);
PI.subtargetEmitGetMacroFusions(TGT, Target, ClassName);
PI.emitNamespace("llvm", false);
PI.emitIncludeToggle("GET_SUBTARGETINFO_CTOR", false);
EmitMCInstrAnalysisPredicateFunctions();
}
void EmitSubtarget(RecordKeeper &RK, raw_ostream &OS) {
CodeGenTarget CGTarget(RK);
PrinterLanguage const PL = PrinterLLVM::getLanguage();
PrinterLLVM *PI;
formatted_raw_ostream FOS(OS);
switch(PL) {
default:
llvm_unreachable("Subtarget backend does not support the selected printer language.");
case PRINTER_LANG_CPP:
PI = new PrinterLLVM(FOS, CGTarget.getName().str());
break;
case PRINTER_LANG_CAPSTONE_C:
PI = new PrinterCapstone(FOS, CGTarget.getName().str());
break;
}
SubtargetEmitter(RK, *PI).run();
delete PI;
}
static TableGen::Emitter::Opt
X("gen-subtarget", EmitSubtarget, "Generate subtarget enumerations");