llvm-capstone/polly
Michael Kruse 189abad128 [ScopBuilder] Move addInvariantLoads to ScopBuilder. NFC.
Moved addInvariantLoads and functions listed below to ScopBuilder:
isAParameter
canAlwaysBeHoisted

These functions were referenced only by getNonHoistableCtx.

Moved CLI parameter PollyAllowDereferenceOfAllFunctionParams to
ScopBuilder.

Added iterator range through InvariantEquivClasses.

Patch by Dominik Adamski <adamski.dominik@gmail.com>

Differential Revision: https://reviews.llvm.org/D63172

llvm-svn: 363216
2019-06-12 22:51:56 +00:00
..
cmake [CMake] Fix generation of exported targets in build directory 2018-11-06 15:18:17 +00:00
docs [CodeGen] LLVM OpenMP Backend. 2019-03-19 03:18:21 +00:00
include/polly [ScopBuilder] Move addInvariantLoads to ScopBuilder. NFC. 2019-06-12 22:51:56 +00:00
lib [ScopBuilder] Move addInvariantLoads to ScopBuilder. NFC. 2019-06-12 22:51:56 +00:00
test [ScheduleOptimizer] Hoist extension nodes after schedule optimization. 2019-05-31 19:26:57 +00:00
tools Fix typos throughout the license files that somehow I and my reviewers 2019-01-21 09:52:34 +00:00
unittests Update the file headers across all of the LLVM projects in the monorepo 2019-01-19 08:50:56 +00:00
utils [arc] Remove unittesting from arcconfig 2018-05-15 13:43:42 +00:00
www Adjust documentation for git migration. 2019-01-29 16:37:27 +00:00
.arcconfig [arc] Remove unittesting from arcconfig 2018-05-15 13:43:42 +00:00
.arclint
.gitattributes
.gitignore
CMakeLists.txt [JSONExporter] Replace bundled Jsoncpp with llvm/Support/JSON.h. NFC. 2018-08-01 00:15:16 +00:00
CREDITS.txt
LICENSE.txt Fix typos throughout the license files that somehow I and my reviewers 2019-01-21 09:52:34 +00:00
README

Polly - Polyhedral optimizations for LLVM
-----------------------------------------
http://polly.llvm.org/

Polly uses a mathematical representation, the polyhedral model, to represent and
transform loops and other control flow structures. Using an abstract
representation it is possible to reason about transformations in a more general
way and to use highly optimized linear programming libraries to figure out the
optimal loop structure. These transformations can be used to do constant
propagation through arrays, remove dead loop iterations, optimize loops for
cache locality, optimize arrays, apply advanced automatic parallelization, drive
vectorization, or they can be used to do software pipelining.