mirror of
https://github.com/capstone-engine/llvm-capstone.git
synced 2024-12-01 01:31:26 +00:00
3212051c91
These are initial changes to experiment with building the Fortran runtime as a CUDA or OpenMP target offload library. The initial patch defines a set of macros that have to be used consistently in Flang runtime source code so that it can be built for different offload devices using different programming models (CUDA, HIP, OpenMP target offload). Currently supported modes are: * CUDA: Flang runtime may be built as a fatlib for the host and a set of CUDA architectures specified during the build. The packaging of the device code is done by the CUDA toolchain and may differ from toolchan to toolchain. * OpenMP offload: - host_device mode: Flang runtime may be built as a fatlib for the host and a set of OpenMP offload architectures. The packaging of the device code is done by the OpenMP offload compiler and may differ from compiler to compiler. OpenMP offload 'nohost' mode is a TODO to match the build setup of libomptarget/DeviceRTL. Flang runtime will be built as LLVM Bitcode library using Clang/LLVM toolchain. The host part of the library will be "empty", so there will be two distributable object: the host Flang runtime and dummy host library with device Flang runtime pieces packaged using clang-offload-packager and clang. In all supported modes, enabling parts of Flang runtime for the device compilation can be done iteratively to make the patches observable. Note that at any point in time the resulting library may have unresolved references to not yet enabled parts of Flang runtime. Example cmake/make commands for building with Clang for NVPTX target: cmake \ -DFLANG_EXPERIMENTAL_CUDA_RUNTIME=ON \ -DCMAKE_CUDA_ARCHITECTURES=80 \ -DCMAKE_C_COMPILER=/clang_nvptx/bin/clang \ -DCMAKE_CXX_COMPILER=/clang_nvptx/bin/clang++ \ -DCMAKE_CUDA_COMPILER=/clang_nvptx/bin/clang \ /llvm-project/flang/runtime/ make -j FortranRuntime Example cmake/make commands for building with Clang OpenMP offload: cmake \ -DFLANG_EXPERIMENTAL_OMP_OFFLOAD_BUILD="host_device" \ -DCMAKE_C_COMPILER=clang \ -DCMAKE_CXX_COMPILER=clang++ \ -DFLANG_OMP_DEVICE_ARCHITECTURES="sm_80" \ ../flang/runtime/ make -j FortranRuntime Differential Revision: https://reviews.llvm.org/D151173
909 lines
32 KiB
C++
909 lines
32 KiB
C++
//===-- runtime/transformational.cpp --------------------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// Implements the transformational intrinsic functions of Fortran 2018 that
|
|
// rearrange or duplicate data without (much) regard to type. These are
|
|
// CSHIFT, EOSHIFT, PACK, RESHAPE, SPREAD, TRANSPOSE, and UNPACK.
|
|
//
|
|
// Many of these are defined in the 2018 standard with text that makes sense
|
|
// only if argument arrays have lower bounds of one. Rather than interpret
|
|
// these cases as implying a hidden constraint, these implementations
|
|
// work with arbitrary lower bounds. This may be technically an extension
|
|
// of the standard but it more likely to conform with its intent.
|
|
|
|
#include "flang/Runtime/transformational.h"
|
|
#include "copy.h"
|
|
#include "terminator.h"
|
|
#include "tools.h"
|
|
#include "flang/Runtime/descriptor.h"
|
|
|
|
namespace Fortran::runtime {
|
|
|
|
// Utility for CSHIFT & EOSHIFT rank > 1 cases that determines the shift count
|
|
// for each of the vector sections of the result.
|
|
class ShiftControl {
|
|
public:
|
|
RT_API_ATTRS ShiftControl(const Descriptor &s, Terminator &t, int dim)
|
|
: shift_{s}, terminator_{t}, shiftRank_{s.rank()}, dim_{dim} {}
|
|
RT_API_ATTRS void Init(const Descriptor &source, const char *which) {
|
|
int rank{source.rank()};
|
|
RUNTIME_CHECK(terminator_, shiftRank_ == 0 || shiftRank_ == rank - 1);
|
|
auto catAndKind{shift_.type().GetCategoryAndKind()};
|
|
RUNTIME_CHECK(
|
|
terminator_, catAndKind && catAndKind->first == TypeCategory::Integer);
|
|
shiftElemLen_ = catAndKind->second;
|
|
if (shiftRank_ > 0) {
|
|
int k{0};
|
|
for (int j{0}; j < rank; ++j) {
|
|
if (j + 1 != dim_) {
|
|
const Dimension &shiftDim{shift_.GetDimension(k)};
|
|
lb_[k++] = shiftDim.LowerBound();
|
|
if (shiftDim.Extent() != source.GetDimension(j).Extent()) {
|
|
terminator_.Crash("%s: on dimension %d, SHIFT= has extent %jd but "
|
|
"SOURCE= has extent %jd",
|
|
which, k, static_cast<std::intmax_t>(shiftDim.Extent()),
|
|
static_cast<std::intmax_t>(source.GetDimension(j).Extent()));
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
shiftCount_ =
|
|
GetInt64(shift_.OffsetElement<char>(), shiftElemLen_, terminator_);
|
|
}
|
|
}
|
|
RT_API_ATTRS SubscriptValue GetShift(const SubscriptValue resultAt[]) const {
|
|
if (shiftRank_ > 0) {
|
|
SubscriptValue shiftAt[maxRank];
|
|
int k{0};
|
|
for (int j{0}; j < shiftRank_ + 1; ++j) {
|
|
if (j + 1 != dim_) {
|
|
shiftAt[k] = lb_[k] + resultAt[j] - 1;
|
|
++k;
|
|
}
|
|
}
|
|
return GetInt64(
|
|
shift_.Element<char>(shiftAt), shiftElemLen_, terminator_);
|
|
} else {
|
|
return shiftCount_; // invariant count extracted in Init()
|
|
}
|
|
}
|
|
|
|
private:
|
|
const Descriptor &shift_;
|
|
Terminator &terminator_;
|
|
int shiftRank_;
|
|
int dim_;
|
|
SubscriptValue lb_[maxRank];
|
|
std::size_t shiftElemLen_;
|
|
SubscriptValue shiftCount_{};
|
|
};
|
|
|
|
// Fill an EOSHIFT result with default boundary values
|
|
static RT_API_ATTRS void DefaultInitialize(
|
|
const Descriptor &result, Terminator &terminator) {
|
|
auto catAndKind{result.type().GetCategoryAndKind()};
|
|
RUNTIME_CHECK(
|
|
terminator, catAndKind && catAndKind->first != TypeCategory::Derived);
|
|
std::size_t elementLen{result.ElementBytes()};
|
|
std::size_t bytes{result.Elements() * elementLen};
|
|
if (catAndKind->first == TypeCategory::Character) {
|
|
switch (int kind{catAndKind->second}) {
|
|
case 1:
|
|
Fortran::runtime::fill_n(result.OffsetElement<char>(), bytes, ' ');
|
|
break;
|
|
case 2:
|
|
Fortran::runtime::fill_n(result.OffsetElement<char16_t>(), bytes / 2,
|
|
static_cast<char16_t>(' '));
|
|
break;
|
|
case 4:
|
|
Fortran::runtime::fill_n(result.OffsetElement<char32_t>(), bytes / 4,
|
|
static_cast<char32_t>(' '));
|
|
break;
|
|
default:
|
|
terminator.Crash("not yet implemented: EOSHIFT: CHARACTER kind %d", kind);
|
|
}
|
|
} else {
|
|
std::memset(result.raw().base_addr, 0, bytes);
|
|
}
|
|
}
|
|
|
|
static inline RT_API_ATTRS std::size_t AllocateResult(Descriptor &result,
|
|
const Descriptor &source, int rank, const SubscriptValue extent[],
|
|
Terminator &terminator, const char *function) {
|
|
std::size_t elementLen{source.ElementBytes()};
|
|
const DescriptorAddendum *sourceAddendum{source.Addendum()};
|
|
result.Establish(source.type(), elementLen, nullptr, rank, extent,
|
|
CFI_attribute_allocatable, sourceAddendum != nullptr);
|
|
if (sourceAddendum) {
|
|
*result.Addendum() = *sourceAddendum;
|
|
}
|
|
for (int j{0}; j < rank; ++j) {
|
|
result.GetDimension(j).SetBounds(1, extent[j]);
|
|
}
|
|
if (int stat{result.Allocate()}) {
|
|
terminator.Crash(
|
|
"%s: Could not allocate memory for result (stat=%d)", function, stat);
|
|
}
|
|
return elementLen;
|
|
}
|
|
|
|
template <TypeCategory CAT, int KIND>
|
|
static inline RT_API_ATTRS std::size_t AllocateBesselResult(Descriptor &result,
|
|
int32_t n1, int32_t n2, Terminator &terminator, const char *function) {
|
|
int rank{1};
|
|
SubscriptValue extent[maxRank];
|
|
for (int j{0}; j < maxRank; j++) {
|
|
extent[j] = 0;
|
|
}
|
|
if (n1 <= n2) {
|
|
extent[0] = n2 - n1 + 1;
|
|
}
|
|
|
|
std::size_t elementLen{Descriptor::BytesFor(CAT, KIND)};
|
|
result.Establish(TypeCode{CAT, KIND}, elementLen, nullptr, rank, extent,
|
|
CFI_attribute_allocatable, false);
|
|
for (int j{0}; j < rank; ++j) {
|
|
result.GetDimension(j).SetBounds(1, extent[j]);
|
|
}
|
|
if (int stat{result.Allocate()}) {
|
|
terminator.Crash(
|
|
"%s: Could not allocate memory for result (stat=%d)", function, stat);
|
|
}
|
|
return elementLen;
|
|
}
|
|
|
|
template <TypeCategory CAT, int KIND>
|
|
static inline RT_API_ATTRS void DoBesselJn(Descriptor &result, int32_t n1,
|
|
int32_t n2, CppTypeFor<CAT, KIND> x, CppTypeFor<CAT, KIND> bn2,
|
|
CppTypeFor<CAT, KIND> bn2_1, const char *sourceFile, int line) {
|
|
Terminator terminator{sourceFile, line};
|
|
AllocateBesselResult<CAT, KIND>(result, n1, n2, terminator, "BESSEL_JN");
|
|
|
|
// The standard requires that n1 and n2 be non-negative. However, some other
|
|
// compilers generate results even when n1 and/or n2 are negative. For now,
|
|
// we also do not enforce the non-negativity constraint.
|
|
if (n2 < n1) {
|
|
return;
|
|
}
|
|
|
|
SubscriptValue at[maxRank];
|
|
for (int j{0}; j < maxRank; ++j) {
|
|
at[j] = 0;
|
|
}
|
|
|
|
// if n2 >= n1, there will be at least one element in the result.
|
|
at[0] = n2 - n1 + 1;
|
|
*result.Element<CppTypeFor<CAT, KIND>>(at) = bn2;
|
|
|
|
if (n2 == n1) {
|
|
return;
|
|
}
|
|
|
|
at[0] = n2 - n1;
|
|
*result.Element<CppTypeFor<CAT, KIND>>(at) = bn2_1;
|
|
|
|
// Bessel functions of the first kind are stable for a backward recursion
|
|
// (see https://dlmf.nist.gov/10.74.iv and https://dlmf.nist.gov/10.6.E1).
|
|
//
|
|
// J(n-1, x) = (2.0 / x) * n * J(n, x) - J(n+1, x)
|
|
//
|
|
// which is equivalent to
|
|
//
|
|
// J(n, x) = (2.0 / x) * (n + 1) * J(n+1, x) - J(n+2, x)
|
|
//
|
|
CppTypeFor<CAT, KIND> bn_2 = bn2;
|
|
CppTypeFor<CAT, KIND> bn_1 = bn2_1;
|
|
CppTypeFor<CAT, KIND> twoOverX = 2.0 / x;
|
|
for (int n{n2 - 2}; n >= n1; --n) {
|
|
auto bn = twoOverX * (n + 1) * bn_1 - bn_2;
|
|
|
|
at[0] = n - n1 + 1;
|
|
*result.Element<CppTypeFor<CAT, KIND>>(at) = bn;
|
|
|
|
bn_2 = bn_1;
|
|
bn_1 = bn;
|
|
}
|
|
}
|
|
|
|
template <TypeCategory CAT, int KIND>
|
|
static inline RT_API_ATTRS void DoBesselJnX0(Descriptor &result, int32_t n1,
|
|
int32_t n2, const char *sourceFile, int line) {
|
|
Terminator terminator{sourceFile, line};
|
|
AllocateBesselResult<CAT, KIND>(result, n1, n2, terminator, "BESSEL_JN");
|
|
|
|
// The standard requires that n1 and n2 be non-negative. However, some other
|
|
// compilers generate results even when n1 and/or n2 are negative. For now,
|
|
// we also do not enforce the non-negativity constraint.
|
|
if (n2 < n1) {
|
|
return;
|
|
}
|
|
|
|
SubscriptValue at[maxRank];
|
|
for (int j{0}; j < maxRank; ++j) {
|
|
at[j] = 0;
|
|
}
|
|
|
|
// J(0, 0.0) = 1.0, when n == 0.
|
|
// J(n, 0.0) = 0.0, when n > 0.
|
|
at[0] = 1;
|
|
*result.Element<CppTypeFor<CAT, KIND>>(at) = (n1 == 0) ? 1.0 : 0.0;
|
|
for (int j{2}; j <= n2 - n1 + 1; ++j) {
|
|
at[0] = j;
|
|
*result.Element<CppTypeFor<CAT, KIND>>(at) = 0.0;
|
|
}
|
|
}
|
|
|
|
template <TypeCategory CAT, int KIND>
|
|
static inline RT_API_ATTRS void DoBesselYn(Descriptor &result, int32_t n1,
|
|
int32_t n2, CppTypeFor<CAT, KIND> x, CppTypeFor<CAT, KIND> bn1,
|
|
CppTypeFor<CAT, KIND> bn1_1, const char *sourceFile, int line) {
|
|
Terminator terminator{sourceFile, line};
|
|
AllocateBesselResult<CAT, KIND>(result, n1, n2, terminator, "BESSEL_YN");
|
|
|
|
// The standard requires that n1 and n2 be non-negative. However, some other
|
|
// compilers generate results even when n1 and/or n2 are negative. For now,
|
|
// we also do not enforce the non-negativity constraint.
|
|
if (n2 < n1) {
|
|
return;
|
|
}
|
|
|
|
SubscriptValue at[maxRank];
|
|
for (int j{0}; j < maxRank; ++j) {
|
|
at[j] = 0;
|
|
}
|
|
|
|
// if n2 >= n1, there will be at least one element in the result.
|
|
at[0] = 1;
|
|
*result.Element<CppTypeFor<CAT, KIND>>(at) = bn1;
|
|
|
|
if (n2 == n1) {
|
|
return;
|
|
}
|
|
|
|
at[0] = 2;
|
|
*result.Element<CppTypeFor<CAT, KIND>>(at) = bn1_1;
|
|
|
|
// Bessel functions of the second kind are stable for a forward recursion
|
|
// (see https://dlmf.nist.gov/10.74.iv and https://dlmf.nist.gov/10.6.E1).
|
|
//
|
|
// Y(n+1, x) = (2.0 / x) * n * Y(n, x) - Y(n-1, x)
|
|
//
|
|
// which is equivalent to
|
|
//
|
|
// Y(n, x) = (2.0 / x) * (n - 1) * Y(n-1, x) - Y(n-2, x)
|
|
//
|
|
CppTypeFor<CAT, KIND> bn_2 = bn1;
|
|
CppTypeFor<CAT, KIND> bn_1 = bn1_1;
|
|
CppTypeFor<CAT, KIND> twoOverX = 2.0 / x;
|
|
for (int n{n1 + 2}; n <= n2; ++n) {
|
|
auto bn = twoOverX * (n - 1) * bn_1 - bn_2;
|
|
|
|
at[0] = n - n1 + 1;
|
|
*result.Element<CppTypeFor<CAT, KIND>>(at) = bn;
|
|
|
|
bn_2 = bn_1;
|
|
bn_1 = bn;
|
|
}
|
|
}
|
|
|
|
template <TypeCategory CAT, int KIND>
|
|
static inline RT_API_ATTRS void DoBesselYnX0(Descriptor &result, int32_t n1,
|
|
int32_t n2, const char *sourceFile, int line) {
|
|
Terminator terminator{sourceFile, line};
|
|
AllocateBesselResult<CAT, KIND>(result, n1, n2, terminator, "BESSEL_YN");
|
|
|
|
// The standard requires that n1 and n2 be non-negative. However, some other
|
|
// compilers generate results even when n1 and/or n2 are negative. For now,
|
|
// we also do not enforce the non-negativity constraint.
|
|
if (n2 < n1) {
|
|
return;
|
|
}
|
|
|
|
SubscriptValue at[maxRank];
|
|
for (int j{0}; j < maxRank; ++j) {
|
|
at[j] = 0;
|
|
}
|
|
|
|
// Y(n, 0.0) = -Inf, when n >= 0
|
|
for (int j{1}; j <= n2 - n1 + 1; ++j) {
|
|
at[0] = j;
|
|
*result.Element<CppTypeFor<CAT, KIND>>(at) =
|
|
-std::numeric_limits<CppTypeFor<CAT, KIND>>::infinity();
|
|
}
|
|
}
|
|
|
|
extern "C" {
|
|
RT_EXT_API_GROUP_BEGIN
|
|
|
|
// BESSEL_JN
|
|
// TODO: REAL(2 & 3)
|
|
void RTDEF(BesselJn_4)(Descriptor &result, int32_t n1, int32_t n2,
|
|
CppTypeFor<TypeCategory::Real, 4> x, CppTypeFor<TypeCategory::Real, 4> bn2,
|
|
CppTypeFor<TypeCategory::Real, 4> bn2_1, const char *sourceFile, int line) {
|
|
DoBesselJn<TypeCategory::Real, 4>(
|
|
result, n1, n2, x, bn2, bn2_1, sourceFile, line);
|
|
}
|
|
|
|
void RTDEF(BesselJn_8)(Descriptor &result, int32_t n1, int32_t n2,
|
|
CppTypeFor<TypeCategory::Real, 8> x, CppTypeFor<TypeCategory::Real, 8> bn2,
|
|
CppTypeFor<TypeCategory::Real, 8> bn2_1, const char *sourceFile, int line) {
|
|
DoBesselJn<TypeCategory::Real, 8>(
|
|
result, n1, n2, x, bn2, bn2_1, sourceFile, line);
|
|
}
|
|
|
|
#if LDBL_MANT_DIG == 64
|
|
void RTDEF(BesselJn_10)(Descriptor &result, int32_t n1, int32_t n2,
|
|
CppTypeFor<TypeCategory::Real, 10> x,
|
|
CppTypeFor<TypeCategory::Real, 10> bn2,
|
|
CppTypeFor<TypeCategory::Real, 10> bn2_1, const char *sourceFile,
|
|
int line) {
|
|
DoBesselJn<TypeCategory::Real, 10>(
|
|
result, n1, n2, x, bn2, bn2_1, sourceFile, line);
|
|
}
|
|
#endif
|
|
|
|
#if LDBL_MANT_DIG == 113 || HAS_FLOAT128
|
|
void RTDEF(BesselJn_16)(Descriptor &result, int32_t n1, int32_t n2,
|
|
CppTypeFor<TypeCategory::Real, 16> x,
|
|
CppTypeFor<TypeCategory::Real, 16> bn2,
|
|
CppTypeFor<TypeCategory::Real, 16> bn2_1, const char *sourceFile,
|
|
int line) {
|
|
DoBesselJn<TypeCategory::Real, 16>(
|
|
result, n1, n2, x, bn2, bn2_1, sourceFile, line);
|
|
}
|
|
#endif
|
|
|
|
// TODO: REAL(2 & 3)
|
|
void RTDEF(BesselJnX0_4)(Descriptor &result, int32_t n1, int32_t n2,
|
|
const char *sourceFile, int line) {
|
|
DoBesselJnX0<TypeCategory::Real, 4>(result, n1, n2, sourceFile, line);
|
|
}
|
|
|
|
void RTDEF(BesselJnX0_8)(Descriptor &result, int32_t n1, int32_t n2,
|
|
const char *sourceFile, int line) {
|
|
DoBesselJnX0<TypeCategory::Real, 8>(result, n1, n2, sourceFile, line);
|
|
}
|
|
|
|
#if LDBL_MANT_DIG == 64
|
|
void RTDEF(BesselJnX0_10)(Descriptor &result, int32_t n1, int32_t n2,
|
|
const char *sourceFile, int line) {
|
|
DoBesselJnX0<TypeCategory::Real, 10>(result, n1, n2, sourceFile, line);
|
|
}
|
|
#endif
|
|
|
|
#if LDBL_MANT_DIG == 113 || HAS_FLOAT128
|
|
void RTDEF(BesselJnX0_16)(Descriptor &result, int32_t n1, int32_t n2,
|
|
const char *sourceFile, int line) {
|
|
DoBesselJnX0<TypeCategory::Real, 16>(result, n1, n2, sourceFile, line);
|
|
}
|
|
#endif
|
|
|
|
// BESSEL_YN
|
|
// TODO: REAL(2 & 3)
|
|
void RTDEF(BesselYn_4)(Descriptor &result, int32_t n1, int32_t n2,
|
|
CppTypeFor<TypeCategory::Real, 4> x, CppTypeFor<TypeCategory::Real, 4> bn1,
|
|
CppTypeFor<TypeCategory::Real, 4> bn1_1, const char *sourceFile, int line) {
|
|
DoBesselYn<TypeCategory::Real, 4>(
|
|
result, n1, n2, x, bn1, bn1_1, sourceFile, line);
|
|
}
|
|
|
|
void RTDEF(BesselYn_8)(Descriptor &result, int32_t n1, int32_t n2,
|
|
CppTypeFor<TypeCategory::Real, 8> x, CppTypeFor<TypeCategory::Real, 8> bn1,
|
|
CppTypeFor<TypeCategory::Real, 8> bn1_1, const char *sourceFile, int line) {
|
|
DoBesselYn<TypeCategory::Real, 8>(
|
|
result, n1, n2, x, bn1, bn1_1, sourceFile, line);
|
|
}
|
|
|
|
#if LDBL_MANT_DIG == 64
|
|
void RTDEF(BesselYn_10)(Descriptor &result, int32_t n1, int32_t n2,
|
|
CppTypeFor<TypeCategory::Real, 10> x,
|
|
CppTypeFor<TypeCategory::Real, 10> bn1,
|
|
CppTypeFor<TypeCategory::Real, 10> bn1_1, const char *sourceFile,
|
|
int line) {
|
|
DoBesselYn<TypeCategory::Real, 10>(
|
|
result, n1, n2, x, bn1, bn1_1, sourceFile, line);
|
|
}
|
|
#endif
|
|
|
|
#if LDBL_MANT_DIG == 113 || HAS_FLOAT128
|
|
void RTDEF(BesselYn_16)(Descriptor &result, int32_t n1, int32_t n2,
|
|
CppTypeFor<TypeCategory::Real, 16> x,
|
|
CppTypeFor<TypeCategory::Real, 16> bn1,
|
|
CppTypeFor<TypeCategory::Real, 16> bn1_1, const char *sourceFile,
|
|
int line) {
|
|
DoBesselYn<TypeCategory::Real, 16>(
|
|
result, n1, n2, x, bn1, bn1_1, sourceFile, line);
|
|
}
|
|
#endif
|
|
|
|
// TODO: REAL(2 & 3)
|
|
void RTDEF(BesselYnX0_4)(Descriptor &result, int32_t n1, int32_t n2,
|
|
const char *sourceFile, int line) {
|
|
DoBesselYnX0<TypeCategory::Real, 4>(result, n1, n2, sourceFile, line);
|
|
}
|
|
|
|
void RTDEF(BesselYnX0_8)(Descriptor &result, int32_t n1, int32_t n2,
|
|
const char *sourceFile, int line) {
|
|
DoBesselYnX0<TypeCategory::Real, 8>(result, n1, n2, sourceFile, line);
|
|
}
|
|
|
|
#if LDBL_MANT_DIG == 64
|
|
void RTDEF(BesselYnX0_10)(Descriptor &result, int32_t n1, int32_t n2,
|
|
const char *sourceFile, int line) {
|
|
DoBesselYnX0<TypeCategory::Real, 10>(result, n1, n2, sourceFile, line);
|
|
}
|
|
#endif
|
|
|
|
#if LDBL_MANT_DIG == 113 || HAS_FLOAT128
|
|
void RTDEF(BesselYnX0_16)(Descriptor &result, int32_t n1, int32_t n2,
|
|
const char *sourceFile, int line) {
|
|
DoBesselYnX0<TypeCategory::Real, 16>(result, n1, n2, sourceFile, line);
|
|
}
|
|
#endif
|
|
|
|
// CSHIFT where rank of ARRAY argument > 1
|
|
void RTDEF(Cshift)(Descriptor &result, const Descriptor &source,
|
|
const Descriptor &shift, int dim, const char *sourceFile, int line) {
|
|
Terminator terminator{sourceFile, line};
|
|
int rank{source.rank()};
|
|
RUNTIME_CHECK(terminator, rank > 1);
|
|
if (dim < 1 || dim > rank) {
|
|
terminator.Crash(
|
|
"CSHIFT: DIM=%d must be >= 1 and <= SOURCE= rank %d", dim, rank);
|
|
}
|
|
ShiftControl shiftControl{shift, terminator, dim};
|
|
shiftControl.Init(source, "CSHIFT");
|
|
SubscriptValue extent[maxRank];
|
|
source.GetShape(extent);
|
|
AllocateResult(result, source, rank, extent, terminator, "CSHIFT");
|
|
SubscriptValue resultAt[maxRank];
|
|
for (int j{0}; j < rank; ++j) {
|
|
resultAt[j] = 1;
|
|
}
|
|
SubscriptValue sourceLB[maxRank];
|
|
source.GetLowerBounds(sourceLB);
|
|
SubscriptValue dimExtent{extent[dim - 1]};
|
|
SubscriptValue dimLB{sourceLB[dim - 1]};
|
|
SubscriptValue &resDim{resultAt[dim - 1]};
|
|
for (std::size_t n{result.Elements()}; n > 0; n -= dimExtent) {
|
|
SubscriptValue shiftCount{shiftControl.GetShift(resultAt)};
|
|
SubscriptValue sourceAt[maxRank];
|
|
for (int j{0}; j < rank; ++j) {
|
|
sourceAt[j] = sourceLB[j] + resultAt[j] - 1;
|
|
}
|
|
SubscriptValue &sourceDim{sourceAt[dim - 1]};
|
|
sourceDim = dimLB + shiftCount % dimExtent;
|
|
if (sourceDim < dimLB) {
|
|
sourceDim += dimExtent;
|
|
}
|
|
for (resDim = 1; resDim <= dimExtent; ++resDim) {
|
|
CopyElement(result, resultAt, source, sourceAt, terminator);
|
|
if (++sourceDim == dimLB + dimExtent) {
|
|
sourceDim = dimLB;
|
|
}
|
|
}
|
|
result.IncrementSubscripts(resultAt);
|
|
}
|
|
}
|
|
|
|
// CSHIFT where rank of ARRAY argument == 1
|
|
void RTDEF(CshiftVector)(Descriptor &result, const Descriptor &source,
|
|
std::int64_t shift, const char *sourceFile, int line) {
|
|
Terminator terminator{sourceFile, line};
|
|
RUNTIME_CHECK(terminator, source.rank() == 1);
|
|
const Dimension &sourceDim{source.GetDimension(0)};
|
|
SubscriptValue extent{sourceDim.Extent()};
|
|
AllocateResult(result, source, 1, &extent, terminator, "CSHIFT");
|
|
SubscriptValue lb{sourceDim.LowerBound()};
|
|
for (SubscriptValue j{0}; j < extent; ++j) {
|
|
SubscriptValue resultAt{1 + j};
|
|
SubscriptValue sourceAt{lb + (j + shift) % extent};
|
|
if (sourceAt < lb) {
|
|
sourceAt += extent;
|
|
}
|
|
CopyElement(result, &resultAt, source, &sourceAt, terminator);
|
|
}
|
|
}
|
|
|
|
// EOSHIFT of rank > 1
|
|
void RTDEF(Eoshift)(Descriptor &result, const Descriptor &source,
|
|
const Descriptor &shift, const Descriptor *boundary, int dim,
|
|
const char *sourceFile, int line) {
|
|
Terminator terminator{sourceFile, line};
|
|
SubscriptValue extent[maxRank];
|
|
int rank{source.GetShape(extent)};
|
|
RUNTIME_CHECK(terminator, rank > 1);
|
|
if (dim < 1 || dim > rank) {
|
|
terminator.Crash(
|
|
"EOSHIFT: DIM=%d must be >= 1 and <= SOURCE= rank %d", dim, rank);
|
|
}
|
|
std::size_t elementLen{
|
|
AllocateResult(result, source, rank, extent, terminator, "EOSHIFT")};
|
|
int boundaryRank{-1};
|
|
if (boundary) {
|
|
boundaryRank = boundary->rank();
|
|
RUNTIME_CHECK(terminator, boundaryRank == 0 || boundaryRank == rank - 1);
|
|
RUNTIME_CHECK(terminator, boundary->type() == source.type());
|
|
if (boundary->ElementBytes() != elementLen) {
|
|
terminator.Crash("EOSHIFT: BOUNDARY= has element byte length %zd, but "
|
|
"SOURCE= has length %zd",
|
|
boundary->ElementBytes(), elementLen);
|
|
}
|
|
if (boundaryRank > 0) {
|
|
int k{0};
|
|
for (int j{0}; j < rank; ++j) {
|
|
if (j != dim - 1) {
|
|
if (boundary->GetDimension(k).Extent() != extent[j]) {
|
|
terminator.Crash("EOSHIFT: BOUNDARY= has extent %jd on dimension "
|
|
"%d but must conform with extent %jd of SOURCE=",
|
|
static_cast<std::intmax_t>(boundary->GetDimension(k).Extent()),
|
|
k + 1, static_cast<std::intmax_t>(extent[j]));
|
|
}
|
|
++k;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
ShiftControl shiftControl{shift, terminator, dim};
|
|
shiftControl.Init(source, "EOSHIFT");
|
|
SubscriptValue resultAt[maxRank];
|
|
for (int j{0}; j < rank; ++j) {
|
|
resultAt[j] = 1;
|
|
}
|
|
if (!boundary) {
|
|
DefaultInitialize(result, terminator);
|
|
}
|
|
SubscriptValue sourceLB[maxRank];
|
|
source.GetLowerBounds(sourceLB);
|
|
SubscriptValue boundaryAt[maxRank];
|
|
if (boundaryRank > 0) {
|
|
boundary->GetLowerBounds(boundaryAt);
|
|
}
|
|
SubscriptValue dimExtent{extent[dim - 1]};
|
|
SubscriptValue dimLB{sourceLB[dim - 1]};
|
|
SubscriptValue &resDim{resultAt[dim - 1]};
|
|
for (std::size_t n{result.Elements()}; n > 0; n -= dimExtent) {
|
|
SubscriptValue shiftCount{shiftControl.GetShift(resultAt)};
|
|
SubscriptValue sourceAt[maxRank];
|
|
for (int j{0}; j < rank; ++j) {
|
|
sourceAt[j] = sourceLB[j] + resultAt[j] - 1;
|
|
}
|
|
SubscriptValue &sourceDim{sourceAt[dim - 1]};
|
|
sourceDim = dimLB + shiftCount;
|
|
for (resDim = 1; resDim <= dimExtent; ++resDim) {
|
|
if (sourceDim >= dimLB && sourceDim < dimLB + dimExtent) {
|
|
CopyElement(result, resultAt, source, sourceAt, terminator);
|
|
} else if (boundary) {
|
|
CopyElement(result, resultAt, *boundary, boundaryAt, terminator);
|
|
}
|
|
++sourceDim;
|
|
}
|
|
result.IncrementSubscripts(resultAt);
|
|
if (boundaryRank > 0) {
|
|
boundary->IncrementSubscripts(boundaryAt);
|
|
}
|
|
}
|
|
}
|
|
|
|
// EOSHIFT of vector
|
|
void RTDEF(EoshiftVector)(Descriptor &result, const Descriptor &source,
|
|
std::int64_t shift, const Descriptor *boundary, const char *sourceFile,
|
|
int line) {
|
|
Terminator terminator{sourceFile, line};
|
|
RUNTIME_CHECK(terminator, source.rank() == 1);
|
|
SubscriptValue extent{source.GetDimension(0).Extent()};
|
|
std::size_t elementLen{
|
|
AllocateResult(result, source, 1, &extent, terminator, "EOSHIFT")};
|
|
if (boundary) {
|
|
RUNTIME_CHECK(terminator, boundary->rank() == 0);
|
|
RUNTIME_CHECK(terminator, boundary->type() == source.type());
|
|
if (boundary->ElementBytes() != elementLen) {
|
|
terminator.Crash("EOSHIFT: BOUNDARY= has element byte length %zd but "
|
|
"SOURCE= has length %zd",
|
|
boundary->ElementBytes(), elementLen);
|
|
}
|
|
}
|
|
if (!boundary) {
|
|
DefaultInitialize(result, terminator);
|
|
}
|
|
SubscriptValue lb{source.GetDimension(0).LowerBound()};
|
|
for (SubscriptValue j{1}; j <= extent; ++j) {
|
|
SubscriptValue sourceAt{lb + j - 1 + shift};
|
|
if (sourceAt >= lb && sourceAt < lb + extent) {
|
|
CopyElement(result, &j, source, &sourceAt, terminator);
|
|
} else if (boundary) {
|
|
CopyElement(result, &j, *boundary, 0, terminator);
|
|
}
|
|
}
|
|
}
|
|
|
|
// PACK
|
|
void RTDEF(Pack)(Descriptor &result, const Descriptor &source,
|
|
const Descriptor &mask, const Descriptor *vector, const char *sourceFile,
|
|
int line) {
|
|
Terminator terminator{sourceFile, line};
|
|
CheckConformability(source, mask, terminator, "PACK", "ARRAY=", "MASK=");
|
|
auto maskType{mask.type().GetCategoryAndKind()};
|
|
RUNTIME_CHECK(
|
|
terminator, maskType && maskType->first == TypeCategory::Logical);
|
|
SubscriptValue trues{0};
|
|
if (mask.rank() == 0) {
|
|
if (IsLogicalElementTrue(mask, nullptr)) {
|
|
trues = source.Elements();
|
|
}
|
|
} else {
|
|
SubscriptValue maskAt[maxRank];
|
|
mask.GetLowerBounds(maskAt);
|
|
for (std::size_t n{mask.Elements()}; n > 0; --n) {
|
|
if (IsLogicalElementTrue(mask, maskAt)) {
|
|
++trues;
|
|
}
|
|
mask.IncrementSubscripts(maskAt);
|
|
}
|
|
}
|
|
SubscriptValue extent{trues};
|
|
if (vector) {
|
|
RUNTIME_CHECK(terminator, vector->rank() == 1);
|
|
RUNTIME_CHECK(terminator, source.type() == vector->type());
|
|
if (source.ElementBytes() != vector->ElementBytes()) {
|
|
terminator.Crash("PACK: SOURCE= has element byte length %zd, but VECTOR= "
|
|
"has length %zd",
|
|
source.ElementBytes(), vector->ElementBytes());
|
|
}
|
|
extent = vector->GetDimension(0).Extent();
|
|
if (extent < trues) {
|
|
terminator.Crash("PACK: VECTOR= has extent %jd but there are %jd MASK= "
|
|
"elements that are .TRUE.",
|
|
static_cast<std::intmax_t>(extent),
|
|
static_cast<std::intmax_t>(trues));
|
|
}
|
|
}
|
|
AllocateResult(result, source, 1, &extent, terminator, "PACK");
|
|
SubscriptValue sourceAt[maxRank], resultAt{1};
|
|
source.GetLowerBounds(sourceAt);
|
|
if (mask.rank() == 0) {
|
|
if (IsLogicalElementTrue(mask, nullptr)) {
|
|
for (SubscriptValue n{trues}; n > 0; --n) {
|
|
CopyElement(result, &resultAt, source, sourceAt, terminator);
|
|
++resultAt;
|
|
source.IncrementSubscripts(sourceAt);
|
|
}
|
|
}
|
|
} else {
|
|
SubscriptValue maskAt[maxRank];
|
|
mask.GetLowerBounds(maskAt);
|
|
for (std::size_t n{source.Elements()}; n > 0; --n) {
|
|
if (IsLogicalElementTrue(mask, maskAt)) {
|
|
CopyElement(result, &resultAt, source, sourceAt, terminator);
|
|
++resultAt;
|
|
}
|
|
source.IncrementSubscripts(sourceAt);
|
|
mask.IncrementSubscripts(maskAt);
|
|
}
|
|
}
|
|
if (vector) {
|
|
SubscriptValue vectorAt{
|
|
vector->GetDimension(0).LowerBound() + resultAt - 1};
|
|
for (; resultAt <= extent; ++resultAt, ++vectorAt) {
|
|
CopyElement(result, &resultAt, *vector, &vectorAt, terminator);
|
|
}
|
|
}
|
|
}
|
|
|
|
// RESHAPE
|
|
// F2018 16.9.163
|
|
void RTDEF(Reshape)(Descriptor &result, const Descriptor &source,
|
|
const Descriptor &shape, const Descriptor *pad, const Descriptor *order,
|
|
const char *sourceFile, int line) {
|
|
// Compute and check the rank of the result.
|
|
Terminator terminator{sourceFile, line};
|
|
RUNTIME_CHECK(terminator, shape.rank() == 1);
|
|
RUNTIME_CHECK(terminator, shape.type().IsInteger());
|
|
SubscriptValue resultRank{shape.GetDimension(0).Extent()};
|
|
if (resultRank < 0 || resultRank > static_cast<SubscriptValue>(maxRank)) {
|
|
terminator.Crash(
|
|
"RESHAPE: SHAPE= vector length %jd implies a bad result rank",
|
|
static_cast<std::intmax_t>(resultRank));
|
|
}
|
|
|
|
// Extract and check the shape of the result; compute its element count.
|
|
SubscriptValue resultExtent[maxRank];
|
|
std::size_t shapeElementBytes{shape.ElementBytes()};
|
|
std::size_t resultElements{1};
|
|
SubscriptValue shapeSubscript{shape.GetDimension(0).LowerBound()};
|
|
for (int j{0}; j < resultRank; ++j, ++shapeSubscript) {
|
|
resultExtent[j] = GetInt64(
|
|
shape.Element<char>(&shapeSubscript), shapeElementBytes, terminator);
|
|
if (resultExtent[j] < 0) {
|
|
terminator.Crash("RESHAPE: bad value for SHAPE(%d)=%jd", j + 1,
|
|
static_cast<std::intmax_t>(resultExtent[j]));
|
|
}
|
|
resultElements *= resultExtent[j];
|
|
}
|
|
|
|
// Check that there are sufficient elements in the SOURCE=, or that
|
|
// the optional PAD= argument is present and nonempty.
|
|
std::size_t elementBytes{source.ElementBytes()};
|
|
std::size_t sourceElements{source.Elements()};
|
|
std::size_t padElements{pad ? pad->Elements() : 0};
|
|
if (resultElements > sourceElements) {
|
|
if (padElements <= 0) {
|
|
terminator.Crash(
|
|
"RESHAPE: not enough elements, need %zd but only have %zd",
|
|
resultElements, sourceElements);
|
|
}
|
|
if (pad->ElementBytes() != elementBytes) {
|
|
terminator.Crash("RESHAPE: PAD= has element byte length %zd but SOURCE= "
|
|
"has length %zd",
|
|
pad->ElementBytes(), elementBytes);
|
|
}
|
|
}
|
|
|
|
// Extract and check the optional ORDER= argument, which must be a
|
|
// permutation of [1..resultRank].
|
|
int dimOrder[maxRank];
|
|
if (order) {
|
|
RUNTIME_CHECK(terminator, order->rank() == 1);
|
|
RUNTIME_CHECK(terminator, order->type().IsInteger());
|
|
if (order->GetDimension(0).Extent() != resultRank) {
|
|
terminator.Crash("RESHAPE: the extent of ORDER (%jd) must match the rank"
|
|
" of the SHAPE (%d)",
|
|
static_cast<std::intmax_t>(order->GetDimension(0).Extent()),
|
|
resultRank);
|
|
}
|
|
std::uint64_t values{0};
|
|
SubscriptValue orderSubscript{order->GetDimension(0).LowerBound()};
|
|
std::size_t orderElementBytes{order->ElementBytes()};
|
|
for (SubscriptValue j{0}; j < resultRank; ++j, ++orderSubscript) {
|
|
auto k{GetInt64(order->Element<char>(&orderSubscript), orderElementBytes,
|
|
terminator)};
|
|
if (k < 1 || k > resultRank || ((values >> k) & 1)) {
|
|
terminator.Crash("RESHAPE: bad value for ORDER element (%jd)",
|
|
static_cast<std::intmax_t>(k));
|
|
}
|
|
values |= std::uint64_t{1} << k;
|
|
dimOrder[j] = k - 1;
|
|
}
|
|
} else {
|
|
for (int j{0}; j < resultRank; ++j) {
|
|
dimOrder[j] = j;
|
|
}
|
|
}
|
|
|
|
// Allocate result descriptor
|
|
AllocateResult(
|
|
result, source, resultRank, resultExtent, terminator, "RESHAPE");
|
|
|
|
// Populate the result's elements.
|
|
SubscriptValue resultSubscript[maxRank];
|
|
result.GetLowerBounds(resultSubscript);
|
|
SubscriptValue sourceSubscript[maxRank];
|
|
source.GetLowerBounds(sourceSubscript);
|
|
std::size_t resultElement{0};
|
|
std::size_t elementsFromSource{std::min(resultElements, sourceElements)};
|
|
for (; resultElement < elementsFromSource; ++resultElement) {
|
|
CopyElement(result, resultSubscript, source, sourceSubscript, terminator);
|
|
source.IncrementSubscripts(sourceSubscript);
|
|
result.IncrementSubscripts(resultSubscript, dimOrder);
|
|
}
|
|
if (resultElement < resultElements) {
|
|
// Remaining elements come from the optional PAD= argument.
|
|
SubscriptValue padSubscript[maxRank];
|
|
pad->GetLowerBounds(padSubscript);
|
|
for (; resultElement < resultElements; ++resultElement) {
|
|
CopyElement(result, resultSubscript, *pad, padSubscript, terminator);
|
|
pad->IncrementSubscripts(padSubscript);
|
|
result.IncrementSubscripts(resultSubscript, dimOrder);
|
|
}
|
|
}
|
|
}
|
|
|
|
// SPREAD
|
|
void RTDEF(Spread)(Descriptor &result, const Descriptor &source, int dim,
|
|
std::int64_t ncopies, const char *sourceFile, int line) {
|
|
Terminator terminator{sourceFile, line};
|
|
int rank{source.rank() + 1};
|
|
RUNTIME_CHECK(terminator, rank <= maxRank);
|
|
if (dim < 1 || dim > rank) {
|
|
terminator.Crash("SPREAD: DIM=%d argument for rank-%d source array "
|
|
"must be greater than 1 and less than or equal to %d",
|
|
dim, rank - 1, rank);
|
|
}
|
|
ncopies = std::max<std::int64_t>(ncopies, 0);
|
|
SubscriptValue extent[maxRank];
|
|
int k{0};
|
|
for (int j{0}; j < rank; ++j) {
|
|
extent[j] = j == dim - 1 ? ncopies : source.GetDimension(k++).Extent();
|
|
}
|
|
AllocateResult(result, source, rank, extent, terminator, "SPREAD");
|
|
SubscriptValue resultAt[maxRank];
|
|
for (int j{0}; j < rank; ++j) {
|
|
resultAt[j] = 1;
|
|
}
|
|
SubscriptValue &resultDim{resultAt[dim - 1]};
|
|
SubscriptValue sourceAt[maxRank];
|
|
source.GetLowerBounds(sourceAt);
|
|
for (std::size_t n{result.Elements()}; n > 0; n -= ncopies) {
|
|
for (resultDim = 1; resultDim <= ncopies; ++resultDim) {
|
|
CopyElement(result, resultAt, source, sourceAt, terminator);
|
|
}
|
|
result.IncrementSubscripts(resultAt);
|
|
source.IncrementSubscripts(sourceAt);
|
|
}
|
|
}
|
|
|
|
// TRANSPOSE
|
|
void RTDEF(Transpose)(Descriptor &result, const Descriptor &matrix,
|
|
const char *sourceFile, int line) {
|
|
Terminator terminator{sourceFile, line};
|
|
RUNTIME_CHECK(terminator, matrix.rank() == 2);
|
|
SubscriptValue extent[2]{
|
|
matrix.GetDimension(1).Extent(), matrix.GetDimension(0).Extent()};
|
|
AllocateResult(result, matrix, 2, extent, terminator, "TRANSPOSE");
|
|
SubscriptValue resultAt[2]{1, 1};
|
|
SubscriptValue matrixLB[2];
|
|
matrix.GetLowerBounds(matrixLB);
|
|
for (std::size_t n{result.Elements()}; n-- > 0;
|
|
result.IncrementSubscripts(resultAt)) {
|
|
SubscriptValue matrixAt[2]{
|
|
matrixLB[0] + resultAt[1] - 1, matrixLB[1] + resultAt[0] - 1};
|
|
CopyElement(result, resultAt, matrix, matrixAt, terminator);
|
|
}
|
|
}
|
|
|
|
// UNPACK
|
|
void RTDEF(Unpack)(Descriptor &result, const Descriptor &vector,
|
|
const Descriptor &mask, const Descriptor &field, const char *sourceFile,
|
|
int line) {
|
|
Terminator terminator{sourceFile, line};
|
|
RUNTIME_CHECK(terminator, vector.rank() == 1);
|
|
int rank{mask.rank()};
|
|
RUNTIME_CHECK(terminator, rank > 0);
|
|
SubscriptValue extent[maxRank];
|
|
mask.GetShape(extent);
|
|
CheckConformability(mask, field, terminator, "UNPACK", "MASK=", "FIELD=");
|
|
std::size_t elementLen{
|
|
AllocateResult(result, field, rank, extent, terminator, "UNPACK")};
|
|
RUNTIME_CHECK(terminator, vector.type() == field.type());
|
|
if (vector.ElementBytes() != elementLen) {
|
|
terminator.Crash(
|
|
"UNPACK: VECTOR= has element byte length %zd but FIELD= has length %zd",
|
|
vector.ElementBytes(), elementLen);
|
|
}
|
|
SubscriptValue resultAt[maxRank], maskAt[maxRank], fieldAt[maxRank],
|
|
vectorAt{vector.GetDimension(0).LowerBound()};
|
|
for (int j{0}; j < rank; ++j) {
|
|
resultAt[j] = 1;
|
|
}
|
|
mask.GetLowerBounds(maskAt);
|
|
field.GetLowerBounds(fieldAt);
|
|
SubscriptValue vectorElements{vector.GetDimension(0).Extent()};
|
|
SubscriptValue vectorLeft{vectorElements};
|
|
for (std::size_t n{result.Elements()}; n-- > 0;) {
|
|
if (IsLogicalElementTrue(mask, maskAt)) {
|
|
if (vectorLeft-- == 0) {
|
|
terminator.Crash(
|
|
"UNPACK: VECTOR= argument has fewer elements (%d) than "
|
|
"MASK= has .TRUE. entries",
|
|
vectorElements);
|
|
}
|
|
CopyElement(result, resultAt, vector, &vectorAt, terminator);
|
|
++vectorAt;
|
|
} else {
|
|
CopyElement(result, resultAt, field, fieldAt, terminator);
|
|
}
|
|
result.IncrementSubscripts(resultAt);
|
|
mask.IncrementSubscripts(maskAt);
|
|
field.IncrementSubscripts(fieldAt);
|
|
}
|
|
}
|
|
|
|
RT_EXT_API_GROUP_END
|
|
} // extern "C"
|
|
} // namespace Fortran::runtime
|