mirror of
https://github.com/capstone-engine/llvm-capstone.git
synced 2025-05-15 10:26:23 +00:00

ORC splits into separate dylibs symbols coming from the process and symbols materialized in the Jit. This patch adapts intent of the existing interface and adds a regression test to make sure both Jit'd and compiled symbols can be found. Differential revision: https://reviews.llvm.org/D159115
433 lines
14 KiB
C++
433 lines
14 KiB
C++
//===- unittests/Interpreter/InterpreterTest.cpp --- Interpreter tests ----===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// Unit tests for Clang's Interpreter library.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "clang/Interpreter/Interpreter.h"
|
|
|
|
#include "clang/AST/Decl.h"
|
|
#include "clang/AST/DeclGroup.h"
|
|
#include "clang/AST/Mangle.h"
|
|
#include "clang/Frontend/CompilerInstance.h"
|
|
#include "clang/Frontend/TextDiagnosticPrinter.h"
|
|
#include "clang/Interpreter/Value.h"
|
|
#include "clang/Sema/Lookup.h"
|
|
#include "clang/Sema/Sema.h"
|
|
|
|
#include "llvm/ExecutionEngine/Orc/LLJIT.h"
|
|
#include "llvm/Support/ManagedStatic.h"
|
|
#include "llvm/Support/TargetSelect.h"
|
|
|
|
#include "gmock/gmock.h"
|
|
#include "gtest/gtest.h"
|
|
|
|
using namespace clang;
|
|
|
|
#if defined(_AIX)
|
|
#define CLANG_INTERPRETER_NO_SUPPORT_EXEC
|
|
#endif
|
|
|
|
int Global = 42;
|
|
// JIT reports symbol not found on Windows without the visibility attribute.
|
|
REPL_EXTERNAL_VISIBILITY int getGlobal() { return Global; }
|
|
REPL_EXTERNAL_VISIBILITY void setGlobal(int val) { Global = val; }
|
|
|
|
namespace {
|
|
using Args = std::vector<const char *>;
|
|
static std::unique_ptr<Interpreter>
|
|
createInterpreter(const Args &ExtraArgs = {},
|
|
DiagnosticConsumer *Client = nullptr) {
|
|
Args ClangArgs = {"-Xclang", "-emit-llvm-only"};
|
|
ClangArgs.insert(ClangArgs.end(), ExtraArgs.begin(), ExtraArgs.end());
|
|
auto CB = clang::IncrementalCompilerBuilder();
|
|
CB.SetCompilerArgs(ClangArgs);
|
|
auto CI = cantFail(CB.CreateCpp());
|
|
if (Client)
|
|
CI->getDiagnostics().setClient(Client, /*ShouldOwnClient=*/false);
|
|
return cantFail(clang::Interpreter::create(std::move(CI)));
|
|
}
|
|
|
|
static size_t DeclsSize(TranslationUnitDecl *PTUDecl) {
|
|
return std::distance(PTUDecl->decls().begin(), PTUDecl->decls().end());
|
|
}
|
|
|
|
TEST(InterpreterTest, Sanity) {
|
|
std::unique_ptr<Interpreter> Interp = createInterpreter();
|
|
|
|
using PTU = PartialTranslationUnit;
|
|
|
|
PTU &R1(cantFail(Interp->Parse("void g(); void g() {}")));
|
|
EXPECT_EQ(2U, DeclsSize(R1.TUPart));
|
|
|
|
PTU &R2(cantFail(Interp->Parse("int i;")));
|
|
EXPECT_EQ(1U, DeclsSize(R2.TUPart));
|
|
}
|
|
|
|
static std::string DeclToString(Decl *D) {
|
|
return llvm::cast<NamedDecl>(D)->getQualifiedNameAsString();
|
|
}
|
|
|
|
TEST(InterpreterTest, IncrementalInputTopLevelDecls) {
|
|
std::unique_ptr<Interpreter> Interp = createInterpreter();
|
|
auto R1 = Interp->Parse("int var1 = 42; int f() { return var1; }");
|
|
// gtest doesn't expand into explicit bool conversions.
|
|
EXPECT_TRUE(!!R1);
|
|
auto R1DeclRange = R1->TUPart->decls();
|
|
EXPECT_EQ(2U, DeclsSize(R1->TUPart));
|
|
EXPECT_EQ("var1", DeclToString(*R1DeclRange.begin()));
|
|
EXPECT_EQ("f", DeclToString(*(++R1DeclRange.begin())));
|
|
|
|
auto R2 = Interp->Parse("int var2 = f();");
|
|
EXPECT_TRUE(!!R2);
|
|
auto R2DeclRange = R2->TUPart->decls();
|
|
EXPECT_EQ(1U, DeclsSize(R2->TUPart));
|
|
EXPECT_EQ("var2", DeclToString(*R2DeclRange.begin()));
|
|
}
|
|
|
|
TEST(InterpreterTest, Errors) {
|
|
Args ExtraArgs = {"-Xclang", "-diagnostic-log-file", "-Xclang", "-"};
|
|
|
|
// Create the diagnostic engine with unowned consumer.
|
|
std::string DiagnosticOutput;
|
|
llvm::raw_string_ostream DiagnosticsOS(DiagnosticOutput);
|
|
auto DiagPrinter = std::make_unique<TextDiagnosticPrinter>(
|
|
DiagnosticsOS, new DiagnosticOptions());
|
|
|
|
auto Interp = createInterpreter(ExtraArgs, DiagPrinter.get());
|
|
auto Err = Interp->Parse("intentional_error v1 = 42; ").takeError();
|
|
using ::testing::HasSubstr;
|
|
EXPECT_THAT(DiagnosticsOS.str(),
|
|
HasSubstr("error: unknown type name 'intentional_error'"));
|
|
EXPECT_EQ("Parsing failed.", llvm::toString(std::move(Err)));
|
|
|
|
auto RecoverErr = Interp->Parse("int var1 = 42;");
|
|
EXPECT_TRUE(!!RecoverErr);
|
|
}
|
|
|
|
// Here we test whether the user can mix declarations and statements. The
|
|
// interpreter should be smart enough to recognize the declarations from the
|
|
// statements and wrap the latter into a declaration, producing valid code.
|
|
TEST(InterpreterTest, DeclsAndStatements) {
|
|
Args ExtraArgs = {"-Xclang", "-diagnostic-log-file", "-Xclang", "-"};
|
|
|
|
// Create the diagnostic engine with unowned consumer.
|
|
std::string DiagnosticOutput;
|
|
llvm::raw_string_ostream DiagnosticsOS(DiagnosticOutput);
|
|
auto DiagPrinter = std::make_unique<TextDiagnosticPrinter>(
|
|
DiagnosticsOS, new DiagnosticOptions());
|
|
|
|
auto Interp = createInterpreter(ExtraArgs, DiagPrinter.get());
|
|
auto R1 = Interp->Parse(
|
|
"int var1 = 42; extern \"C\" int printf(const char*, ...);");
|
|
// gtest doesn't expand into explicit bool conversions.
|
|
EXPECT_TRUE(!!R1);
|
|
|
|
auto *PTU1 = R1->TUPart;
|
|
EXPECT_EQ(2U, DeclsSize(PTU1));
|
|
|
|
auto R2 = Interp->Parse("var1++; printf(\"var1 value %d\\n\", var1);");
|
|
EXPECT_TRUE(!!R2);
|
|
}
|
|
|
|
TEST(InterpreterTest, UndoCommand) {
|
|
Args ExtraArgs = {"-Xclang", "-diagnostic-log-file", "-Xclang", "-"};
|
|
|
|
// Create the diagnostic engine with unowned consumer.
|
|
std::string DiagnosticOutput;
|
|
llvm::raw_string_ostream DiagnosticsOS(DiagnosticOutput);
|
|
auto DiagPrinter = std::make_unique<TextDiagnosticPrinter>(
|
|
DiagnosticsOS, new DiagnosticOptions());
|
|
|
|
auto Interp = createInterpreter(ExtraArgs, DiagPrinter.get());
|
|
|
|
// Fail to undo.
|
|
auto Err1 = Interp->Undo();
|
|
EXPECT_EQ("Operation failed. Too many undos",
|
|
llvm::toString(std::move(Err1)));
|
|
auto Err2 = Interp->Parse("int foo = 42;");
|
|
EXPECT_TRUE(!!Err2);
|
|
auto Err3 = Interp->Undo(2);
|
|
EXPECT_EQ("Operation failed. Too many undos",
|
|
llvm::toString(std::move(Err3)));
|
|
|
|
// Succeed to undo.
|
|
auto Err4 = Interp->Parse("int x = 42;");
|
|
EXPECT_TRUE(!!Err4);
|
|
auto Err5 = Interp->Undo();
|
|
EXPECT_FALSE(Err5);
|
|
auto Err6 = Interp->Parse("int x = 24;");
|
|
EXPECT_TRUE(!!Err6);
|
|
auto Err7 = Interp->Parse("#define X 42");
|
|
EXPECT_TRUE(!!Err7);
|
|
auto Err8 = Interp->Undo();
|
|
EXPECT_FALSE(Err8);
|
|
auto Err9 = Interp->Parse("#define X 24");
|
|
EXPECT_TRUE(!!Err9);
|
|
|
|
// Undo input contains errors.
|
|
auto Err10 = Interp->Parse("int y = ;");
|
|
EXPECT_FALSE(!!Err10);
|
|
EXPECT_EQ("Parsing failed.", llvm::toString(Err10.takeError()));
|
|
auto Err11 = Interp->Parse("int y = 42;");
|
|
EXPECT_TRUE(!!Err11);
|
|
auto Err12 = Interp->Undo();
|
|
EXPECT_FALSE(Err12);
|
|
}
|
|
|
|
static std::string MangleName(NamedDecl *ND) {
|
|
ASTContext &C = ND->getASTContext();
|
|
std::unique_ptr<MangleContext> MangleC(C.createMangleContext());
|
|
std::string mangledName;
|
|
llvm::raw_string_ostream RawStr(mangledName);
|
|
MangleC->mangleName(ND, RawStr);
|
|
return RawStr.str();
|
|
}
|
|
|
|
static bool HostSupportsJit() {
|
|
auto J = llvm::orc::LLJITBuilder()
|
|
.setEnableDebuggerSupport(true)
|
|
.create();
|
|
if (J)
|
|
return true;
|
|
LLVMConsumeError(llvm::wrap(J.takeError()));
|
|
return false;
|
|
}
|
|
|
|
struct LLVMInitRAII {
|
|
LLVMInitRAII() {
|
|
llvm::InitializeNativeTarget();
|
|
llvm::InitializeNativeTargetAsmPrinter();
|
|
}
|
|
~LLVMInitRAII() { llvm::llvm_shutdown(); }
|
|
} LLVMInit;
|
|
|
|
#ifdef CLANG_INTERPRETER_NO_SUPPORT_EXEC
|
|
TEST(IncrementalProcessing, DISABLED_FindMangledNameSymbol) {
|
|
#else
|
|
TEST(IncrementalProcessing, FindMangledNameSymbol) {
|
|
#endif
|
|
|
|
std::unique_ptr<Interpreter> Interp = createInterpreter();
|
|
|
|
auto &PTU(cantFail(Interp->Parse("int f(const char*) {return 0;}")));
|
|
EXPECT_EQ(1U, DeclsSize(PTU.TUPart));
|
|
auto R1DeclRange = PTU.TUPart->decls();
|
|
|
|
// We cannot execute on the platform.
|
|
if (!HostSupportsJit()) {
|
|
return;
|
|
}
|
|
|
|
NamedDecl *FD = cast<FunctionDecl>(*R1DeclRange.begin());
|
|
// Lower the PTU
|
|
if (llvm::Error Err = Interp->Execute(PTU)) {
|
|
// We cannot execute on the platform.
|
|
consumeError(std::move(Err));
|
|
return;
|
|
}
|
|
|
|
std::string MangledName = MangleName(FD);
|
|
auto Addr = Interp->getSymbolAddress(MangledName);
|
|
EXPECT_FALSE(!Addr);
|
|
EXPECT_NE(0U, Addr->getValue());
|
|
GlobalDecl GD(FD);
|
|
EXPECT_EQ(*Addr, cantFail(Interp->getSymbolAddress(GD)));
|
|
cantFail(
|
|
Interp->ParseAndExecute("extern \"C\" int printf(const char*,...);"));
|
|
Addr = Interp->getSymbolAddress("printf");
|
|
EXPECT_FALSE(!Addr);
|
|
EXPECT_EQ((unsigned long long)&printf, Addr->getValue());
|
|
}
|
|
|
|
static void *AllocateObject(TypeDecl *TD, Interpreter &Interp) {
|
|
std::string Name = TD->getQualifiedNameAsString();
|
|
const clang::Type *RDTy = TD->getTypeForDecl();
|
|
clang::ASTContext &C = Interp.getCompilerInstance()->getASTContext();
|
|
size_t Size = C.getTypeSize(RDTy);
|
|
void *Addr = malloc(Size);
|
|
|
|
// Tell the interpreter to call the default ctor with this memory. Synthesize:
|
|
// new (loc) ClassName;
|
|
static unsigned Counter = 0;
|
|
std::stringstream SS;
|
|
SS << "auto _v" << Counter++ << " = "
|
|
<< "new ((void*)"
|
|
// Windows needs us to prefix the hexadecimal value of a pointer with '0x'.
|
|
<< std::hex << std::showbase << (size_t)Addr << ")" << Name << "();";
|
|
|
|
auto R = Interp.ParseAndExecute(SS.str());
|
|
if (!R) {
|
|
free(Addr);
|
|
return nullptr;
|
|
}
|
|
|
|
return Addr;
|
|
}
|
|
|
|
static NamedDecl *LookupSingleName(Interpreter &Interp, const char *Name) {
|
|
Sema &SemaRef = Interp.getCompilerInstance()->getSema();
|
|
ASTContext &C = SemaRef.getASTContext();
|
|
DeclarationName DeclName = &C.Idents.get(Name);
|
|
LookupResult R(SemaRef, DeclName, SourceLocation(), Sema::LookupOrdinaryName);
|
|
SemaRef.LookupName(R, SemaRef.TUScope);
|
|
assert(!R.empty());
|
|
return R.getFoundDecl();
|
|
}
|
|
|
|
#ifdef CLANG_INTERPRETER_NO_SUPPORT_EXEC
|
|
TEST(IncrementalProcessing, DISABLED_InstantiateTemplate) {
|
|
#else
|
|
TEST(IncrementalProcessing, InstantiateTemplate) {
|
|
#endif
|
|
// FIXME: We cannot yet handle delayed template parsing. If we run with
|
|
// -fdelayed-template-parsing we try adding the newly created decl to the
|
|
// active PTU which causes an assert.
|
|
std::vector<const char *> Args = {"-fno-delayed-template-parsing"};
|
|
std::unique_ptr<Interpreter> Interp = createInterpreter(Args);
|
|
|
|
llvm::cantFail(Interp->Parse("extern \"C\" int printf(const char*,...);"
|
|
"class A {};"
|
|
"struct B {"
|
|
" template<typename T>"
|
|
" static int callme(T) { return 42; }"
|
|
"};"));
|
|
auto &PTU = llvm::cantFail(Interp->Parse("auto _t = &B::callme<A*>;"));
|
|
auto PTUDeclRange = PTU.TUPart->decls();
|
|
EXPECT_EQ(1, std::distance(PTUDeclRange.begin(), PTUDeclRange.end()));
|
|
|
|
// We cannot execute on the platform.
|
|
if (!HostSupportsJit()) {
|
|
return;
|
|
}
|
|
|
|
// Lower the PTU
|
|
if (llvm::Error Err = Interp->Execute(PTU)) {
|
|
// We cannot execute on the platform.
|
|
consumeError(std::move(Err));
|
|
return;
|
|
}
|
|
|
|
TypeDecl *TD = cast<TypeDecl>(LookupSingleName(*Interp, "A"));
|
|
void *NewA = AllocateObject(TD, *Interp);
|
|
|
|
// Find back the template specialization
|
|
VarDecl *VD = static_cast<VarDecl *>(*PTUDeclRange.begin());
|
|
UnaryOperator *UO = llvm::cast<UnaryOperator>(VD->getInit());
|
|
NamedDecl *TmpltSpec = llvm::cast<DeclRefExpr>(UO->getSubExpr())->getDecl();
|
|
|
|
std::string MangledName = MangleName(TmpltSpec);
|
|
typedef int (*TemplateSpecFn)(void *);
|
|
auto fn =
|
|
cantFail(Interp->getSymbolAddress(MangledName)).toPtr<TemplateSpecFn>();
|
|
EXPECT_EQ(42, fn(NewA));
|
|
free(NewA);
|
|
}
|
|
|
|
#ifdef CLANG_INTERPRETER_NO_SUPPORT_EXEC
|
|
TEST(InterpreterTest, DISABLED_Value) {
|
|
#else
|
|
TEST(InterpreterTest, Value) {
|
|
#endif
|
|
// We cannot execute on the platform.
|
|
if (!HostSupportsJit())
|
|
return;
|
|
|
|
std::unique_ptr<Interpreter> Interp = createInterpreter();
|
|
|
|
Value V1;
|
|
llvm::cantFail(Interp->ParseAndExecute("int x = 42;"));
|
|
llvm::cantFail(Interp->ParseAndExecute("x", &V1));
|
|
EXPECT_TRUE(V1.isValid());
|
|
EXPECT_TRUE(V1.hasValue());
|
|
EXPECT_EQ(V1.getInt(), 42);
|
|
EXPECT_EQ(V1.convertTo<int>(), 42);
|
|
EXPECT_TRUE(V1.getType()->isIntegerType());
|
|
EXPECT_EQ(V1.getKind(), Value::K_Int);
|
|
EXPECT_FALSE(V1.isManuallyAlloc());
|
|
|
|
Value V2;
|
|
llvm::cantFail(Interp->ParseAndExecute("double y = 3.14;"));
|
|
llvm::cantFail(Interp->ParseAndExecute("y", &V2));
|
|
EXPECT_TRUE(V2.isValid());
|
|
EXPECT_TRUE(V2.hasValue());
|
|
EXPECT_EQ(V2.getDouble(), 3.14);
|
|
EXPECT_EQ(V2.convertTo<double>(), 3.14);
|
|
EXPECT_TRUE(V2.getType()->isFloatingType());
|
|
EXPECT_EQ(V2.getKind(), Value::K_Double);
|
|
EXPECT_FALSE(V2.isManuallyAlloc());
|
|
|
|
Value V3;
|
|
llvm::cantFail(Interp->ParseAndExecute(
|
|
"struct S { int* p; S() { p = new int(42); } ~S() { delete p; }};"));
|
|
llvm::cantFail(Interp->ParseAndExecute("S{}", &V3));
|
|
EXPECT_TRUE(V3.isValid());
|
|
EXPECT_TRUE(V3.hasValue());
|
|
EXPECT_TRUE(V3.getType()->isRecordType());
|
|
EXPECT_EQ(V3.getKind(), Value::K_PtrOrObj);
|
|
EXPECT_TRUE(V3.isManuallyAlloc());
|
|
|
|
Value V4;
|
|
llvm::cantFail(Interp->ParseAndExecute("int getGlobal();"));
|
|
llvm::cantFail(Interp->ParseAndExecute("void setGlobal(int);"));
|
|
llvm::cantFail(Interp->ParseAndExecute("getGlobal()", &V4));
|
|
EXPECT_EQ(V4.getInt(), 42);
|
|
EXPECT_TRUE(V4.getType()->isIntegerType());
|
|
|
|
Value V5;
|
|
// Change the global from the compiled code.
|
|
setGlobal(43);
|
|
llvm::cantFail(Interp->ParseAndExecute("getGlobal()", &V5));
|
|
EXPECT_EQ(V5.getInt(), 43);
|
|
EXPECT_TRUE(V5.getType()->isIntegerType());
|
|
|
|
// Change the global from the interpreted code.
|
|
llvm::cantFail(Interp->ParseAndExecute("setGlobal(44);"));
|
|
EXPECT_EQ(getGlobal(), 44);
|
|
|
|
Value V6;
|
|
llvm::cantFail(Interp->ParseAndExecute("void foo() {}"));
|
|
llvm::cantFail(Interp->ParseAndExecute("foo()", &V6));
|
|
EXPECT_TRUE(V6.isValid());
|
|
EXPECT_FALSE(V6.hasValue());
|
|
EXPECT_TRUE(V6.getType()->isVoidType());
|
|
EXPECT_EQ(V6.getKind(), Value::K_Void);
|
|
EXPECT_FALSE(V2.isManuallyAlloc());
|
|
|
|
Value V7;
|
|
llvm::cantFail(Interp->ParseAndExecute("foo", &V7));
|
|
EXPECT_TRUE(V7.isValid());
|
|
EXPECT_TRUE(V7.hasValue());
|
|
EXPECT_TRUE(V7.getType()->isFunctionProtoType());
|
|
EXPECT_EQ(V7.getKind(), Value::K_PtrOrObj);
|
|
EXPECT_FALSE(V7.isManuallyAlloc());
|
|
|
|
Value V8;
|
|
llvm::cantFail(Interp->ParseAndExecute("struct SS{ void f() {} };"));
|
|
llvm::cantFail(Interp->ParseAndExecute("&SS::f", &V8));
|
|
EXPECT_TRUE(V8.isValid());
|
|
EXPECT_TRUE(V8.hasValue());
|
|
EXPECT_TRUE(V8.getType()->isMemberFunctionPointerType());
|
|
EXPECT_EQ(V8.getKind(), Value::K_PtrOrObj);
|
|
EXPECT_TRUE(V8.isManuallyAlloc());
|
|
|
|
Value V9;
|
|
llvm::cantFail(Interp->ParseAndExecute("struct A { virtual int f(); };"));
|
|
llvm::cantFail(
|
|
Interp->ParseAndExecute("struct B : A { int f() { return 42; }};"));
|
|
llvm::cantFail(Interp->ParseAndExecute("int (B::*ptr)() = &B::f;"));
|
|
llvm::cantFail(Interp->ParseAndExecute("ptr", &V9));
|
|
EXPECT_TRUE(V9.isValid());
|
|
EXPECT_TRUE(V9.hasValue());
|
|
EXPECT_TRUE(V9.getType()->isMemberFunctionPointerType());
|
|
EXPECT_EQ(V9.getKind(), Value::K_PtrOrObj);
|
|
EXPECT_TRUE(V9.isManuallyAlloc());
|
|
}
|
|
} // end anonymous namespace
|