mirror of
https://github.com/capstone-engine/llvm-capstone.git
synced 2024-11-27 23:51:56 +00:00
c0e275df3d
Summary: The cache recorded the wrong expansion location for all but the first stringization. It seems uncommon to stringize the same macro argument multiple times, so this cache doesn't seem that important. Fixes PR39942 Reviewers: vsk, rsmith Subscribers: cfe-commits Tags: #clang Differential Revision: https://reviews.llvm.org/D65428 llvm-svn: 367337
308 lines
11 KiB
C++
308 lines
11 KiB
C++
//===--- MacroArgs.cpp - Formal argument info for Macros ------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements the MacroArgs interface.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "clang/Lex/MacroArgs.h"
|
|
#include "clang/Lex/LexDiagnostic.h"
|
|
#include "clang/Lex/MacroInfo.h"
|
|
#include "clang/Lex/Preprocessor.h"
|
|
#include "llvm/ADT/SmallString.h"
|
|
#include "llvm/Support/SaveAndRestore.h"
|
|
#include <algorithm>
|
|
|
|
using namespace clang;
|
|
|
|
/// MacroArgs ctor function - This destroys the vector passed in.
|
|
MacroArgs *MacroArgs::create(const MacroInfo *MI,
|
|
ArrayRef<Token> UnexpArgTokens,
|
|
bool VarargsElided, Preprocessor &PP) {
|
|
assert(MI->isFunctionLike() &&
|
|
"Can't have args for an object-like macro!");
|
|
MacroArgs **ResultEnt = nullptr;
|
|
unsigned ClosestMatch = ~0U;
|
|
|
|
// See if we have an entry with a big enough argument list to reuse on the
|
|
// free list. If so, reuse it.
|
|
for (MacroArgs **Entry = &PP.MacroArgCache; *Entry;
|
|
Entry = &(*Entry)->ArgCache) {
|
|
if ((*Entry)->NumUnexpArgTokens >= UnexpArgTokens.size() &&
|
|
(*Entry)->NumUnexpArgTokens < ClosestMatch) {
|
|
ResultEnt = Entry;
|
|
|
|
// If we have an exact match, use it.
|
|
if ((*Entry)->NumUnexpArgTokens == UnexpArgTokens.size())
|
|
break;
|
|
// Otherwise, use the best fit.
|
|
ClosestMatch = (*Entry)->NumUnexpArgTokens;
|
|
}
|
|
}
|
|
MacroArgs *Result;
|
|
if (!ResultEnt) {
|
|
// Allocate memory for a MacroArgs object with the lexer tokens at the end,
|
|
// and construct the MacroArgs object.
|
|
Result = new (
|
|
llvm::safe_malloc(totalSizeToAlloc<Token>(UnexpArgTokens.size())))
|
|
MacroArgs(UnexpArgTokens.size(), VarargsElided, MI->getNumParams());
|
|
} else {
|
|
Result = *ResultEnt;
|
|
// Unlink this node from the preprocessors singly linked list.
|
|
*ResultEnt = Result->ArgCache;
|
|
Result->NumUnexpArgTokens = UnexpArgTokens.size();
|
|
Result->VarargsElided = VarargsElided;
|
|
Result->NumMacroArgs = MI->getNumParams();
|
|
}
|
|
|
|
// Copy the actual unexpanded tokens to immediately after the result ptr.
|
|
if (!UnexpArgTokens.empty()) {
|
|
static_assert(std::is_trivial<Token>::value,
|
|
"assume trivial copyability if copying into the "
|
|
"uninitialized array (as opposed to reusing a cached "
|
|
"MacroArgs)");
|
|
std::copy(UnexpArgTokens.begin(), UnexpArgTokens.end(),
|
|
Result->getTrailingObjects<Token>());
|
|
}
|
|
|
|
return Result;
|
|
}
|
|
|
|
/// destroy - Destroy and deallocate the memory for this object.
|
|
///
|
|
void MacroArgs::destroy(Preprocessor &PP) {
|
|
// Don't clear PreExpArgTokens, just clear the entries. Clearing the entries
|
|
// would deallocate the element vectors.
|
|
for (unsigned i = 0, e = PreExpArgTokens.size(); i != e; ++i)
|
|
PreExpArgTokens[i].clear();
|
|
|
|
// Add this to the preprocessor's free list.
|
|
ArgCache = PP.MacroArgCache;
|
|
PP.MacroArgCache = this;
|
|
}
|
|
|
|
/// deallocate - This should only be called by the Preprocessor when managing
|
|
/// its freelist.
|
|
MacroArgs *MacroArgs::deallocate() {
|
|
MacroArgs *Next = ArgCache;
|
|
|
|
// Run the dtor to deallocate the vectors.
|
|
this->~MacroArgs();
|
|
// Release the memory for the object.
|
|
static_assert(std::is_trivially_destructible<Token>::value,
|
|
"assume trivially destructible and forego destructors");
|
|
free(this);
|
|
|
|
return Next;
|
|
}
|
|
|
|
|
|
/// getArgLength - Given a pointer to an expanded or unexpanded argument,
|
|
/// return the number of tokens, not counting the EOF, that make up the
|
|
/// argument.
|
|
unsigned MacroArgs::getArgLength(const Token *ArgPtr) {
|
|
unsigned NumArgTokens = 0;
|
|
for (; ArgPtr->isNot(tok::eof); ++ArgPtr)
|
|
++NumArgTokens;
|
|
return NumArgTokens;
|
|
}
|
|
|
|
|
|
/// getUnexpArgument - Return the unexpanded tokens for the specified formal.
|
|
///
|
|
const Token *MacroArgs::getUnexpArgument(unsigned Arg) const {
|
|
|
|
assert(Arg < getNumMacroArguments() && "Invalid arg #");
|
|
// The unexpanded argument tokens start immediately after the MacroArgs object
|
|
// in memory.
|
|
const Token *Start = getTrailingObjects<Token>();
|
|
const Token *Result = Start;
|
|
|
|
// Scan to find Arg.
|
|
for (; Arg; ++Result) {
|
|
assert(Result < Start+NumUnexpArgTokens && "Invalid arg #");
|
|
if (Result->is(tok::eof))
|
|
--Arg;
|
|
}
|
|
assert(Result < Start+NumUnexpArgTokens && "Invalid arg #");
|
|
return Result;
|
|
}
|
|
|
|
bool MacroArgs::invokedWithVariadicArgument(const MacroInfo *const MI,
|
|
Preprocessor &PP) {
|
|
if (!MI->isVariadic())
|
|
return false;
|
|
const int VariadicArgIndex = getNumMacroArguments() - 1;
|
|
return getPreExpArgument(VariadicArgIndex, PP).front().isNot(tok::eof);
|
|
}
|
|
|
|
/// ArgNeedsPreexpansion - If we can prove that the argument won't be affected
|
|
/// by pre-expansion, return false. Otherwise, conservatively return true.
|
|
bool MacroArgs::ArgNeedsPreexpansion(const Token *ArgTok,
|
|
Preprocessor &PP) const {
|
|
// If there are no identifiers in the argument list, or if the identifiers are
|
|
// known to not be macros, pre-expansion won't modify it.
|
|
for (; ArgTok->isNot(tok::eof); ++ArgTok)
|
|
if (IdentifierInfo *II = ArgTok->getIdentifierInfo())
|
|
if (II->hasMacroDefinition())
|
|
// Return true even though the macro could be a function-like macro
|
|
// without a following '(' token, or could be disabled, or not visible.
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
/// getPreExpArgument - Return the pre-expanded form of the specified
|
|
/// argument.
|
|
const std::vector<Token> &MacroArgs::getPreExpArgument(unsigned Arg,
|
|
Preprocessor &PP) {
|
|
assert(Arg < getNumMacroArguments() && "Invalid argument number!");
|
|
|
|
// If we have already computed this, return it.
|
|
if (PreExpArgTokens.size() < getNumMacroArguments())
|
|
PreExpArgTokens.resize(getNumMacroArguments());
|
|
|
|
std::vector<Token> &Result = PreExpArgTokens[Arg];
|
|
if (!Result.empty()) return Result;
|
|
|
|
SaveAndRestore<bool> PreExpandingMacroArgs(PP.InMacroArgPreExpansion, true);
|
|
|
|
const Token *AT = getUnexpArgument(Arg);
|
|
unsigned NumToks = getArgLength(AT)+1; // Include the EOF.
|
|
|
|
// Otherwise, we have to pre-expand this argument, populating Result. To do
|
|
// this, we set up a fake TokenLexer to lex from the unexpanded argument
|
|
// list. With this installed, we lex expanded tokens until we hit the EOF
|
|
// token at the end of the unexp list.
|
|
PP.EnterTokenStream(AT, NumToks, false /*disable expand*/,
|
|
false /*owns tokens*/, false /*is reinject*/);
|
|
|
|
// Lex all of the macro-expanded tokens into Result.
|
|
do {
|
|
Result.push_back(Token());
|
|
Token &Tok = Result.back();
|
|
PP.Lex(Tok);
|
|
} while (Result.back().isNot(tok::eof));
|
|
|
|
// Pop the token stream off the top of the stack. We know that the internal
|
|
// pointer inside of it is to the "end" of the token stream, but the stack
|
|
// will not otherwise be popped until the next token is lexed. The problem is
|
|
// that the token may be lexed sometime after the vector of tokens itself is
|
|
// destroyed, which would be badness.
|
|
if (PP.InCachingLexMode())
|
|
PP.ExitCachingLexMode();
|
|
PP.RemoveTopOfLexerStack();
|
|
return Result;
|
|
}
|
|
|
|
|
|
/// StringifyArgument - Implement C99 6.10.3.2p2, converting a sequence of
|
|
/// tokens into the literal string token that should be produced by the C #
|
|
/// preprocessor operator. If Charify is true, then it should be turned into
|
|
/// a character literal for the Microsoft charize (#@) extension.
|
|
///
|
|
Token MacroArgs::StringifyArgument(const Token *ArgToks,
|
|
Preprocessor &PP, bool Charify,
|
|
SourceLocation ExpansionLocStart,
|
|
SourceLocation ExpansionLocEnd) {
|
|
Token Tok;
|
|
Tok.startToken();
|
|
Tok.setKind(Charify ? tok::char_constant : tok::string_literal);
|
|
|
|
const Token *ArgTokStart = ArgToks;
|
|
|
|
// Stringify all the tokens.
|
|
SmallString<128> Result;
|
|
Result += "\"";
|
|
|
|
bool isFirst = true;
|
|
for (; ArgToks->isNot(tok::eof); ++ArgToks) {
|
|
const Token &Tok = *ArgToks;
|
|
if (!isFirst && (Tok.hasLeadingSpace() || Tok.isAtStartOfLine()))
|
|
Result += ' ';
|
|
isFirst = false;
|
|
|
|
// If this is a string or character constant, escape the token as specified
|
|
// by 6.10.3.2p2.
|
|
if (tok::isStringLiteral(Tok.getKind()) || // "foo", u8R"x(foo)x"_bar, etc.
|
|
Tok.is(tok::char_constant) || // 'x'
|
|
Tok.is(tok::wide_char_constant) || // L'x'.
|
|
Tok.is(tok::utf8_char_constant) || // u8'x'.
|
|
Tok.is(tok::utf16_char_constant) || // u'x'.
|
|
Tok.is(tok::utf32_char_constant)) { // U'x'.
|
|
bool Invalid = false;
|
|
std::string TokStr = PP.getSpelling(Tok, &Invalid);
|
|
if (!Invalid) {
|
|
std::string Str = Lexer::Stringify(TokStr);
|
|
Result.append(Str.begin(), Str.end());
|
|
}
|
|
} else if (Tok.is(tok::code_completion)) {
|
|
PP.CodeCompleteNaturalLanguage();
|
|
} else {
|
|
// Otherwise, just append the token. Do some gymnastics to get the token
|
|
// in place and avoid copies where possible.
|
|
unsigned CurStrLen = Result.size();
|
|
Result.resize(CurStrLen+Tok.getLength());
|
|
const char *BufPtr = Result.data() + CurStrLen;
|
|
bool Invalid = false;
|
|
unsigned ActualTokLen = PP.getSpelling(Tok, BufPtr, &Invalid);
|
|
|
|
if (!Invalid) {
|
|
// If getSpelling returned a pointer to an already uniqued version of
|
|
// the string instead of filling in BufPtr, memcpy it onto our string.
|
|
if (ActualTokLen && BufPtr != &Result[CurStrLen])
|
|
memcpy(&Result[CurStrLen], BufPtr, ActualTokLen);
|
|
|
|
// If the token was dirty, the spelling may be shorter than the token.
|
|
if (ActualTokLen != Tok.getLength())
|
|
Result.resize(CurStrLen+ActualTokLen);
|
|
}
|
|
}
|
|
}
|
|
|
|
// If the last character of the string is a \, and if it isn't escaped, this
|
|
// is an invalid string literal, diagnose it as specified in C99.
|
|
if (Result.back() == '\\') {
|
|
// Count the number of consecutive \ characters. If even, then they are
|
|
// just escaped backslashes, otherwise it's an error.
|
|
unsigned FirstNonSlash = Result.size()-2;
|
|
// Guaranteed to find the starting " if nothing else.
|
|
while (Result[FirstNonSlash] == '\\')
|
|
--FirstNonSlash;
|
|
if ((Result.size()-1-FirstNonSlash) & 1) {
|
|
// Diagnose errors for things like: #define F(X) #X / F(\)
|
|
PP.Diag(ArgToks[-1], diag::pp_invalid_string_literal);
|
|
Result.pop_back(); // remove one of the \'s.
|
|
}
|
|
}
|
|
Result += '"';
|
|
|
|
// If this is the charify operation and the result is not a legal character
|
|
// constant, diagnose it.
|
|
if (Charify) {
|
|
// First step, turn double quotes into single quotes:
|
|
Result[0] = '\'';
|
|
Result[Result.size()-1] = '\'';
|
|
|
|
// Check for bogus character.
|
|
bool isBad = false;
|
|
if (Result.size() == 3)
|
|
isBad = Result[1] == '\''; // ''' is not legal. '\' already fixed above.
|
|
else
|
|
isBad = (Result.size() != 4 || Result[1] != '\\'); // Not '\x'
|
|
|
|
if (isBad) {
|
|
PP.Diag(ArgTokStart[0], diag::err_invalid_character_to_charify);
|
|
Result = "' '"; // Use something arbitrary, but legal.
|
|
}
|
|
}
|
|
|
|
PP.CreateString(Result, Tok,
|
|
ExpansionLocStart, ExpansionLocEnd);
|
|
return Tok;
|
|
}
|