llvm-capstone/polly/test/ScheduleOptimizer/pattern-matching-based-opts_5.ll
Roman Gareev 028ba3702c [FIX] Disable the problematic run lines
There are problems with using the machine information to derive the precise
vector size on polly-amd64-linux and polly-arm-linux. We temporarily disable
the problematic run lines.

llvm-svn: 294571
2017-02-09 09:03:13 +00:00

199 lines
12 KiB
LLVM

; RUN: opt %loadPolly -polly-opt-isl -polly-pattern-matching-based-opts=true \
; RUN: -polly-target-throughput-vector-fma=1 \
; RUN: -polly-target-latency-vector-fma=8 \
; RUN: -analyze -polly-ast -polly-target-1st-cache-level-associativity=8 \
; RUN: -polly-target-2nd-cache-level-associativity=8 \
; RUN: -polly-target-1st-cache-level-size=32768 \
; RUN: -polly-target-vector-register-bitwidth=256 \
; RUN: -polly-target-2nd-cache-level-size=262144 < %s \
; RUN: | FileCheck %s
;
; opt %loadPolly -polly-opt-isl -polly-pattern-matching-based-opts=true \
; -polly-target-throughput-vector-fma=1 \
; -polly-target-latency-vector-fma=8 \
; -polly-codegen -polly-target-1st-cache-level-associativity=8 \
; -polly-target-2nd-cache-level-associativity=8 \
; -polly-target-1st-cache-level-size=32768 \
; -polly-target-vector-register-bitwidth=256 \
; -polly-target-2nd-cache-level-size=262144 -gvn -licm -slp-vectorizer \
; -mcpu=corei7 -stats -S < %s 2>&1 | FileCheck %s --check-prefix=AUTO-VECTORIZATION
;
;
; /* We isolate a set of partial tile prefixes, which contains only partial
; tile prefixes that have exactly Mr x Nr iterations of the two innermost
; loops produced by the optimization of the matrix multiplication. Mr and
; Nr are parameters of the micro-kernel (see getMicroKernelParams and
; getMacroKernelParams from lib/Transform/ScheduleOptimizer.cpp for
; details). This test check that in case of parametric bounds it helps to
; get rid of the conditional expressions of the unrolled innermost loops,
; which prevents stores and loads of the unrolled loops from being sunk
; and hoisted. Otherwise, it causes a run-time regression in comparison
; to the vectorized code with sunk and hoisted memory accesses. */
;
; /* C := A * B + C */
; for (i = 0; i < _PB_NI; i++)
; for (j = 0; j < _PB_NJ; j++)
; for (k = 0; k < _PB_NK; ++k)
; C[i][j] += A[i][k] * B[k][j];
;
; CHECK: if (ni >= 1) {
; CHECK-NEXT: // 1st level tiling - Tiles
; CHECK-NEXT: for (int c0 = 0; c0 <= floord(nj - 1, 2048); c0 += 1)
; CHECK-NEXT: for (int c1 = 0; c1 <= floord(nk - 1, 256); c1 += 1) {
; CHECK-NEXT: for (int c3 = 2048 * c0; c3 <= min(nj - 1, 2048 * c0 + 2047); c3 += 1)
; CHECK-NEXT: for (int c4 = 256 * c1; c4 <= min(nk - 1, 256 * c1 + 255); c4 += 1)
; CHECK-NEXT: CopyStmt_0(0, c3, c4);
; CHECK-NEXT: for (int c2 = 0; c2 <= floord(ni - 1, 96); c2 += 1) {
; CHECK-NEXT: if (c0 == 0)
; CHECK-NEXT: for (int c3 = 96 * c2; c3 <= min(ni - 1, 96 * c2 + 95); c3 += 1)
; CHECK-NEXT: for (int c5 = 256 * c1; c5 <= min(nk - 1, 256 * c1 + 255); c5 += 1)
; CHECK-NEXT: CopyStmt_1(c3, 0, c5);
; CHECK-NEXT: // 1st level tiling - Points
; CHECK-NEXT: // Register tiling - Tiles
; CHECK-NEXT: {
; CHECK-NEXT: if (ni >= 96 * c2 + 4)
; CHECK-NEXT: for (int c3 = 0; c3 <= min(255, -256 * c0 + nj / 8 - 1); c3 += 1) {
; CHECK-NEXT: for (int c4 = 0; c4 <= min(23, -24 * c2 + ni / 4 - 1); c4 += 1)
; CHECK-NEXT: for (int c5 = 0; c5 <= min(255, nk - 256 * c1 - 1); c5 += 1) {
; CHECK-NEXT: // Register tiling - Points
; CHECK-NEXT: {
; CHECK-NEXT: Stmt_for_body6(96 * c2 + 4 * c4, 2048 * c0 + 8 * c3, 256 * c1 + c5);
; CHECK-NEXT: Stmt_for_body6(96 * c2 + 4 * c4, 2048 * c0 + 8 * c3 + 1, 256 * c1 + c5);
; CHECK-NEXT: Stmt_for_body6(96 * c2 + 4 * c4, 2048 * c0 + 8 * c3 + 2, 256 * c1 + c5);
; CHECK-NEXT: Stmt_for_body6(96 * c2 + 4 * c4, 2048 * c0 + 8 * c3 + 3, 256 * c1 + c5);
; CHECK-NEXT: Stmt_for_body6(96 * c2 + 4 * c4, 2048 * c0 + 8 * c3 + 4, 256 * c1 + c5);
; CHECK-NEXT: Stmt_for_body6(96 * c2 + 4 * c4, 2048 * c0 + 8 * c3 + 5, 256 * c1 + c5);
; CHECK-NEXT: Stmt_for_body6(96 * c2 + 4 * c4, 2048 * c0 + 8 * c3 + 6, 256 * c1 + c5);
; CHECK-NEXT: Stmt_for_body6(96 * c2 + 4 * c4, 2048 * c0 + 8 * c3 + 7, 256 * c1 + c5);
; CHECK-NEXT: Stmt_for_body6(96 * c2 + 4 * c4 + 1, 2048 * c0 + 8 * c3, 256 * c1 + c5);
; CHECK-NEXT: Stmt_for_body6(96 * c2 + 4 * c4 + 1, 2048 * c0 + 8 * c3 + 1, 256 * c1 + c5);
; CHECK-NEXT: Stmt_for_body6(96 * c2 + 4 * c4 + 1, 2048 * c0 + 8 * c3 + 2, 256 * c1 + c5);
; CHECK-NEXT: Stmt_for_body6(96 * c2 + 4 * c4 + 1, 2048 * c0 + 8 * c3 + 3, 256 * c1 + c5);
; CHECK-NEXT: Stmt_for_body6(96 * c2 + 4 * c4 + 1, 2048 * c0 + 8 * c3 + 4, 256 * c1 + c5);
; CHECK-NEXT: Stmt_for_body6(96 * c2 + 4 * c4 + 1, 2048 * c0 + 8 * c3 + 5, 256 * c1 + c5);
; CHECK-NEXT: Stmt_for_body6(96 * c2 + 4 * c4 + 1, 2048 * c0 + 8 * c3 + 6, 256 * c1 + c5);
; CHECK-NEXT: Stmt_for_body6(96 * c2 + 4 * c4 + 1, 2048 * c0 + 8 * c3 + 7, 256 * c1 + c5);
; CHECK-NEXT: Stmt_for_body6(96 * c2 + 4 * c4 + 2, 2048 * c0 + 8 * c3, 256 * c1 + c5);
; CHECK-NEXT: Stmt_for_body6(96 * c2 + 4 * c4 + 2, 2048 * c0 + 8 * c3 + 1, 256 * c1 + c5);
; CHECK-NEXT: Stmt_for_body6(96 * c2 + 4 * c4 + 2, 2048 * c0 + 8 * c3 + 2, 256 * c1 + c5);
; CHECK-NEXT: Stmt_for_body6(96 * c2 + 4 * c4 + 2, 2048 * c0 + 8 * c3 + 3, 256 * c1 + c5);
; CHECK-NEXT: Stmt_for_body6(96 * c2 + 4 * c4 + 2, 2048 * c0 + 8 * c3 + 4, 256 * c1 + c5);
; CHECK-NEXT: Stmt_for_body6(96 * c2 + 4 * c4 + 2, 2048 * c0 + 8 * c3 + 5, 256 * c1 + c5);
; CHECK-NEXT: Stmt_for_body6(96 * c2 + 4 * c4 + 2, 2048 * c0 + 8 * c3 + 6, 256 * c1 + c5);
; CHECK-NEXT: Stmt_for_body6(96 * c2 + 4 * c4 + 2, 2048 * c0 + 8 * c3 + 7, 256 * c1 + c5);
; CHECK-NEXT: Stmt_for_body6(96 * c2 + 4 * c4 + 3, 2048 * c0 + 8 * c3, 256 * c1 + c5);
; CHECK-NEXT: Stmt_for_body6(96 * c2 + 4 * c4 + 3, 2048 * c0 + 8 * c3 + 1, 256 * c1 + c5);
; CHECK-NEXT: Stmt_for_body6(96 * c2 + 4 * c4 + 3, 2048 * c0 + 8 * c3 + 2, 256 * c1 + c5);
; CHECK-NEXT: Stmt_for_body6(96 * c2 + 4 * c4 + 3, 2048 * c0 + 8 * c3 + 3, 256 * c1 + c5);
; CHECK-NEXT: Stmt_for_body6(96 * c2 + 4 * c4 + 3, 2048 * c0 + 8 * c3 + 4, 256 * c1 + c5);
; CHECK-NEXT: Stmt_for_body6(96 * c2 + 4 * c4 + 3, 2048 * c0 + 8 * c3 + 5, 256 * c1 + c5);
; CHECK-NEXT: Stmt_for_body6(96 * c2 + 4 * c4 + 3, 2048 * c0 + 8 * c3 + 6, 256 * c1 + c5);
; CHECK-NEXT: Stmt_for_body6(96 * c2 + 4 * c4 + 3, 2048 * c0 + 8 * c3 + 7, 256 * c1 + c5);
; CHECK-NEXT: }
; CHECK-NEXT: }
; CHECK-NEXT: if (96 * c2 + 95 >= ni)
; CHECK-NEXT: for (int c5 = 0; c5 <= min(255, nk - 256 * c1 - 1); c5 += 1) {
; CHECK-NEXT: // Register tiling - Points
; CHECK-NEXT: for (int c6 = 0; c6 < ni % 4; c6 += 1)
; CHECK-NEXT: for (int c7 = 0; c7 <= 7; c7 += 1)
; CHECK-NEXT: Stmt_for_body6(-((ni + 4) % 4) + ni + c6, 2048 * c0 + 8 * c3 + c7, 256 * c1 + c5);
; CHECK-NEXT: }
; CHECK-NEXT: }
; CHECK-NEXT: if (96 * c2 + 3 >= ni || (2048 * c0 + 2047 >= nj && nj % 8 >= 1))
; CHECK-NEXT: for (int c3 = 0; c3 <= min(255, -256 * c0 + (nj - 1) / 8); c3 += 1)
; CHECK-NEXT: if (96 * c2 + 3 >= ni || 2048 * c0 + 8 * c3 + 7 >= nj)
; CHECK-NEXT: for (int c4 = 0; c4 <= min(23, -24 * c2 + (ni - 1) / 4); c4 += 1)
; CHECK-NEXT: if ((ni >= 96 * c2 + 4 && 2048 * c0 + 8 * c3 + 7 >= nj) || 1)
; CHECK-NEXT: for (int c5 = 0; c5 <= min(255, nk - 256 * c1 - 1); c5 += 1) {
; CHECK-NEXT: // Register tiling - Points
; CHECK-NEXT: for (int c6 = 0; c6 <= min(3, ni - 96 * c2 - 4 * c4 - 1); c6 += 1)
; CHECK-NEXT: for (int c7 = 0; c7 <= min(7, nj - 2048 * c0 - 8 * c3 - 1); c7 += 1)
; CHECK-NEXT: Stmt_for_body6(96 * c2 + 4 * c4 + c6, 2048 * c0 + 8 * c3 + c7, 256 * c1 + c5);
; CHECK-NEXT: }
; CHECK-NEXT: }
; CHECK-NEXT: }
; CHECK-NEXT: }
; CHECK-NEXT: }
;
; AUTO-VECTORIZATION: fmul <4 x double>
; AUTO-VECTORIZATION: fadd <4 x double>
; AUTO-VECTORIZATION: 36 SLP - Number of vector instructions generated
; AUTO-VECTORIZATION: 453 licm - Number of instructions hoisted out of loop
; AUTO-VECTORIZATION: 2 licm - Number of load insts hoisted or sunk
; AUTO-VECTORIZATION: 32 licm - Number of memory locations promoted to registers
;
target datalayout = "e-m:e-i64:64-f80:128-n8:16:32:64-S128"
target triple = "x86_64-unknown-unknown"
define internal void @kernel_gemm(i32 %ni, i32 %nj, i32 %nk, double %alpha, double %beta, [1024 x double]* %C, [1024 x double]* %A, [1024 x double]* %B) #0 {
entry:
br label %entry.split
entry.split: ; preds = %entry
%cmp39 = icmp sgt i32 %ni, 0
br i1 %cmp39, label %for.cond1.preheader.lr.ph, label %for.end22
for.cond1.preheader.lr.ph: ; preds = %entry.split
br label %for.cond1.preheader
for.cond1.preheader: ; preds = %for.inc20, %for.cond1.preheader.lr.ph
%indvars.iv45 = phi i64 [ 0, %for.cond1.preheader.lr.ph ], [ %indvars.iv.next46, %for.inc20 ]
%cmp237 = icmp sgt i32 %nj, 0
br i1 %cmp237, label %for.cond4.preheader.lr.ph, label %for.inc20
for.cond4.preheader.lr.ph: ; preds = %for.cond1.preheader
br label %for.cond4.preheader
for.cond4.preheader: ; preds = %for.inc17, %for.cond4.preheader.lr.ph
%indvars.iv41 = phi i64 [ 0, %for.cond4.preheader.lr.ph ], [ %indvars.iv.next42, %for.inc17 ]
%cmp535 = icmp sgt i32 %nk, 0
br i1 %cmp535, label %for.body6.lr.ph, label %for.inc17
for.body6.lr.ph: ; preds = %for.cond4.preheader
br label %for.body6
for.body6: ; preds = %for.body6, %for.body6.lr.ph
%indvars.iv = phi i64 [ 0, %for.body6.lr.ph ], [ %indvars.iv.next, %for.body6 ]
%arrayidx8 = getelementptr inbounds [1024 x double], [1024 x double]* %A, i64 %indvars.iv45, i64 %indvars.iv
%tmp = load double, double* %arrayidx8, align 8
%arrayidx12 = getelementptr inbounds [1024 x double], [1024 x double]* %B, i64 %indvars.iv, i64 %indvars.iv41
%tmp1 = load double, double* %arrayidx12, align 8
%mul = fmul double %tmp, %tmp1
%arrayidx16 = getelementptr inbounds [1024 x double], [1024 x double]* %C, i64 %indvars.iv45, i64 %indvars.iv41
%tmp2 = load double, double* %arrayidx16, align 8
%add = fadd double %tmp2, %mul
store double %add, double* %arrayidx16, align 8
%indvars.iv.next = add nuw nsw i64 %indvars.iv, 1
%wide.trip.count = zext i32 %nk to i64
%exitcond = icmp ne i64 %indvars.iv.next, %wide.trip.count
br i1 %exitcond, label %for.body6, label %for.cond4.for.inc17_crit_edge
for.cond4.for.inc17_crit_edge: ; preds = %for.body6
br label %for.inc17
for.inc17: ; preds = %for.cond4.for.inc17_crit_edge, %for.cond4.preheader
%indvars.iv.next42 = add nuw nsw i64 %indvars.iv41, 1
%wide.trip.count43 = zext i32 %nj to i64
%exitcond44 = icmp ne i64 %indvars.iv.next42, %wide.trip.count43
br i1 %exitcond44, label %for.cond4.preheader, label %for.cond1.for.inc20_crit_edge
for.cond1.for.inc20_crit_edge: ; preds = %for.inc17
br label %for.inc20
for.inc20: ; preds = %for.cond1.for.inc20_crit_edge, %for.cond1.preheader
%indvars.iv.next46 = add nuw nsw i64 %indvars.iv45, 1
%wide.trip.count47 = zext i32 %ni to i64
%exitcond48 = icmp ne i64 %indvars.iv.next46, %wide.trip.count47
br i1 %exitcond48, label %for.cond1.preheader, label %for.cond.for.end22_crit_edge
for.cond.for.end22_crit_edge: ; preds = %for.inc20
br label %for.end22
for.end22: ; preds = %for.cond.for.end22_crit_edge, %entry.split
ret void
}
attributes #0 = { nounwind uwtable "target-cpu"="x86-64" "target-features"="+aes,+avx,+cmov,+cx16,+fxsr,+mmx,+pclmul,+popcnt,+sse,+sse2,+sse3,+sse4.1,+sse4.2,+ssse3,+x87,+xsave,+xsaveopt" }