mirror of
https://github.com/capstone-engine/llvm-capstone.git
synced 2025-01-08 00:52:54 +00:00
84da0e1bb7
Symbol aliases are supported by all platforms that compiler-rt builtins target, and we can use these instead of function redirects to avoid the extra indirection. This is part of the cleanup proposed in "[RFC] compiler-rt builtins cleanup and refactoring". Differential Revision: https://reviews.llvm.org/D60931 llvm-svn: 359413
107 lines
3.4 KiB
C
107 lines
3.4 KiB
C
//===-- floatundidf.c - Implement __floatundidf ---------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements __floatundidf for the compiler_rt library.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// Returns: convert a to a double, rounding toward even.
|
|
|
|
// Assumption: double is a IEEE 64 bit floating point type
|
|
// du_int is a 64 bit integral type
|
|
|
|
// seee eeee eeee mmmm mmmm mmmm mmmm mmmm | mmmm mmmm mmmm mmmm mmmm mmmm mmmm
|
|
// mmmm
|
|
|
|
#include "int_lib.h"
|
|
|
|
#ifndef __SOFT_FP__
|
|
// Support for systems that have hardware floating-point; we'll set the inexact
|
|
// flag as a side-effect of this computation.
|
|
|
|
COMPILER_RT_ABI double __floatundidf(du_int a) {
|
|
static const double twop52 = 4503599627370496.0; // 0x1.0p52
|
|
static const double twop84 = 19342813113834066795298816.0; // 0x1.0p84
|
|
static const double twop84_plus_twop52 =
|
|
19342813118337666422669312.0; // 0x1.00000001p84
|
|
|
|
union {
|
|
uint64_t x;
|
|
double d;
|
|
} high = {.d = twop84};
|
|
union {
|
|
uint64_t x;
|
|
double d;
|
|
} low = {.d = twop52};
|
|
|
|
high.x |= a >> 32;
|
|
low.x |= a & UINT64_C(0x00000000ffffffff);
|
|
|
|
const double result = (high.d - twop84_plus_twop52) + low.d;
|
|
return result;
|
|
}
|
|
|
|
#else
|
|
// Support for systems that don't have hardware floating-point; there are no
|
|
// flags to set, and we don't want to code-gen to an unknown soft-float
|
|
// implementation.
|
|
|
|
COMPILER_RT_ABI double __floatundidf(du_int a) {
|
|
if (a == 0)
|
|
return 0.0;
|
|
const unsigned N = sizeof(du_int) * CHAR_BIT;
|
|
int sd = N - __builtin_clzll(a); // number of significant digits
|
|
int e = sd - 1; // exponent
|
|
if (sd > DBL_MANT_DIG) {
|
|
// start: 0000000000000000000001xxxxxxxxxxxxxxxxxxxxxxPQxxxxxxxxxxxxxxxxxx
|
|
// finish: 000000000000000000000000000000000000001xxxxxxxxxxxxxxxxxxxxxxPQR
|
|
// 12345678901234567890123456
|
|
// 1 = msb 1 bit
|
|
// P = bit DBL_MANT_DIG-1 bits to the right of 1
|
|
// Q = bit DBL_MANT_DIG bits to the right of 1
|
|
// R = "or" of all bits to the right of Q
|
|
switch (sd) {
|
|
case DBL_MANT_DIG + 1:
|
|
a <<= 1;
|
|
break;
|
|
case DBL_MANT_DIG + 2:
|
|
break;
|
|
default:
|
|
a = (a >> (sd - (DBL_MANT_DIG + 2))) |
|
|
((a & ((du_int)(-1) >> ((N + DBL_MANT_DIG + 2) - sd))) != 0);
|
|
};
|
|
// finish:
|
|
a |= (a & 4) != 0; // Or P into R
|
|
++a; // round - this step may add a significant bit
|
|
a >>= 2; // dump Q and R
|
|
// a is now rounded to DBL_MANT_DIG or DBL_MANT_DIG+1 bits
|
|
if (a & ((du_int)1 << DBL_MANT_DIG)) {
|
|
a >>= 1;
|
|
++e;
|
|
}
|
|
// a is now rounded to DBL_MANT_DIG bits
|
|
} else {
|
|
a <<= (DBL_MANT_DIG - sd);
|
|
// a is now rounded to DBL_MANT_DIG bits
|
|
}
|
|
double_bits fb;
|
|
fb.u.s.high = ((e + 1023) << 20) | // exponent
|
|
((su_int)(a >> 32) & 0x000FFFFF); // mantissa-high
|
|
fb.u.s.low = (su_int)a; // mantissa-low
|
|
return fb.f;
|
|
}
|
|
#endif
|
|
|
|
#if defined(__ARM_EABI__)
|
|
#if defined(COMPILER_RT_ARMHF_TARGET)
|
|
AEABI_RTABI double __aeabi_ul2d(du_int a) { return __floatundidf(a); }
|
|
#else
|
|
COMPILER_RT_ALIAS(__floatundidf, __aeabi_ul2d)
|
|
#endif
|
|
#endif
|