mirror of
https://github.com/capstone-engine/llvm-capstone.git
synced 2025-05-14 01:46:41 +00:00
1313 lines
48 KiB
C++
1313 lines
48 KiB
C++
//===- SubtargetEmitter.cpp - Generate subtarget enumerations -------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This tablegen backend emits subtarget enumerations.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "Printer.h"
|
|
#include "PrinterTypes.h"
|
|
#include "SubtargetEmitterTypes.h"
|
|
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "subtarget-emitter"
|
|
|
|
namespace {
|
|
|
|
/// Sorting predicate to sort record pointers by their
|
|
/// FieldName field.
|
|
struct LessRecordFieldFieldName {
|
|
bool operator()(const Record *Rec1, const Record *Rec2) const {
|
|
return Rec1->getValueAsString("FieldName") <
|
|
Rec2->getValueAsString("FieldName");
|
|
}
|
|
};
|
|
|
|
class SubtargetEmitter {
|
|
|
|
SchedClassTablesT SchedClassTables;
|
|
|
|
struct LessWriteProcResources {
|
|
bool operator()(const MCWriteProcResEntry &LHS,
|
|
const MCWriteProcResEntry &RHS) {
|
|
return LHS.ProcResourceIdx < RHS.ProcResourceIdx;
|
|
}
|
|
};
|
|
|
|
CodeGenTarget TGT;
|
|
RecordKeeper &Records;
|
|
CodeGenSchedModels &SchedModels;
|
|
std::string Target;
|
|
PrinterLLVM &PI;
|
|
|
|
void Enumeration(DenseMap<Record *, unsigned> &FeatureMap);
|
|
void EmitSubtargetInfoMacroCalls();
|
|
unsigned FeatureKeyValues(
|
|
const DenseMap<Record *, unsigned> &FeatureMap);
|
|
unsigned CPUKeyValues(
|
|
const DenseMap<Record *, unsigned> &FeatureMap);
|
|
void EmitStageAndOperandCycleData(
|
|
std::vector<std::vector<InstrItinerary>>
|
|
&ProcItinLists);
|
|
void EmitItineraries(
|
|
std::vector<std::vector<InstrItinerary>>
|
|
&ProcItinLists);
|
|
void EmitLoadStoreQueueInfo(const CodeGenProcModel &ProcModel);
|
|
void EmitExtraProcessorInfo(const CodeGenProcModel &ProcModel);
|
|
void EmitProcessorResources(const CodeGenProcModel &ProcModel);
|
|
Record *FindWriteResources(const CodeGenSchedRW &SchedWrite,
|
|
const CodeGenProcModel &ProcModel);
|
|
Record *FindReadAdvance(const CodeGenSchedRW &SchedRead,
|
|
const CodeGenProcModel &ProcModel);
|
|
void ExpandProcResources(RecVec &PRVec, std::vector<int64_t> &ReleaseAtCycles,
|
|
std::vector<int64_t> &AcquireAtCycles,
|
|
const CodeGenProcModel &ProcModel);
|
|
void GenSchedClassTables(const CodeGenProcModel &ProcModel,
|
|
SchedClassTablesT &SchedTables);
|
|
void EmitSchedClassTables(SchedClassTablesT &SchedTables);
|
|
void EmitProcessorModels();
|
|
void EmitSchedModelHelpers(const std::string &ClassName);
|
|
void emitSchedModelHelpersImpl(bool OnlyExpandMCInstPredicates = false);
|
|
void emitGenMCSubtargetInfo();
|
|
void EmitMCInstrAnalysisPredicateFunctions();
|
|
|
|
void EmitSchedModel();
|
|
void emitGetMacroFusions(const std::string &ClassName);
|
|
void EmitHwModeCheck(const std::string &ClassName);
|
|
void ParseFeaturesFunction();
|
|
|
|
public:
|
|
SubtargetEmitter(RecordKeeper &R, PrinterLLVM &PI)
|
|
: TGT(R), Records(R), SchedModels(TGT.getSchedModels()),
|
|
Target(TGT.getName()), PI(PI) {}
|
|
|
|
void run();
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
//
|
|
// Enumeration - Emit the specified class as an enumeration.
|
|
//
|
|
void SubtargetEmitter::Enumeration(
|
|
DenseMap<Record *, unsigned> &FeatureMap) {
|
|
// Get all records of class and sort
|
|
std::vector<Record*> DefList =
|
|
Records.getAllDerivedDefinitions("SubtargetFeature");
|
|
llvm::sort(DefList, LessRecord());
|
|
|
|
unsigned N = DefList.size();
|
|
if (N == 0)
|
|
return;
|
|
if (N + 1 > MAX_SUBTARGET_FEATURES)
|
|
PrintFatalError("Too many subtarget features! Bump MAX_SUBTARGET_FEATURES.");
|
|
|
|
PI.emitNamespace(Target, true);
|
|
PI.subtargetEmitFeatureEnum(FeatureMap, DefList, N);
|
|
PI.emitNamespace(Target, false);
|
|
}
|
|
|
|
static void printFeatureMask(PrinterLLVM const &PI, RecVec &FeatureList,
|
|
const DenseMap<Record *, unsigned> &FeatureMap) {
|
|
std::array<uint64_t, MAX_SUBTARGET_WORDS> Mask = {};
|
|
for (const Record *Feature : FeatureList) {
|
|
unsigned Bit = FeatureMap.lookup(Feature);
|
|
Mask[Bit / 64] |= 1ULL << (Bit % 64);
|
|
}
|
|
PI.subtargetEmitPrintFeatureMask(Mask);
|
|
}
|
|
|
|
/// Emit some information about the SubtargetFeature as calls to a macro so
|
|
/// that they can be used from C++.
|
|
void SubtargetEmitter::EmitSubtargetInfoMacroCalls() {
|
|
PI.emitIncludeToggle("GET_SUBTARGETINFO_MACRO", true, true, true);
|
|
|
|
std::vector<Record *> FeatureList =
|
|
Records.getAllDerivedDefinitions("SubtargetFeature");
|
|
llvm::sort(FeatureList, LessRecordFieldFieldName());
|
|
|
|
for (const Record *Feature : FeatureList) {
|
|
const StringRef FieldName = Feature->getValueAsString("FieldName");
|
|
const StringRef Value = Feature->getValueAsString("Value");
|
|
|
|
// Only handle boolean features for now, excluding BitVectors and enums.
|
|
const bool IsBool = (Value == "false" || Value == "true") &&
|
|
!StringRef(FieldName).contains('[');
|
|
if (!IsBool)
|
|
continue;
|
|
|
|
PI.subtargetEmitGetSTIMacro(Value, FieldName);
|
|
}
|
|
PI.emitIncludeToggle("GET_SUBTARGETINFO_MACRO", false, true, true);
|
|
}
|
|
|
|
//
|
|
// FeatureKeyValues - Emit data of all the subtarget features. Used by the
|
|
// command line.
|
|
//
|
|
unsigned SubtargetEmitter::FeatureKeyValues(
|
|
const DenseMap<Record *, unsigned> &FeatureMap) {
|
|
// Gather and sort all the features
|
|
std::vector<Record*> FeatureList =
|
|
Records.getAllDerivedDefinitions("SubtargetFeature");
|
|
|
|
if (FeatureList.empty())
|
|
return 0;
|
|
|
|
llvm::sort(FeatureList, LessRecordFieldName());
|
|
|
|
// Begin feature table
|
|
PI.subtargetEmitFeatureKVHeader(Target);
|
|
|
|
// For each feature
|
|
unsigned NumFeatures = 0;
|
|
for (const Record *Feature : FeatureList) {
|
|
// Next feature
|
|
StringRef Name = Feature->getName();
|
|
StringRef CommandLineName = Feature->getValueAsString("Name");
|
|
StringRef Desc = Feature->getValueAsString("Desc");
|
|
|
|
if (CommandLineName.empty()) continue;
|
|
|
|
PI.subtargetEmitFeatureKVPartI(Target, CommandLineName, Name, Desc);
|
|
|
|
RecVec ImpliesList = Feature->getValueAsListOfDefs("Implies");
|
|
|
|
printFeatureMask(PI, ImpliesList, FeatureMap);
|
|
|
|
PI.subtargetEmitFeatureKVPartII();
|
|
|
|
++NumFeatures;
|
|
}
|
|
|
|
// End feature table
|
|
PI.subtargetEmitFeatureKVEnd();
|
|
|
|
return NumFeatures;
|
|
}
|
|
|
|
//
|
|
// CPUKeyValues - Emit data of all the subtarget processors. Used by command
|
|
// line.
|
|
//
|
|
unsigned
|
|
SubtargetEmitter::CPUKeyValues(
|
|
const DenseMap<Record *, unsigned> &FeatureMap) {
|
|
// Gather and sort processor information
|
|
std::vector<Record*> ProcessorList =
|
|
Records.getAllDerivedDefinitions("Processor");
|
|
llvm::sort(ProcessorList, LessRecordFieldName());
|
|
|
|
// Begin processor table
|
|
PI.subtargetEmitCPUKVHeader(Target);
|
|
|
|
// For each processor
|
|
for (Record *Processor : ProcessorList) {
|
|
StringRef Name = Processor->getValueAsString("Name");
|
|
RecVec FeatureList = Processor->getValueAsListOfDefs("Features");
|
|
RecVec TuneFeatureList = Processor->getValueAsListOfDefs("TuneFeatures");
|
|
|
|
PI.subtargetEmitCPUKVPartI(Name);
|
|
|
|
printFeatureMask(PI, FeatureList, FeatureMap);
|
|
PI.subtargetEmitCPUKVPartII();
|
|
printFeatureMask(PI, TuneFeatureList, FeatureMap);
|
|
|
|
// Emit the scheduler model pointer.
|
|
const std::string &ProcModelName =
|
|
SchedModels.getModelForProc(Processor).ModelName;
|
|
PI.subtargetEmitCPUKVPartIII(ProcModelName);
|
|
}
|
|
|
|
// End processor table
|
|
PI.subtargetEmitCPUKVEnd();
|
|
return ProcessorList.size();
|
|
}
|
|
|
|
//
|
|
// EmitStageAndOperandCycleData - Generate unique itinerary stages and operand
|
|
// cycle tables. Create a list of InstrItinerary objects (ProcItinLists) indexed
|
|
// by CodeGenSchedClass::Index.
|
|
//
|
|
void SubtargetEmitter::
|
|
EmitStageAndOperandCycleData(std::vector<std::vector<InstrItinerary>>
|
|
&ProcItinLists) {
|
|
|
|
PI.subtargetEmitFunctionalItinaryUnits(SchedModels);
|
|
|
|
// Begin stages table
|
|
std::string StageTable = PI.subtargetGetBeginStageTable(Target);
|
|
|
|
// Begin operand cycle table
|
|
std::string OperandCycleTable = PI.subtargetGetBeginOperandCycleTable(Target);
|
|
|
|
// Begin pipeline bypass table
|
|
std::string BypassTable = PI.subtargetGetBeginBypassTable(Target);
|
|
|
|
// For each Itinerary across all processors, add a unique entry to the stages,
|
|
// operand cycles, and pipeline bypass tables. Then add the new Itinerary
|
|
// object with computed offsets to the ProcItinLists result.
|
|
unsigned StageCount = 1, OperandCycleCount = 1;
|
|
std::map<std::string, unsigned> ItinStageMap, ItinOperandMap;
|
|
for (const CodeGenProcModel &ProcModel : SchedModels.procModels()) {
|
|
// Add process itinerary to the list.
|
|
ProcItinLists.resize(ProcItinLists.size()+1);
|
|
|
|
// If this processor defines no itineraries, then leave the itinerary list
|
|
// empty.
|
|
std::vector<InstrItinerary> &ItinList = ProcItinLists.back();
|
|
if (!ProcModel.hasItineraries())
|
|
continue;
|
|
|
|
StringRef Name = ProcModel.ItinsDef->getName();
|
|
|
|
ItinList.resize(SchedModels.numInstrSchedClasses());
|
|
assert(ProcModel.ItinDefList.size() == ItinList.size() && "bad Itins");
|
|
|
|
for (unsigned SchedClassIdx = 0, SchedClassEnd = ItinList.size();
|
|
SchedClassIdx < SchedClassEnd; ++SchedClassIdx) {
|
|
|
|
// Next itinerary data
|
|
Record *ItinData = ProcModel.ItinDefList[SchedClassIdx];
|
|
|
|
// Get string and stage count
|
|
std::string ItinStageString;
|
|
unsigned NStages = 0;
|
|
if (ItinData)
|
|
PI.subtargetFormItineraryStageString(std::string(Name),
|
|
ItinData,
|
|
ItinStageString,
|
|
NStages);
|
|
|
|
// Get string and operand cycle count
|
|
std::string ItinOperandCycleString;
|
|
unsigned NOperandCycles = 0;
|
|
std::string ItinBypassString;
|
|
if (ItinData) {
|
|
PI.subtargetFormItineraryOperandCycleString(ItinData,
|
|
ItinOperandCycleString,
|
|
NOperandCycles);
|
|
|
|
PI.subtargetFormItineraryBypassString(std::string(Name),
|
|
ItinData,
|
|
ItinBypassString,
|
|
NOperandCycles);
|
|
}
|
|
|
|
// Check to see if stage already exists and create if it doesn't
|
|
uint16_t FindStage = 0;
|
|
if (NStages > 0) {
|
|
FindStage = ItinStageMap[ItinStageString];
|
|
if (FindStage == 0) {
|
|
// Emit as { cycles, u1 | u2 | ... | un, timeinc }, // indices
|
|
StageTable += PI.subtargetGetStageEntryPartI(ItinStageString, StageCount);
|
|
if (NStages > 1)
|
|
StageTable += PI.subtargetGetStageEntryPartII(StageCount, NStages);
|
|
StageTable += PI.subtargetGetStageEntryPartIII();
|
|
// Record Itin class number.
|
|
ItinStageMap[ItinStageString] = FindStage = StageCount;
|
|
StageCount += NStages;
|
|
}
|
|
}
|
|
|
|
// Check to see if operand cycle already exists and create if it doesn't
|
|
uint16_t FindOperandCycle = 0;
|
|
if (NOperandCycles > 0) {
|
|
std::string ItinOperandString = ItinOperandCycleString+ItinBypassString;
|
|
FindOperandCycle = ItinOperandMap[ItinOperandString];
|
|
if (FindOperandCycle == 0) {
|
|
// Emit as cycle, // index
|
|
OperandCycleTable += PI.subtargetGetOperandCycleEntryPartI(
|
|
ItinOperandCycleString);
|
|
std::string OperandIdxComment = itostr(OperandCycleCount);
|
|
if (NOperandCycles > 1)
|
|
OperandIdxComment += PI.subtargetGetOperandCycleEntryPartII(
|
|
OperandCycleCount, NOperandCycles);
|
|
OperandCycleTable += PI.subtargetGetOperandCycleEntryPartIII(
|
|
OperandIdxComment);
|
|
// Record Itin class number.
|
|
ItinOperandMap[ItinOperandCycleString] =
|
|
FindOperandCycle = OperandCycleCount;
|
|
// Emit as bypass, // index
|
|
BypassTable += PI.subtargetGetOperandCycleEntryPartIV(
|
|
ItinBypassString, OperandIdxComment);
|
|
OperandCycleCount += NOperandCycles;
|
|
}
|
|
}
|
|
|
|
// Set up itinerary as location and location + stage count
|
|
int16_t NumUOps = ItinData ? ItinData->getValueAsInt("NumMicroOps") : 0;
|
|
InstrItinerary Intinerary = {
|
|
NumUOps,
|
|
FindStage,
|
|
uint16_t(FindStage + NStages),
|
|
FindOperandCycle,
|
|
uint16_t(FindOperandCycle + NOperandCycles),
|
|
};
|
|
|
|
// Inject - empty slots will be 0, 0
|
|
ItinList[SchedClassIdx] = Intinerary;
|
|
}
|
|
}
|
|
|
|
// Closing stage
|
|
StageTable += PI.subtargetGetEndStageTable();
|
|
|
|
// Closing operand cycles
|
|
OperandCycleTable += PI.subtargetGetEndOperandCycleTable();
|
|
|
|
BypassTable += PI.subtargetGetEndBypassTable();
|
|
|
|
// Emit tables.
|
|
PI.subtargetEmitStageAndSycleTables(StageTable, OperandCycleTable, BypassTable);
|
|
}
|
|
|
|
//
|
|
// EmitProcessorData - Generate data for processor itineraries that were
|
|
// computed during EmitStageAndOperandCycleData(). ProcItinLists lists all
|
|
// Itineraries for each processor. The Itinerary lists are indexed on
|
|
// CodeGenSchedClass::Index.
|
|
//
|
|
void SubtargetEmitter::
|
|
EmitItineraries(
|
|
std::vector<std::vector<InstrItinerary>> &ProcItinLists) {
|
|
// Multiple processor models may share an itinerary record. Emit it once.
|
|
SmallPtrSet<Record*, 8> ItinsDefSet;
|
|
|
|
// For each processor's machine model
|
|
std::vector<std::vector<InstrItinerary>>::iterator
|
|
ProcItinListsIter = ProcItinLists.begin();
|
|
for (CodeGenSchedModels::ProcIter PIM = SchedModels.procModelBegin(),
|
|
PE = SchedModels.procModelEnd(); PIM != PE; ++PIM, ++ProcItinListsIter) {
|
|
|
|
Record *ItinsDef = PIM->ItinsDef;
|
|
if (!ItinsDefSet.insert(ItinsDef).second)
|
|
continue;
|
|
|
|
// Get the itinerary list for the processor.
|
|
assert(ProcItinListsIter != ProcItinLists.end() && "bad iterator");
|
|
std::vector<InstrItinerary> &ItinList = *ProcItinListsIter;
|
|
|
|
// Empty itineraries aren't referenced anywhere in the tablegen output
|
|
// so don't emit them.
|
|
if (ItinList.empty())
|
|
continue;
|
|
|
|
PI.subtargetEmitProcessorItineraryTable(ItinsDef->getName().str(),
|
|
ItinList,
|
|
SchedModels);
|
|
}
|
|
}
|
|
|
|
static void EmitRetireControlUnitInfo(const CodeGenProcModel &ProcModel,
|
|
PrinterLLVM &PI) {
|
|
int64_t ReorderBufferSize = 0, MaxRetirePerCycle = 0;
|
|
if (Record *RCU = ProcModel.RetireControlUnit) {
|
|
ReorderBufferSize =
|
|
std::max(ReorderBufferSize, RCU->getValueAsInt("ReorderBufferSize"));
|
|
MaxRetirePerCycle =
|
|
std::max(MaxRetirePerCycle, RCU->getValueAsInt("MaxRetirePerCycle"));
|
|
}
|
|
|
|
PI.subtargetEmitReorderBufferSize(ReorderBufferSize);
|
|
PI.subtargetEmitMaxRetirePerCycle(MaxRetirePerCycle);
|
|
}
|
|
|
|
void SubtargetEmitter::EmitLoadStoreQueueInfo(const CodeGenProcModel &ProcModel) {
|
|
unsigned QueueID = 0;
|
|
if (ProcModel.LoadQueue) {
|
|
const Record *Queue = ProcModel.LoadQueue->getValueAsDef("QueueDescriptor");
|
|
QueueID = 1 + std::distance(ProcModel.ProcResourceDefs.begin(),
|
|
find(ProcModel.ProcResourceDefs, Queue));
|
|
}
|
|
PI.subtargetEmitResourceDescriptorLoadQueue(QueueID);
|
|
|
|
QueueID = 0;
|
|
if (ProcModel.StoreQueue) {
|
|
const Record *Queue =
|
|
ProcModel.StoreQueue->getValueAsDef("QueueDescriptor");
|
|
QueueID = 1 + std::distance(ProcModel.ProcResourceDefs.begin(),
|
|
find(ProcModel.ProcResourceDefs, Queue));
|
|
}
|
|
PI.subtargetEmitResourceDescriptorStoreQueue(QueueID);
|
|
}
|
|
|
|
void SubtargetEmitter::EmitExtraProcessorInfo(const CodeGenProcModel &ProcModel) {
|
|
// Generate a table of register file descriptors (one entry per each user
|
|
// defined register file), and a table of register costs.
|
|
unsigned NumCostEntries;
|
|
if (llvm::all_of(ProcModel.RegisterFiles, [](const CodeGenRegisterFile &RF) {
|
|
return RF.hasDefaultCosts();
|
|
}))
|
|
NumCostEntries = 0;
|
|
else
|
|
NumCostEntries = PI.subtargetEmitRegisterFileTables(ProcModel);
|
|
|
|
// Now generate a table for the extra processor info.
|
|
PI.subtargetEmitMCExtraProcInfoTableHeader(ProcModel.ModelName);
|
|
|
|
// Add information related to the retire control unit.
|
|
EmitRetireControlUnitInfo(ProcModel, PI);
|
|
|
|
// Add information related to the register files (i.e. where to find register
|
|
// file descriptors and register costs).
|
|
PI.subtargetEmitRegisterFileInfo(ProcModel, ProcModel.RegisterFiles.size(),
|
|
NumCostEntries);
|
|
|
|
// Add information about load/store queues.
|
|
EmitLoadStoreQueueInfo(ProcModel);
|
|
PI.subtargetEmitMCExtraProcInfoTableEnd();
|
|
}
|
|
|
|
void SubtargetEmitter::EmitProcessorResources(const CodeGenProcModel &ProcModel) {
|
|
PI.subtargetEmitProcessorResourceSubUnits(ProcModel, SchedModels);
|
|
|
|
PI.subtargetEmitMCProcResourceDescHeader(ProcModel.ModelName);
|
|
|
|
unsigned SubUnitsOffset = 1;
|
|
for (unsigned i = 0, e = ProcModel.ProcResourceDefs.size(); i < e; ++i) {
|
|
Record *PRDef = ProcModel.ProcResourceDefs[i];
|
|
|
|
Record *SuperDef = nullptr;
|
|
unsigned SuperIdx = 0;
|
|
unsigned NumUnits = 0;
|
|
const unsigned SubUnitsBeginOffset = SubUnitsOffset;
|
|
int BufferSize = PRDef->getValueAsInt("BufferSize");
|
|
if (PRDef->isSubClassOf("ProcResGroup")) {
|
|
RecVec ResUnits = PRDef->getValueAsListOfDefs("Resources");
|
|
for (Record *RU : ResUnits) {
|
|
NumUnits += RU->getValueAsInt("NumUnits");
|
|
SubUnitsOffset += RU->getValueAsInt("NumUnits");
|
|
}
|
|
}
|
|
else {
|
|
// Find the SuperIdx
|
|
if (PRDef->getValueInit("Super")->isComplete()) {
|
|
SuperDef =
|
|
SchedModels.findProcResUnits(PRDef->getValueAsDef("Super"),
|
|
ProcModel, PRDef->getLoc());
|
|
SuperIdx = ProcModel.getProcResourceIdx(SuperDef);
|
|
}
|
|
NumUnits = PRDef->getValueAsInt("NumUnits");
|
|
}
|
|
PI.subtargetEmitMCProcResourceDesc(PRDef,
|
|
SuperDef,
|
|
ProcModel.ModelName,
|
|
SubUnitsOffset,
|
|
SuperIdx,
|
|
NumUnits,
|
|
BufferSize,
|
|
i, SubUnitsBeginOffset);
|
|
}
|
|
PI.subtargetEmitMCProcResourceDescEnd();
|
|
}
|
|
|
|
// Find the WriteRes Record that defines processor resources for this
|
|
// SchedWrite.
|
|
Record *SubtargetEmitter::FindWriteResources(
|
|
const CodeGenSchedRW &SchedWrite, const CodeGenProcModel &ProcModel) {
|
|
|
|
// Check if the SchedWrite is already subtarget-specific and directly
|
|
// specifies a set of processor resources.
|
|
if (SchedWrite.TheDef->isSubClassOf("SchedWriteRes"))
|
|
return SchedWrite.TheDef;
|
|
|
|
Record *AliasDef = nullptr;
|
|
for (Record *A : SchedWrite.Aliases) {
|
|
const CodeGenSchedRW &AliasRW =
|
|
SchedModels.getSchedRW(A->getValueAsDef("AliasRW"));
|
|
if (AliasRW.TheDef->getValueInit("SchedModel")->isComplete()) {
|
|
Record *ModelDef = AliasRW.TheDef->getValueAsDef("SchedModel");
|
|
if (&SchedModels.getProcModel(ModelDef) != &ProcModel)
|
|
continue;
|
|
}
|
|
if (AliasDef)
|
|
PrintFatalError(AliasRW.TheDef->getLoc(), "Multiple aliases "
|
|
"defined for processor " + ProcModel.ModelName +
|
|
" Ensure only one SchedAlias exists per RW.");
|
|
AliasDef = AliasRW.TheDef;
|
|
}
|
|
if (AliasDef && AliasDef->isSubClassOf("SchedWriteRes"))
|
|
return AliasDef;
|
|
|
|
// Check this processor's list of write resources.
|
|
Record *ResDef = nullptr;
|
|
for (Record *WR : ProcModel.WriteResDefs) {
|
|
if (!WR->isSubClassOf("WriteRes"))
|
|
continue;
|
|
if (AliasDef == WR->getValueAsDef("WriteType")
|
|
|| SchedWrite.TheDef == WR->getValueAsDef("WriteType")) {
|
|
if (ResDef) {
|
|
PrintFatalError(WR->getLoc(), "Resources are defined for both "
|
|
"SchedWrite and its alias on processor " +
|
|
ProcModel.ModelName);
|
|
}
|
|
ResDef = WR;
|
|
}
|
|
}
|
|
// TODO: If ProcModel has a base model (previous generation processor),
|
|
// then call FindWriteResources recursively with that model here.
|
|
if (!ResDef) {
|
|
PrintFatalError(ProcModel.ModelDef->getLoc(),
|
|
Twine("Processor does not define resources for ") +
|
|
SchedWrite.TheDef->getName());
|
|
}
|
|
return ResDef;
|
|
}
|
|
|
|
/// Find the ReadAdvance record for the given SchedRead on this processor or
|
|
/// return NULL.
|
|
Record *SubtargetEmitter::FindReadAdvance(const CodeGenSchedRW &SchedRead,
|
|
const CodeGenProcModel &ProcModel) {
|
|
// Check for SchedReads that directly specify a ReadAdvance.
|
|
if (SchedRead.TheDef->isSubClassOf("SchedReadAdvance"))
|
|
return SchedRead.TheDef;
|
|
|
|
// Check this processor's list of aliases for SchedRead.
|
|
Record *AliasDef = nullptr;
|
|
for (Record *A : SchedRead.Aliases) {
|
|
const CodeGenSchedRW &AliasRW =
|
|
SchedModels.getSchedRW(A->getValueAsDef("AliasRW"));
|
|
if (AliasRW.TheDef->getValueInit("SchedModel")->isComplete()) {
|
|
Record *ModelDef = AliasRW.TheDef->getValueAsDef("SchedModel");
|
|
if (&SchedModels.getProcModel(ModelDef) != &ProcModel)
|
|
continue;
|
|
}
|
|
if (AliasDef)
|
|
PrintFatalError(AliasRW.TheDef->getLoc(), "Multiple aliases "
|
|
"defined for processor " + ProcModel.ModelName +
|
|
" Ensure only one SchedAlias exists per RW.");
|
|
AliasDef = AliasRW.TheDef;
|
|
}
|
|
if (AliasDef && AliasDef->isSubClassOf("SchedReadAdvance"))
|
|
return AliasDef;
|
|
|
|
// Check this processor's ReadAdvanceList.
|
|
Record *ResDef = nullptr;
|
|
for (Record *RA : ProcModel.ReadAdvanceDefs) {
|
|
if (!RA->isSubClassOf("ReadAdvance"))
|
|
continue;
|
|
if (AliasDef == RA->getValueAsDef("ReadType")
|
|
|| SchedRead.TheDef == RA->getValueAsDef("ReadType")) {
|
|
if (ResDef) {
|
|
PrintFatalError(RA->getLoc(), "Resources are defined for both "
|
|
"SchedRead and its alias on processor " +
|
|
ProcModel.ModelName);
|
|
}
|
|
ResDef = RA;
|
|
}
|
|
}
|
|
// TODO: If ProcModel has a base model (previous generation processor),
|
|
// then call FindReadAdvance recursively with that model here.
|
|
if (!ResDef && SchedRead.TheDef->getName() != "ReadDefault") {
|
|
PrintFatalError(ProcModel.ModelDef->getLoc(),
|
|
Twine("Processor does not define resources for ") +
|
|
SchedRead.TheDef->getName());
|
|
}
|
|
return ResDef;
|
|
}
|
|
|
|
// Expand an explicit list of processor resources into a full list of implied
|
|
// resource groups and super resources that cover them.
|
|
void SubtargetEmitter::ExpandProcResources(
|
|
RecVec &PRVec, std::vector<int64_t> &ReleaseAtCycles,
|
|
std::vector<int64_t> &AcquireAtCycles, const CodeGenProcModel &PM) {
|
|
assert(PRVec.size() == ReleaseAtCycles.size() && "failed precondition");
|
|
for (unsigned i = 0, e = PRVec.size(); i != e; ++i) {
|
|
Record *PRDef = PRVec[i];
|
|
RecVec SubResources;
|
|
if (PRDef->isSubClassOf("ProcResGroup"))
|
|
SubResources = PRDef->getValueAsListOfDefs("Resources");
|
|
else {
|
|
SubResources.push_back(PRDef);
|
|
PRDef = SchedModels.findProcResUnits(PRDef, PM, PRDef->getLoc());
|
|
for (Record *SubDef = PRDef;
|
|
SubDef->getValueInit("Super")->isComplete();) {
|
|
if (SubDef->isSubClassOf("ProcResGroup")) {
|
|
// Disallow this for simplicitly.
|
|
PrintFatalError(SubDef->getLoc(), "Processor resource group "
|
|
" cannot be a super resources.");
|
|
}
|
|
Record *SuperDef =
|
|
SchedModels.findProcResUnits(SubDef->getValueAsDef("Super"), PM,
|
|
SubDef->getLoc());
|
|
PRVec.push_back(SuperDef);
|
|
ReleaseAtCycles.push_back(ReleaseAtCycles[i]);
|
|
AcquireAtCycles.push_back(AcquireAtCycles[i]);
|
|
SubDef = SuperDef;
|
|
}
|
|
}
|
|
for (Record *PR : PM.ProcResourceDefs) {
|
|
if (PR == PRDef || !PR->isSubClassOf("ProcResGroup"))
|
|
continue;
|
|
RecVec SuperResources = PR->getValueAsListOfDefs("Resources");
|
|
RecIter SubI = SubResources.begin(), SubE = SubResources.end();
|
|
for( ; SubI != SubE; ++SubI) {
|
|
if (!is_contained(SuperResources, *SubI)) {
|
|
break;
|
|
}
|
|
}
|
|
if (SubI == SubE) {
|
|
PRVec.push_back(PR);
|
|
ReleaseAtCycles.push_back(ReleaseAtCycles[i]);
|
|
AcquireAtCycles.push_back(AcquireAtCycles[i]);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Generate the SchedClass table for this processor and update global
|
|
// tables. Must be called for each processor in order.
|
|
void SubtargetEmitter::GenSchedClassTables(const CodeGenProcModel &ProcModel,
|
|
SchedClassTablesT &SchedTables) {
|
|
SchedTables.ProcSchedClasses.resize(SchedTables.ProcSchedClasses.size() + 1);
|
|
if (!ProcModel.hasInstrSchedModel())
|
|
return;
|
|
|
|
std::vector<MCSchedClassDesc> &SCTab = SchedTables.ProcSchedClasses.back();
|
|
LLVM_DEBUG(dbgs() << "\n+++ SCHED CLASSES (GenSchedClassTables) +++\n");
|
|
for (const CodeGenSchedClass &SC : SchedModels.schedClasses()) {
|
|
LLVM_DEBUG(SC.dump(&SchedModels));
|
|
|
|
SCTab.resize(SCTab.size() + 1);
|
|
MCSchedClassDesc &SCDesc = SCTab.back();
|
|
// SCDesc.Name is guarded by NDEBUG
|
|
SCDesc.NumMicroOps = 0;
|
|
SCDesc.BeginGroup = false;
|
|
SCDesc.EndGroup = false;
|
|
SCDesc.RetireOOO = false;
|
|
SCDesc.WriteProcResIdx = 0;
|
|
SCDesc.WriteLatencyIdx = 0;
|
|
SCDesc.ReadAdvanceIdx = 0;
|
|
|
|
// A Variant SchedClass has no resources of its own.
|
|
bool HasVariants = false;
|
|
for (const CodeGenSchedTransition &CGT :
|
|
make_range(SC.Transitions.begin(), SC.Transitions.end())) {
|
|
if (CGT.ProcIndex == ProcModel.Index) {
|
|
HasVariants = true;
|
|
break;
|
|
}
|
|
}
|
|
if (HasVariants) {
|
|
SCDesc.NumMicroOps = MCSchedClassDesc::VariantNumMicroOps;
|
|
continue;
|
|
}
|
|
|
|
// Determine if the SchedClass is actually reachable on this processor. If
|
|
// not don't try to locate the processor resources, it will fail.
|
|
// If ProcIndices contains 0, this class applies to all processors.
|
|
assert(!SC.ProcIndices.empty() && "expect at least one procidx");
|
|
if (SC.ProcIndices[0] != 0) {
|
|
if (!is_contained(SC.ProcIndices, ProcModel.Index))
|
|
continue;
|
|
}
|
|
IdxVec Writes = SC.Writes;
|
|
IdxVec Reads = SC.Reads;
|
|
if (!SC.InstRWs.empty()) {
|
|
// This class has a default ReadWrite list which can be overridden by
|
|
// InstRW definitions.
|
|
Record *RWDef = nullptr;
|
|
for (Record *RW : SC.InstRWs) {
|
|
Record *RWModelDef = RW->getValueAsDef("SchedModel");
|
|
if (&ProcModel == &SchedModels.getProcModel(RWModelDef)) {
|
|
RWDef = RW;
|
|
break;
|
|
}
|
|
}
|
|
if (RWDef) {
|
|
Writes.clear();
|
|
Reads.clear();
|
|
SchedModels.findRWs(RWDef->getValueAsListOfDefs("OperandReadWrites"),
|
|
Writes, Reads);
|
|
}
|
|
}
|
|
if (Writes.empty()) {
|
|
// Check this processor's itinerary class resources.
|
|
for (Record *I : ProcModel.ItinRWDefs) {
|
|
RecVec Matched = I->getValueAsListOfDefs("MatchedItinClasses");
|
|
if (is_contained(Matched, SC.ItinClassDef)) {
|
|
SchedModels.findRWs(I->getValueAsListOfDefs("OperandReadWrites"),
|
|
Writes, Reads);
|
|
break;
|
|
}
|
|
}
|
|
if (Writes.empty()) {
|
|
LLVM_DEBUG(dbgs() << ProcModel.ModelName
|
|
<< " does not have resources for class " << SC.Name
|
|
<< '\n');
|
|
SCDesc.NumMicroOps = MCSchedClassDesc::InvalidNumMicroOps;
|
|
}
|
|
}
|
|
// Sum resources across all operand writes.
|
|
std::vector<MCWriteProcResEntry> WriteProcResources;
|
|
std::vector<MCWriteLatencyEntry> WriteLatencies;
|
|
std::vector<std::string> WriterNames;
|
|
std::vector<MCReadAdvanceEntry> ReadAdvanceEntries;
|
|
for (unsigned W : Writes) {
|
|
IdxVec WriteSeq;
|
|
SchedModels.expandRWSeqForProc(W, WriteSeq, /*IsRead=*/false,
|
|
ProcModel);
|
|
|
|
// For each operand, create a latency entry.
|
|
MCWriteLatencyEntry WLEntry;
|
|
WLEntry.Cycles = 0;
|
|
unsigned WriteID = WriteSeq.back();
|
|
WriterNames.push_back(SchedModels.getSchedWrite(WriteID).Name);
|
|
// If this Write is not referenced by a ReadAdvance, don't distinguish it
|
|
// from other WriteLatency entries.
|
|
if (!SchedModels.hasReadOfWrite(
|
|
SchedModels.getSchedWrite(WriteID).TheDef)) {
|
|
WriteID = 0;
|
|
}
|
|
WLEntry.WriteResourceID = WriteID;
|
|
|
|
for (unsigned WS : WriteSeq) {
|
|
|
|
Record *WriteRes =
|
|
FindWriteResources(SchedModels.getSchedWrite(WS), ProcModel);
|
|
|
|
// Mark the parent class as invalid for unsupported write types.
|
|
if (WriteRes->getValueAsBit("Unsupported")) {
|
|
SCDesc.NumMicroOps = MCSchedClassDesc::InvalidNumMicroOps;
|
|
break;
|
|
}
|
|
WLEntry.Cycles += WriteRes->getValueAsInt("Latency");
|
|
SCDesc.NumMicroOps += WriteRes->getValueAsInt("NumMicroOps");
|
|
SCDesc.BeginGroup |= WriteRes->getValueAsBit("BeginGroup");
|
|
SCDesc.EndGroup |= WriteRes->getValueAsBit("EndGroup");
|
|
SCDesc.BeginGroup |= WriteRes->getValueAsBit("SingleIssue");
|
|
SCDesc.EndGroup |= WriteRes->getValueAsBit("SingleIssue");
|
|
SCDesc.RetireOOO |= WriteRes->getValueAsBit("RetireOOO");
|
|
|
|
// Create an entry for each ProcResource listed in WriteRes.
|
|
RecVec PRVec = WriteRes->getValueAsListOfDefs("ProcResources");
|
|
std::vector<int64_t> ReleaseAtCycles =
|
|
WriteRes->getValueAsListOfInts("ReleaseAtCycles");
|
|
|
|
std::vector<int64_t> AcquireAtCycles =
|
|
WriteRes->getValueAsListOfInts("AcquireAtCycles");
|
|
|
|
// Check consistency of the two vectors carrying the start and
|
|
// stop cycles of the resources.
|
|
if (!ReleaseAtCycles.empty() &&
|
|
ReleaseAtCycles.size() != PRVec.size()) {
|
|
// If ReleaseAtCycles is provided, check consistency.
|
|
PrintFatalError(
|
|
WriteRes->getLoc(),
|
|
Twine("Inconsistent release at cycles: size(ReleaseAtCycles) != "
|
|
"size(ProcResources): ")
|
|
.concat(Twine(PRVec.size()))
|
|
.concat(" vs ")
|
|
.concat(Twine(ReleaseAtCycles.size())));
|
|
}
|
|
|
|
if (!AcquireAtCycles.empty() && AcquireAtCycles.size() != PRVec.size()) {
|
|
PrintFatalError(
|
|
WriteRes->getLoc(),
|
|
Twine("Inconsistent resource cycles: size(AcquireAtCycles) != "
|
|
"size(ProcResources): ")
|
|
.concat(Twine(AcquireAtCycles.size()))
|
|
.concat(" vs ")
|
|
.concat(Twine(PRVec.size())));
|
|
}
|
|
|
|
if (ReleaseAtCycles.empty()) {
|
|
// If ReleaseAtCycles is not provided, default to one cycle
|
|
// per resource.
|
|
ReleaseAtCycles.resize(PRVec.size(), 1);
|
|
}
|
|
|
|
if (AcquireAtCycles.empty()) {
|
|
// If AcquireAtCycles is not provided, reserve the resource
|
|
// starting from cycle 0.
|
|
AcquireAtCycles.resize(PRVec.size(), 0);
|
|
}
|
|
|
|
assert(AcquireAtCycles.size() == ReleaseAtCycles.size());
|
|
|
|
ExpandProcResources(PRVec, ReleaseAtCycles, AcquireAtCycles, ProcModel);
|
|
assert(AcquireAtCycles.size() == ReleaseAtCycles.size());
|
|
|
|
for (unsigned PRIdx = 0, PREnd = PRVec.size();
|
|
PRIdx != PREnd; ++PRIdx) {
|
|
MCWriteProcResEntry WPREntry;
|
|
WPREntry.ProcResourceIdx = ProcModel.getProcResourceIdx(PRVec[PRIdx]);
|
|
assert(WPREntry.ProcResourceIdx && "Bad ProcResourceIdx");
|
|
WPREntry.ReleaseAtCycle = ReleaseAtCycles[PRIdx];
|
|
WPREntry.AcquireAtCycle = AcquireAtCycles[PRIdx];
|
|
if (AcquireAtCycles[PRIdx] > ReleaseAtCycles[PRIdx]) {
|
|
PrintFatalError(
|
|
WriteRes->getLoc(),
|
|
Twine("Inconsistent resource cycles: AcquireAtCycles "
|
|
"< ReleaseAtCycles must hold."));
|
|
}
|
|
if (AcquireAtCycles[PRIdx] < 0) {
|
|
PrintFatalError(WriteRes->getLoc(),
|
|
Twine("Invalid value: AcquireAtCycle "
|
|
"must be a non-negative value."));
|
|
}
|
|
// If this resource is already used in this sequence, add the current
|
|
// entry's cycles so that the same resource appears to be used
|
|
// serially, rather than multiple parallel uses. This is important for
|
|
// in-order machine where the resource consumption is a hazard.
|
|
unsigned WPRIdx = 0, WPREnd = WriteProcResources.size();
|
|
for( ; WPRIdx != WPREnd; ++WPRIdx) {
|
|
if (WriteProcResources[WPRIdx].ProcResourceIdx
|
|
== WPREntry.ProcResourceIdx) {
|
|
// TODO: multiple use of the same resources would
|
|
// require either 1. thinking of how to handle multiple
|
|
// intervals for the same resource in
|
|
// `<Target>WriteProcResTable` (see
|
|
// `SubtargetEmitter::EmitSchedClassTables`), or
|
|
// 2. thinking how to merge multiple intervals into a
|
|
// single interval.
|
|
assert(WPREntry.AcquireAtCycle == 0 &&
|
|
"multiple use ofthe same resource is not yet handled");
|
|
WriteProcResources[WPRIdx].ReleaseAtCycle +=
|
|
WPREntry.ReleaseAtCycle;
|
|
break;
|
|
}
|
|
}
|
|
if (WPRIdx == WPREnd)
|
|
WriteProcResources.push_back(WPREntry);
|
|
}
|
|
}
|
|
WriteLatencies.push_back(WLEntry);
|
|
}
|
|
// Create an entry for each operand Read in this SchedClass.
|
|
// Entries must be sorted first by UseIdx then by WriteResourceID.
|
|
for (unsigned UseIdx = 0, EndIdx = Reads.size();
|
|
UseIdx != EndIdx; ++UseIdx) {
|
|
Record *ReadAdvance =
|
|
FindReadAdvance(SchedModels.getSchedRead(Reads[UseIdx]), ProcModel);
|
|
if (!ReadAdvance)
|
|
continue;
|
|
|
|
// Mark the parent class as invalid for unsupported write types.
|
|
if (ReadAdvance->getValueAsBit("Unsupported")) {
|
|
SCDesc.NumMicroOps = MCSchedClassDesc::InvalidNumMicroOps;
|
|
break;
|
|
}
|
|
RecVec ValidWrites = ReadAdvance->getValueAsListOfDefs("ValidWrites");
|
|
IdxVec WriteIDs;
|
|
if (ValidWrites.empty())
|
|
WriteIDs.push_back(0);
|
|
else {
|
|
for (Record *VW : ValidWrites) {
|
|
WriteIDs.push_back(SchedModels.getSchedRWIdx(VW, /*IsRead=*/false));
|
|
}
|
|
}
|
|
llvm::sort(WriteIDs);
|
|
for(unsigned W : WriteIDs) {
|
|
MCReadAdvanceEntry RAEntry;
|
|
RAEntry.UseIdx = UseIdx;
|
|
RAEntry.WriteResourceID = W;
|
|
RAEntry.Cycles = ReadAdvance->getValueAsInt("Cycles");
|
|
ReadAdvanceEntries.push_back(RAEntry);
|
|
}
|
|
}
|
|
if (SCDesc.NumMicroOps == MCSchedClassDesc::InvalidNumMicroOps) {
|
|
WriteProcResources.clear();
|
|
WriteLatencies.clear();
|
|
ReadAdvanceEntries.clear();
|
|
}
|
|
// Add the information for this SchedClass to the global tables using basic
|
|
// compression.
|
|
//
|
|
// WritePrecRes entries are sorted by ProcResIdx.
|
|
llvm::sort(WriteProcResources, LessWriteProcResources());
|
|
|
|
SCDesc.NumWriteProcResEntries = WriteProcResources.size();
|
|
std::vector<MCWriteProcResEntry>::iterator WPRPos =
|
|
std::search(SchedTables.WriteProcResources.begin(),
|
|
SchedTables.WriteProcResources.end(),
|
|
WriteProcResources.begin(), WriteProcResources.end());
|
|
if (WPRPos != SchedTables.WriteProcResources.end())
|
|
SCDesc.WriteProcResIdx = WPRPos - SchedTables.WriteProcResources.begin();
|
|
else {
|
|
SCDesc.WriteProcResIdx = SchedTables.WriteProcResources.size();
|
|
SchedTables.WriteProcResources.insert(WPRPos, WriteProcResources.begin(),
|
|
WriteProcResources.end());
|
|
}
|
|
// Latency entries must remain in operand order.
|
|
SCDesc.NumWriteLatencyEntries = WriteLatencies.size();
|
|
std::vector<MCWriteLatencyEntry>::iterator WLPos =
|
|
std::search(SchedTables.WriteLatencies.begin(),
|
|
SchedTables.WriteLatencies.end(),
|
|
WriteLatencies.begin(), WriteLatencies.end());
|
|
if (WLPos != SchedTables.WriteLatencies.end()) {
|
|
unsigned idx = WLPos - SchedTables.WriteLatencies.begin();
|
|
SCDesc.WriteLatencyIdx = idx;
|
|
for (unsigned i = 0, e = WriteLatencies.size(); i < e; ++i)
|
|
if (SchedTables.WriterNames[idx + i].find(WriterNames[i]) ==
|
|
std::string::npos) {
|
|
SchedTables.WriterNames[idx + i] += std::string("_") + WriterNames[i];
|
|
}
|
|
}
|
|
else {
|
|
SCDesc.WriteLatencyIdx = SchedTables.WriteLatencies.size();
|
|
llvm::append_range(SchedTables.WriteLatencies, WriteLatencies);
|
|
llvm::append_range(SchedTables.WriterNames, WriterNames);
|
|
}
|
|
// ReadAdvanceEntries must remain in operand order.
|
|
SCDesc.NumReadAdvanceEntries = ReadAdvanceEntries.size();
|
|
std::vector<MCReadAdvanceEntry>::iterator RAPos =
|
|
std::search(SchedTables.ReadAdvanceEntries.begin(),
|
|
SchedTables.ReadAdvanceEntries.end(),
|
|
ReadAdvanceEntries.begin(), ReadAdvanceEntries.end());
|
|
if (RAPos != SchedTables.ReadAdvanceEntries.end())
|
|
SCDesc.ReadAdvanceIdx = RAPos - SchedTables.ReadAdvanceEntries.begin();
|
|
else {
|
|
SCDesc.ReadAdvanceIdx = SchedTables.ReadAdvanceEntries.size();
|
|
llvm::append_range(SchedTables.ReadAdvanceEntries, ReadAdvanceEntries);
|
|
}
|
|
}
|
|
}
|
|
|
|
void SubtargetEmitter::EmitProcessorModels() {
|
|
// For each processor model.
|
|
for (const CodeGenProcModel &PM : SchedModels.procModels()) {
|
|
// Emit extra processor info if available.
|
|
if (PM.hasExtraProcessorInfo())
|
|
EmitExtraProcessorInfo(PM);
|
|
// Emit processor resource table.
|
|
if (PM.hasInstrSchedModel())
|
|
EmitProcessorResources(PM);
|
|
else if(!PM.ProcResourceDefs.empty())
|
|
PrintFatalError(PM.ModelDef->getLoc(), "SchedMachineModel defines "
|
|
"ProcResources without defining WriteRes SchedWriteRes");
|
|
|
|
// Begin processor itinerary properties
|
|
PI.subtargetEmitProcModelHeader(PM.ModelName);
|
|
PI.subtargetEmitProcessorProp(PM.ModelDef, "IssueWidth", ',');
|
|
PI.subtargetEmitProcessorProp(PM.ModelDef, "MicroOpBufferSize", ',');
|
|
PI.subtargetEmitProcessorProp(PM.ModelDef, "LoopMicroOpBufferSize", ',');
|
|
PI.subtargetEmitProcessorProp(PM.ModelDef, "LoadLatency", ',');
|
|
PI.subtargetEmitProcessorProp(PM.ModelDef, "HighLatency", ',');
|
|
PI.subtargetEmitProcessorProp(PM.ModelDef, "MispredictPenalty", ',');
|
|
|
|
PI.subtargetEmitProcModel(PM, SchedModels);
|
|
}
|
|
}
|
|
|
|
//
|
|
// EmitSchedModel - Emits all scheduling model tables, folding common patterns.
|
|
//
|
|
void SubtargetEmitter::EmitSchedModel() {
|
|
PI.subtargetEmitDBGMacrosBegin();
|
|
|
|
if (SchedModels.hasItineraries()) {
|
|
std::vector<std::vector<InstrItinerary>> ProcItinLists;
|
|
// Emit the stage data
|
|
EmitStageAndOperandCycleData(ProcItinLists);
|
|
EmitItineraries(ProcItinLists);
|
|
}
|
|
PI.subtargetEmitPreOperandTableComment();
|
|
|
|
SchedClassTablesT SchedTables;
|
|
for (const CodeGenProcModel &ProcModel : SchedModels.procModels()) {
|
|
GenSchedClassTables(ProcModel, SchedTables);
|
|
}
|
|
PI.subtargetEmitSchedClassTables(SchedTables, Target, SchedModels);
|
|
|
|
PI.subtargetEmitDBGMacrosEnd();
|
|
|
|
// Emit the processor machine model
|
|
EmitProcessorModels();
|
|
}
|
|
|
|
static bool isTruePredicate(const Record *Rec) {
|
|
return Rec->isSubClassOf("MCSchedPredicate") &&
|
|
Rec->getValueAsDef("Pred")->isSubClassOf("MCTrue");
|
|
}
|
|
|
|
static bool hasMCSchedPredicates(const CodeGenSchedTransition &T) {
|
|
return all_of(T.PredTerm, [](const Record *Rec) {
|
|
return Rec->isSubClassOf("MCSchedPredicate");
|
|
});
|
|
}
|
|
|
|
static void collectVariantClasses(const CodeGenSchedModels &SchedModels,
|
|
IdxVec &VariantClasses,
|
|
bool OnlyExpandMCInstPredicates) {
|
|
for (const CodeGenSchedClass &SC : SchedModels.schedClasses()) {
|
|
// Ignore non-variant scheduling classes.
|
|
if (SC.Transitions.empty())
|
|
continue;
|
|
|
|
if (OnlyExpandMCInstPredicates) {
|
|
// Ignore this variant scheduling class no transitions use any meaningful
|
|
// MCSchedPredicate definitions.
|
|
if (llvm::none_of(SC.Transitions, hasMCSchedPredicates))
|
|
continue;
|
|
}
|
|
|
|
VariantClasses.push_back(SC.Index);
|
|
}
|
|
}
|
|
|
|
static void collectProcessorIndices(const CodeGenSchedClass &SC,
|
|
IdxVec &ProcIndices) {
|
|
// A variant scheduling class may define transitions for multiple
|
|
// processors. This function identifies wich processors are associated with
|
|
// transition rules specified by variant class `SC`.
|
|
for (const CodeGenSchedTransition &T : SC.Transitions) {
|
|
IdxVec PI;
|
|
std::set_union(&T.ProcIndex, &T.ProcIndex + 1, ProcIndices.begin(),
|
|
ProcIndices.end(), std::back_inserter(PI));
|
|
ProcIndices.swap(PI);
|
|
}
|
|
}
|
|
|
|
static bool isAlwaysTrue(const CodeGenSchedTransition &T) {
|
|
return llvm::all_of(T.PredTerm, isTruePredicate);
|
|
}
|
|
|
|
void SubtargetEmitter::emitSchedModelHelpersImpl(
|
|
bool OnlyExpandMCInstPredicates) {
|
|
IdxVec VariantClasses;
|
|
collectVariantClasses(SchedModels, VariantClasses,
|
|
OnlyExpandMCInstPredicates);
|
|
|
|
if (VariantClasses.empty()) {
|
|
PI.subtargetEmitSchedModelHelperEpilogue(OnlyExpandMCInstPredicates);
|
|
return;
|
|
}
|
|
|
|
// Construct a switch statement where the condition is a check on the
|
|
// scheduling class identifier. There is a `case` for every variant class
|
|
// defined by the processor models of this target.
|
|
// Each `case` implements a number of rules to resolve (i.e. to transition from)
|
|
// a variant scheduling class to another scheduling class. Rules are
|
|
// described by instances of CodeGenSchedTransition. Note that transitions may
|
|
// not be valid for all processors.
|
|
PI.subtargetEmitSchedClassSwitch();
|
|
for (unsigned VC : VariantClasses) {
|
|
IdxVec ProcIndices;
|
|
const CodeGenSchedClass &SC = SchedModels.getSchedClass(VC);
|
|
collectProcessorIndices(SC, ProcIndices);
|
|
|
|
PI.subtargetEmitSchedClassCase(VC, SC.Name);
|
|
|
|
PI.subtargetPrepareSchedClassPreds(Target, OnlyExpandMCInstPredicates);
|
|
for (unsigned Pi : ProcIndices) {
|
|
PI.subtargetEmitSchedClassProcGuard(Pi, OnlyExpandMCInstPredicates,
|
|
(SchedModels.procModelBegin() + Pi)->ModelName);
|
|
|
|
// Now emit transitions associated with processor PI.
|
|
const CodeGenSchedTransition *FinalT = nullptr;
|
|
for (const CodeGenSchedTransition &T : SC.Transitions) {
|
|
if (Pi != 0 && T.ProcIndex != Pi)
|
|
continue;
|
|
|
|
// Emit only transitions based on MCSchedPredicate, if it's the case.
|
|
// At least the transition specified by NoSchedPred is emitted,
|
|
// which becomes the default transition for those variants otherwise
|
|
// not based on MCSchedPredicate.
|
|
// FIXME: preferably, llvm-mca should instead assume a reasonable
|
|
// default when a variant transition is not based on MCSchedPredicate
|
|
// for a given processor.
|
|
if (OnlyExpandMCInstPredicates && !hasMCSchedPredicates(T))
|
|
continue;
|
|
|
|
// If transition is folded to 'return X' it should be the last one.
|
|
if (isAlwaysTrue(T)) {
|
|
FinalT = &T;
|
|
continue;
|
|
}
|
|
PI.subtargetEmitPredicates(T, SchedModels.getSchedClass(T.ToClassIdx),
|
|
isTruePredicate, 3);
|
|
}
|
|
if (FinalT)
|
|
PI.subtargetEmitPredicates(*FinalT, SchedModels.getSchedClass(FinalT->ToClassIdx),
|
|
isTruePredicate);
|
|
|
|
PI.subtargetEmitProcTransitionEnd();
|
|
|
|
if (Pi == 0)
|
|
break;
|
|
}
|
|
|
|
PI.subtargetEmitSchedClassCaseEnd(SC);
|
|
}
|
|
|
|
PI.subtargetEmitSchedClassSwitchEnd();
|
|
|
|
PI.subtargetEmitSchedModelHelperEpilogue(OnlyExpandMCInstPredicates);
|
|
}
|
|
|
|
void SubtargetEmitter::EmitSchedModelHelpers(const std::string &ClassName) {
|
|
PI.subtargetEmitResolveSchedClassHdr(ClassName);
|
|
|
|
// Emit the predicate prolog code.
|
|
PI.subtargetEmitPredicateProlog(Records);
|
|
|
|
// Emit target predicates.
|
|
emitSchedModelHelpersImpl();
|
|
|
|
PI.subtargetEmitResolveSchedClassEnd(ClassName);
|
|
|
|
PI.subtargetEmitResolveVariantSchedClass(Target, ClassName);
|
|
|
|
PI.subtargetEmitExpandedSTIPreds(Target, ClassName, SchedModels);
|
|
}
|
|
|
|
void SubtargetEmitter::EmitHwModeCheck(const std::string &ClassName) {
|
|
const CodeGenHwModes &CGH = TGT.getHwModes();
|
|
assert(CGH.getNumModeIds() > 0);
|
|
if (CGH.getNumModeIds() == 1)
|
|
return;
|
|
|
|
PI.subtargetEmitHwModes(CGH, ClassName);
|
|
}
|
|
|
|
// Produces a subtarget specific function for parsing
|
|
// the subtarget features string.
|
|
void SubtargetEmitter::ParseFeaturesFunction() {
|
|
std::vector<Record*> Features =
|
|
Records.getAllDerivedDefinitions("SubtargetFeature");
|
|
llvm::sort(Features, LessRecord());
|
|
PI.subtargetEmitParseFeaturesFunction(Target, Features);
|
|
}
|
|
|
|
void SubtargetEmitter::emitGenMCSubtargetInfo() {
|
|
PI.emitNamespace(Target + "_MC", true);
|
|
PI.subtargetEmitResolveVariantSchedClassImplHdr();
|
|
emitSchedModelHelpersImpl(/* OnlyExpandMCPredicates */ true);
|
|
PI.subtargetEmitResolveVariantSchedClassImplEnd();
|
|
PI.emitNamespace(Target + "_MC", false);
|
|
|
|
PI.subtargetEmitGenMCSubtargetInfoClass(Target, TGT.getHwModes().getNumModeIds() > 1);
|
|
EmitHwModeCheck(Target + "GenMCSubtargetInfo");
|
|
}
|
|
|
|
void SubtargetEmitter::EmitMCInstrAnalysisPredicateFunctions() {
|
|
PI.emitIncludeToggle("GET_STIPREDICATE_DECLS_FOR_MC_ANALYSIS", true);
|
|
|
|
PI.subtargetEmitExpandedSTIPredsMCAnaDecl(Target, SchedModels);
|
|
|
|
PI.emitIncludeToggle("GET_STIPREDICATE_DECLS_FOR_MC_ANALYSIS", false);
|
|
|
|
PI.emitIncludeToggle("GET_STIPREDICATE_DEFS_FOR_MC_ANALYSIS", true);
|
|
|
|
std::string ClassPrefix = Target + "MCInstrAnalysis";
|
|
PI.subtargetEmitExpandedSTIPreds(Target, ClassPrefix, SchedModels);
|
|
|
|
PI.emitIncludeToggle("GET_STIPREDICATE_DEFS_FOR_MC_ANALYSIS", false);
|
|
}
|
|
|
|
//
|
|
// SubtargetEmitter::run - Main subtarget enumeration emitter.
|
|
//
|
|
void SubtargetEmitter::run() {
|
|
PI.subtargetEmitSourceFileHeader();
|
|
|
|
PI.emitIncludeToggle("GET_SUBTARGETINFO_ENUM", true);
|
|
|
|
DenseMap<Record *, unsigned> FeatureMap;
|
|
|
|
PI.emitNamespace("llvm", true);
|
|
Enumeration(FeatureMap);
|
|
PI.emitNamespace("llvm", false);
|
|
PI.emitIncludeToggle("GET_SUBTARGETINFO_ENUM", false);
|
|
|
|
EmitSubtargetInfoMacroCalls();
|
|
PI.emitIncludeToggle("GET_SUBTARGETINFO_MC_DESC", true);
|
|
|
|
PI.emitNamespace("llvm", true);
|
|
#if 0
|
|
PI.emitNamespace("", true);
|
|
#endif
|
|
unsigned NumFeatures = FeatureKeyValues(FeatureMap);
|
|
EmitSchedModel();
|
|
PI.emitString("\n");
|
|
unsigned NumProcs = CPUKeyValues(FeatureMap);
|
|
PI.emitString("\n");
|
|
#if 0
|
|
PI.emitNamespace("", false);
|
|
#endif
|
|
|
|
// MCInstrInfo initialization routine.
|
|
emitGenMCSubtargetInfo();
|
|
|
|
PI.subtargetEmitMCSubtargetInfoImpl(Target, NumFeatures, NumProcs, SchedModels.hasItineraries());
|
|
|
|
PI.emitNamespace("llvm", false);
|
|
|
|
PI.emitIncludeToggle("GET_SUBTARGETINFO_MC_DESC", false);
|
|
|
|
PI.emitIncludeToggle("GET_SUBTARGETINFO_TARGET_DESC", true);
|
|
|
|
PI.subtargetEmitIncludeSTIDesc();
|
|
|
|
ParseFeaturesFunction();
|
|
|
|
PI.emitIncludeToggle("GET_SUBTARGETINFO_TARGET_DESC", false);
|
|
|
|
// Create a TargetSubtargetInfo subclass to hide the MC layer initialization.
|
|
PI.emitIncludeToggle("GET_SUBTARGETINFO_HEADER", true);
|
|
|
|
std::string ClassName = Target + "GenSubtargetInfo";
|
|
PI.emitNamespace("llvm", true);
|
|
PI.subtargetEmitDFAPacketizerClass(TGT, Target, ClassName);
|
|
|
|
PI.subtargetEmitExpandedSTIPredsHeader(Target, SchedModels);
|
|
PI.subtargetEmitDFAPacketizerClassEnd();
|
|
|
|
PI.emitNamespace("llvm", false);
|
|
|
|
PI.emitIncludeToggle("GET_SUBTARGETINFO_HEADER", false);
|
|
|
|
PI.emitIncludeToggle("GET_SUBTARGETINFO_CTOR", true);
|
|
|
|
PI.subtargetEmitSTICtor();
|
|
PI.emitNamespace("llvm", true);
|
|
PI.subtargetEmitExternKVArrays(Target, SchedModels.hasItineraries());
|
|
|
|
PI.subtargetEmitClassDefs(Target,
|
|
ClassName,
|
|
NumFeatures,
|
|
NumProcs,
|
|
SchedModels.hasItineraries());
|
|
|
|
EmitSchedModelHelpers(ClassName);
|
|
EmitHwModeCheck(ClassName);
|
|
|
|
PI.subtargetEmitGetMacroFusions(TGT, Target, ClassName);
|
|
PI.emitNamespace("llvm", false);
|
|
|
|
PI.emitIncludeToggle("GET_SUBTARGETINFO_CTOR", false);
|
|
|
|
EmitMCInstrAnalysisPredicateFunctions();
|
|
}
|
|
|
|
void EmitSubtarget(RecordKeeper &RK, raw_ostream &OS) {
|
|
CodeGenTarget CGTarget(RK);
|
|
|
|
PrinterLanguage const PL = PrinterLLVM::getLanguage();
|
|
PrinterLLVM *PI;
|
|
formatted_raw_ostream FOS(OS);
|
|
switch(PL) {
|
|
default:
|
|
llvm_unreachable("Subtarget backend does not support the selected printer language.");
|
|
case PRINTER_LANG_CPP:
|
|
PI = new PrinterLLVM(FOS, CGTarget.getName().str());
|
|
break;
|
|
case PRINTER_LANG_CAPSTONE_C:
|
|
PI = new PrinterCapstone(FOS, CGTarget.getName().str());
|
|
break;
|
|
}
|
|
SubtargetEmitter(RK, *PI).run();
|
|
delete PI;
|
|
}
|
|
|
|
static TableGen::Emitter::Opt
|
|
X("gen-subtarget", EmitSubtarget, "Generate subtarget enumerations");
|