mirror of
https://github.com/capstone-engine/llvm-capstone.git
synced 2024-11-30 09:01:19 +00:00
f9008e6366
This is an ongoing series of commits that are reformatting our Python code. Reformatting is done with `black`. If you end up having problems merging this commit because you have made changes to a python file, the best way to handle that is to run git checkout --ours <yourfile> and then reformat it with black. If you run into any problems, post to discourse about it and we will try to help. RFC Thread below: https://discourse.llvm.org/t/rfc-document-and-standardize-python-code-style Differential Revision: https://reviews.llvm.org/D150782
138 lines
4.7 KiB
Python
138 lines
4.7 KiB
Python
# RUN: %PYTHON %s | FileCheck %s
|
|
|
|
from mlir.ir import *
|
|
from mlir.dialects import quant
|
|
|
|
|
|
def run(f):
|
|
print("\nTEST:", f.__name__)
|
|
f()
|
|
return f
|
|
|
|
|
|
# CHECK-LABEL: TEST: test_type_hierarchy
|
|
@run
|
|
def test_type_hierarchy():
|
|
with Context():
|
|
i8 = IntegerType.get_signless(8)
|
|
any = Type.parse("!quant.any<i8<-8:7>:f32>")
|
|
uniform = Type.parse("!quant.uniform<i8<-8:7>:f32, 0.99872:127>")
|
|
per_axis = Type.parse("!quant.uniform<i8:f32:1, {2.0e+2,0.99872:120}>")
|
|
calibrated = Type.parse("!quant.calibrated<f32<-0.998:1.2321>>")
|
|
|
|
assert not quant.QuantizedType.isinstance(i8)
|
|
assert quant.QuantizedType.isinstance(any)
|
|
assert quant.QuantizedType.isinstance(uniform)
|
|
assert quant.QuantizedType.isinstance(per_axis)
|
|
assert quant.QuantizedType.isinstance(calibrated)
|
|
|
|
assert quant.AnyQuantizedType.isinstance(any)
|
|
assert quant.UniformQuantizedType.isinstance(uniform)
|
|
assert quant.UniformQuantizedPerAxisType.isinstance(per_axis)
|
|
assert quant.CalibratedQuantizedType.isinstance(calibrated)
|
|
|
|
assert not quant.AnyQuantizedType.isinstance(uniform)
|
|
assert not quant.UniformQuantizedType.isinstance(per_axis)
|
|
|
|
|
|
# CHECK-LABEL: TEST: test_any_quantized_type
|
|
@run
|
|
def test_any_quantized_type():
|
|
with Context():
|
|
i8 = IntegerType.get_signless(8)
|
|
f32 = F32Type.get()
|
|
any = quant.AnyQuantizedType.get(
|
|
quant.QuantizedType.FLAG_SIGNED, i8, f32, -8, 7
|
|
)
|
|
|
|
# CHECK: flags: 1
|
|
print(f"flags: {any.flags}")
|
|
# CHECK: signed: True
|
|
print(f"signed: {any.is_signed}")
|
|
# CHECK: storage type: i8
|
|
print(f"storage type: {any.storage_type}")
|
|
# CHECK: expressed type: f32
|
|
print(f"expressed type: {any.expressed_type}")
|
|
# CHECK: storage min: -8
|
|
print(f"storage min: {any.storage_type_min}")
|
|
# CHECK: storage max: 7
|
|
print(f"storage max: {any.storage_type_max}")
|
|
# CHECK: storage width: 8
|
|
print(f"storage width: {any.storage_type_integral_width}")
|
|
# CHECK: quantized element type: !quant.any<i8<-8:7>:f32>
|
|
print(f"quantized element type: {any.quantized_element_type}")
|
|
# CHECK: !quant.any<i8<-8:7>:f32>
|
|
print(any)
|
|
assert any == Type.parse("!quant.any<i8<-8:7>:f32>")
|
|
|
|
|
|
# CHECK-LABEL: TEST: test_uniform_type
|
|
@run
|
|
def test_uniform_type():
|
|
with Context():
|
|
i8 = IntegerType.get_signless(8)
|
|
f32 = F32Type.get()
|
|
uniform = quant.UniformQuantizedType.get(
|
|
quant.UniformQuantizedType.FLAG_SIGNED, i8, f32, 0.99872, 127, -8, 7
|
|
)
|
|
|
|
# CHECK: scale: 0.99872
|
|
print(f"scale: {uniform.scale}")
|
|
# CHECK: zero point: 127
|
|
print(f"zero point: {uniform.zero_point}")
|
|
# CHECK: fixed point: False
|
|
print(f"fixed point: {uniform.is_fixed_point}")
|
|
# CHECK: !quant.uniform<i8<-8:7>:f32, 9.987200e-01:127>
|
|
print(uniform)
|
|
assert uniform == Type.parse("!quant.uniform<i8<-8:7>:f32, 0.99872:127>")
|
|
|
|
|
|
# CHECK-LABEL: TEST: test_uniform_per_axis_type
|
|
@run
|
|
def test_uniform_per_axis_type():
|
|
with Context():
|
|
i8 = IntegerType.get_signless(8)
|
|
f32 = F32Type.get()
|
|
per_axis = quant.UniformQuantizedPerAxisType.get(
|
|
quant.QuantizedType.FLAG_SIGNED,
|
|
i8,
|
|
f32,
|
|
[200, 0.99872],
|
|
[0, 120],
|
|
quantized_dimension=1,
|
|
storage_type_min=quant.QuantizedType.default_minimum_for_integer(
|
|
is_signed=True, integral_width=8
|
|
),
|
|
storage_type_max=quant.QuantizedType.default_maximum_for_integer(
|
|
is_signed=True, integral_width=8
|
|
),
|
|
)
|
|
|
|
# CHECK: scales: None
|
|
print(f"scales: {per_axis.scales}")
|
|
# CHECK: zero_points: None
|
|
print(f"zero_points: {per_axis.zero_points}")
|
|
# CHECK: quantized dim: 1
|
|
print(f"quantized dim: {per_axis.quantized_dimension}")
|
|
# CHECK: fixed point: False
|
|
print(f"fixed point: {per_axis.is_fixed_point}")
|
|
# CHECK: !quant.uniform<i8:f32:1, {2.000000e+02,9.987200e-01:120}>
|
|
print(per_axis)
|
|
assert per_axis == Type.parse("!quant.uniform<i8:f32:1, {2.0e+2,0.99872:120}>")
|
|
|
|
|
|
# CHECK-LABEL: TEST: test_calibrated_type
|
|
@run
|
|
def test_calibrated_type():
|
|
with Context():
|
|
f32 = F32Type.get()
|
|
calibrated = quant.CalibratedQuantizedType.get(f32, -0.998, 1.2321)
|
|
|
|
# CHECK: min: -0.998
|
|
print(f"min: {calibrated.min}")
|
|
# CHECK: max: 1.2321
|
|
print(f"max: {calibrated.max}")
|
|
# CHECK: !quant.calibrated<f32<-0.998:1.232100e+00>>
|
|
print(calibrated)
|
|
assert calibrated == Type.parse("!quant.calibrated<f32<-0.998:1.2321>>")
|