Anna Thomas b1e3d45318 [LV][LAA] Vectorize loop invariant values stored into loop invariant address
Summary:
We are overly conservative in loop vectorizer with respect to stores to loop
invariant addresses.
More details in https://bugs.llvm.org/show_bug.cgi?id=38546
This is the first part of the fix where we start with vectorizing loop invariant
values to loop invariant addresses.

This also includes changes to ORE for stores to invariant address.

Reviewers: anemet, Ayal, mkuper, mssimpso

Subscribers: llvm-commits

Differential Revision: https://reviews.llvm.org/D50665

llvm-svn: 343028
2018-09-25 20:57:20 +00:00

7286 lines
295 KiB
C++

//===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops
// and generates target-independent LLVM-IR.
// The vectorizer uses the TargetTransformInfo analysis to estimate the costs
// of instructions in order to estimate the profitability of vectorization.
//
// The loop vectorizer combines consecutive loop iterations into a single
// 'wide' iteration. After this transformation the index is incremented
// by the SIMD vector width, and not by one.
//
// This pass has three parts:
// 1. The main loop pass that drives the different parts.
// 2. LoopVectorizationLegality - A unit that checks for the legality
// of the vectorization.
// 3. InnerLoopVectorizer - A unit that performs the actual
// widening of instructions.
// 4. LoopVectorizationCostModel - A unit that checks for the profitability
// of vectorization. It decides on the optimal vector width, which
// can be one, if vectorization is not profitable.
//
// There is a development effort going on to migrate loop vectorizer to the
// VPlan infrastructure and to introduce outer loop vectorization support (see
// docs/Proposal/VectorizationPlan.rst and
// http://lists.llvm.org/pipermail/llvm-dev/2017-December/119523.html). For this
// purpose, we temporarily introduced the VPlan-native vectorization path: an
// alternative vectorization path that is natively implemented on top of the
// VPlan infrastructure. See EnableVPlanNativePath for enabling.
//
//===----------------------------------------------------------------------===//
//
// The reduction-variable vectorization is based on the paper:
// D. Nuzman and R. Henderson. Multi-platform Auto-vectorization.
//
// Variable uniformity checks are inspired by:
// Karrenberg, R. and Hack, S. Whole Function Vectorization.
//
// The interleaved access vectorization is based on the paper:
// Dorit Nuzman, Ira Rosen and Ayal Zaks. Auto-Vectorization of Interleaved
// Data for SIMD
//
// Other ideas/concepts are from:
// A. Zaks and D. Nuzman. Autovectorization in GCC-two years later.
//
// S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua. An Evaluation of
// Vectorizing Compilers.
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Vectorize/LoopVectorize.h"
#include "LoopVectorizationPlanner.h"
#include "VPRecipeBuilder.h"
#include "VPlanHCFGBuilder.h"
#include "VPlanHCFGTransforms.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DenseMapInfo.h"
#include "llvm/ADT/Hashing.h"
#include "llvm/ADT/MapVector.h"
#include "llvm/ADT/None.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/Twine.h"
#include "llvm/ADT/iterator_range.h"
#include "llvm/Analysis/AssumptionCache.h"
#include "llvm/Analysis/BasicAliasAnalysis.h"
#include "llvm/Analysis/BlockFrequencyInfo.h"
#include "llvm/Analysis/CFG.h"
#include "llvm/Analysis/CodeMetrics.h"
#include "llvm/Analysis/DemandedBits.h"
#include "llvm/Analysis/GlobalsModRef.h"
#include "llvm/Analysis/LoopAccessAnalysis.h"
#include "llvm/Analysis/LoopAnalysisManager.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/LoopIterator.h"
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/Analysis/ScalarEvolutionExpander.h"
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/Analysis/VectorUtils.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/CFG.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DebugInfoMetadata.h"
#include "llvm/IR/DebugLoc.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/DiagnosticInfo.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Metadata.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Operator.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Use.h"
#include "llvm/IR/User.h"
#include "llvm/IR/Value.h"
#include "llvm/IR/ValueHandle.h"
#include "llvm/IR/Verifier.h"
#include "llvm/Pass.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/LoopSimplify.h"
#include "llvm/Transforms/Utils/LoopUtils.h"
#include "llvm/Transforms/Utils/LoopVersioning.h"
#include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h"
#include <algorithm>
#include <cassert>
#include <cstdint>
#include <cstdlib>
#include <functional>
#include <iterator>
#include <limits>
#include <memory>
#include <string>
#include <tuple>
#include <utility>
#include <vector>
using namespace llvm;
#define LV_NAME "loop-vectorize"
#define DEBUG_TYPE LV_NAME
STATISTIC(LoopsVectorized, "Number of loops vectorized");
STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization");
/// Loops with a known constant trip count below this number are vectorized only
/// if no scalar iteration overheads are incurred.
static cl::opt<unsigned> TinyTripCountVectorThreshold(
"vectorizer-min-trip-count", cl::init(16), cl::Hidden,
cl::desc("Loops with a constant trip count that is smaller than this "
"value are vectorized only if no scalar iteration overheads "
"are incurred."));
static cl::opt<bool> MaximizeBandwidth(
"vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden,
cl::desc("Maximize bandwidth when selecting vectorization factor which "
"will be determined by the smallest type in loop."));
static cl::opt<bool> EnableInterleavedMemAccesses(
"enable-interleaved-mem-accesses", cl::init(false), cl::Hidden,
cl::desc("Enable vectorization on interleaved memory accesses in a loop"));
/// We don't interleave loops with a known constant trip count below this
/// number.
static const unsigned TinyTripCountInterleaveThreshold = 128;
static cl::opt<unsigned> ForceTargetNumScalarRegs(
"force-target-num-scalar-regs", cl::init(0), cl::Hidden,
cl::desc("A flag that overrides the target's number of scalar registers."));
static cl::opt<unsigned> ForceTargetNumVectorRegs(
"force-target-num-vector-regs", cl::init(0), cl::Hidden,
cl::desc("A flag that overrides the target's number of vector registers."));
static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor(
"force-target-max-scalar-interleave", cl::init(0), cl::Hidden,
cl::desc("A flag that overrides the target's max interleave factor for "
"scalar loops."));
static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor(
"force-target-max-vector-interleave", cl::init(0), cl::Hidden,
cl::desc("A flag that overrides the target's max interleave factor for "
"vectorized loops."));
static cl::opt<unsigned> ForceTargetInstructionCost(
"force-target-instruction-cost", cl::init(0), cl::Hidden,
cl::desc("A flag that overrides the target's expected cost for "
"an instruction to a single constant value. Mostly "
"useful for getting consistent testing."));
static cl::opt<unsigned> SmallLoopCost(
"small-loop-cost", cl::init(20), cl::Hidden,
cl::desc(
"The cost of a loop that is considered 'small' by the interleaver."));
static cl::opt<bool> LoopVectorizeWithBlockFrequency(
"loop-vectorize-with-block-frequency", cl::init(true), cl::Hidden,
cl::desc("Enable the use of the block frequency analysis to access PGO "
"heuristics minimizing code growth in cold regions and being more "
"aggressive in hot regions."));
// Runtime interleave loops for load/store throughput.
static cl::opt<bool> EnableLoadStoreRuntimeInterleave(
"enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden,
cl::desc(
"Enable runtime interleaving until load/store ports are saturated"));
/// The number of stores in a loop that are allowed to need predication.
static cl::opt<unsigned> NumberOfStoresToPredicate(
"vectorize-num-stores-pred", cl::init(1), cl::Hidden,
cl::desc("Max number of stores to be predicated behind an if."));
static cl::opt<bool> EnableIndVarRegisterHeur(
"enable-ind-var-reg-heur", cl::init(true), cl::Hidden,
cl::desc("Count the induction variable only once when interleaving"));
static cl::opt<bool> EnableCondStoresVectorization(
"enable-cond-stores-vec", cl::init(true), cl::Hidden,
cl::desc("Enable if predication of stores during vectorization."));
static cl::opt<unsigned> MaxNestedScalarReductionIC(
"max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden,
cl::desc("The maximum interleave count to use when interleaving a scalar "
"reduction in a nested loop."));
cl::opt<bool> EnableVPlanNativePath(
"enable-vplan-native-path", cl::init(false), cl::Hidden,
cl::desc("Enable VPlan-native vectorization path with "
"support for outer loop vectorization."));
// This flag enables the stress testing of the VPlan H-CFG construction in the
// VPlan-native vectorization path. It must be used in conjuction with
// -enable-vplan-native-path. -vplan-verify-hcfg can also be used to enable the
// verification of the H-CFGs built.
static cl::opt<bool> VPlanBuildStressTest(
"vplan-build-stress-test", cl::init(false), cl::Hidden,
cl::desc(
"Build VPlan for every supported loop nest in the function and bail "
"out right after the build (stress test the VPlan H-CFG construction "
"in the VPlan-native vectorization path)."));
/// A helper function for converting Scalar types to vector types.
/// If the incoming type is void, we return void. If the VF is 1, we return
/// the scalar type.
static Type *ToVectorTy(Type *Scalar, unsigned VF) {
if (Scalar->isVoidTy() || VF == 1)
return Scalar;
return VectorType::get(Scalar, VF);
}
/// A helper function that returns the type of loaded or stored value.
static Type *getMemInstValueType(Value *I) {
assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&
"Expected Load or Store instruction");
if (auto *LI = dyn_cast<LoadInst>(I))
return LI->getType();
return cast<StoreInst>(I)->getValueOperand()->getType();
}
/// A helper function that returns true if the given type is irregular. The
/// type is irregular if its allocated size doesn't equal the store size of an
/// element of the corresponding vector type at the given vectorization factor.
static bool hasIrregularType(Type *Ty, const DataLayout &DL, unsigned VF) {
// Determine if an array of VF elements of type Ty is "bitcast compatible"
// with a <VF x Ty> vector.
if (VF > 1) {
auto *VectorTy = VectorType::get(Ty, VF);
return VF * DL.getTypeAllocSize(Ty) != DL.getTypeStoreSize(VectorTy);
}
// If the vectorization factor is one, we just check if an array of type Ty
// requires padding between elements.
return DL.getTypeAllocSizeInBits(Ty) != DL.getTypeSizeInBits(Ty);
}
/// A helper function that returns the reciprocal of the block probability of
/// predicated blocks. If we return X, we are assuming the predicated block
/// will execute once for every X iterations of the loop header.
///
/// TODO: We should use actual block probability here, if available. Currently,
/// we always assume predicated blocks have a 50% chance of executing.
static unsigned getReciprocalPredBlockProb() { return 2; }
/// A helper function that adds a 'fast' flag to floating-point operations.
static Value *addFastMathFlag(Value *V) {
if (isa<FPMathOperator>(V)) {
FastMathFlags Flags;
Flags.setFast();
cast<Instruction>(V)->setFastMathFlags(Flags);
}
return V;
}
/// A helper function that returns an integer or floating-point constant with
/// value C.
static Constant *getSignedIntOrFpConstant(Type *Ty, int64_t C) {
return Ty->isIntegerTy() ? ConstantInt::getSigned(Ty, C)
: ConstantFP::get(Ty, C);
}
namespace llvm {
/// InnerLoopVectorizer vectorizes loops which contain only one basic
/// block to a specified vectorization factor (VF).
/// This class performs the widening of scalars into vectors, or multiple
/// scalars. This class also implements the following features:
/// * It inserts an epilogue loop for handling loops that don't have iteration
/// counts that are known to be a multiple of the vectorization factor.
/// * It handles the code generation for reduction variables.
/// * Scalarization (implementation using scalars) of un-vectorizable
/// instructions.
/// InnerLoopVectorizer does not perform any vectorization-legality
/// checks, and relies on the caller to check for the different legality
/// aspects. The InnerLoopVectorizer relies on the
/// LoopVectorizationLegality class to provide information about the induction
/// and reduction variables that were found to a given vectorization factor.
class InnerLoopVectorizer {
public:
InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE,
LoopInfo *LI, DominatorTree *DT,
const TargetLibraryInfo *TLI,
const TargetTransformInfo *TTI, AssumptionCache *AC,
OptimizationRemarkEmitter *ORE, unsigned VecWidth,
unsigned UnrollFactor, LoopVectorizationLegality *LVL,
LoopVectorizationCostModel *CM)
: OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI),
AC(AC), ORE(ORE), VF(VecWidth), UF(UnrollFactor),
Builder(PSE.getSE()->getContext()),
VectorLoopValueMap(UnrollFactor, VecWidth), Legal(LVL), Cost(CM) {}
virtual ~InnerLoopVectorizer() = default;
/// Create a new empty loop. Unlink the old loop and connect the new one.
/// Return the pre-header block of the new loop.
BasicBlock *createVectorizedLoopSkeleton();
/// Widen a single instruction within the innermost loop.
void widenInstruction(Instruction &I);
/// Fix the vectorized code, taking care of header phi's, live-outs, and more.
void fixVectorizedLoop();
// Return true if any runtime check is added.
bool areSafetyChecksAdded() { return AddedSafetyChecks; }
/// A type for vectorized values in the new loop. Each value from the
/// original loop, when vectorized, is represented by UF vector values in the
/// new unrolled loop, where UF is the unroll factor.
using VectorParts = SmallVector<Value *, 2>;
/// Vectorize a single PHINode in a block. This method handles the induction
/// variable canonicalization. It supports both VF = 1 for unrolled loops and
/// arbitrary length vectors.
void widenPHIInstruction(Instruction *PN, unsigned UF, unsigned VF);
/// A helper function to scalarize a single Instruction in the innermost loop.
/// Generates a sequence of scalar instances for each lane between \p MinLane
/// and \p MaxLane, times each part between \p MinPart and \p MaxPart,
/// inclusive..
void scalarizeInstruction(Instruction *Instr, const VPIteration &Instance,
bool IfPredicateInstr);
/// Widen an integer or floating-point induction variable \p IV. If \p Trunc
/// is provided, the integer induction variable will first be truncated to
/// the corresponding type.
void widenIntOrFpInduction(PHINode *IV, TruncInst *Trunc = nullptr);
/// getOrCreateVectorValue and getOrCreateScalarValue coordinate to generate a
/// vector or scalar value on-demand if one is not yet available. When
/// vectorizing a loop, we visit the definition of an instruction before its
/// uses. When visiting the definition, we either vectorize or scalarize the
/// instruction, creating an entry for it in the corresponding map. (In some
/// cases, such as induction variables, we will create both vector and scalar
/// entries.) Then, as we encounter uses of the definition, we derive values
/// for each scalar or vector use unless such a value is already available.
/// For example, if we scalarize a definition and one of its uses is vector,
/// we build the required vector on-demand with an insertelement sequence
/// when visiting the use. Otherwise, if the use is scalar, we can use the
/// existing scalar definition.
///
/// Return a value in the new loop corresponding to \p V from the original
/// loop at unroll index \p Part. If the value has already been vectorized,
/// the corresponding vector entry in VectorLoopValueMap is returned. If,
/// however, the value has a scalar entry in VectorLoopValueMap, we construct
/// a new vector value on-demand by inserting the scalar values into a vector
/// with an insertelement sequence. If the value has been neither vectorized
/// nor scalarized, it must be loop invariant, so we simply broadcast the
/// value into a vector.
Value *getOrCreateVectorValue(Value *V, unsigned Part);
/// Return a value in the new loop corresponding to \p V from the original
/// loop at unroll and vector indices \p Instance. If the value has been
/// vectorized but not scalarized, the necessary extractelement instruction
/// will be generated.
Value *getOrCreateScalarValue(Value *V, const VPIteration &Instance);
/// Construct the vector value of a scalarized value \p V one lane at a time.
void packScalarIntoVectorValue(Value *V, const VPIteration &Instance);
/// Try to vectorize the interleaved access group that \p Instr belongs to.
void vectorizeInterleaveGroup(Instruction *Instr);
/// Vectorize Load and Store instructions, optionally masking the vector
/// operations if \p BlockInMask is non-null.
void vectorizeMemoryInstruction(Instruction *Instr,
VectorParts *BlockInMask = nullptr);
/// Set the debug location in the builder using the debug location in
/// the instruction.
void setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr);
/// Fix the non-induction PHIs in the OrigPHIsToFix vector.
void fixNonInductionPHIs(void);
protected:
friend class LoopVectorizationPlanner;
/// A small list of PHINodes.
using PhiVector = SmallVector<PHINode *, 4>;
/// A type for scalarized values in the new loop. Each value from the
/// original loop, when scalarized, is represented by UF x VF scalar values
/// in the new unrolled loop, where UF is the unroll factor and VF is the
/// vectorization factor.
using ScalarParts = SmallVector<SmallVector<Value *, 4>, 2>;
/// Set up the values of the IVs correctly when exiting the vector loop.
void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II,
Value *CountRoundDown, Value *EndValue,
BasicBlock *MiddleBlock);
/// Create a new induction variable inside L.
PHINode *createInductionVariable(Loop *L, Value *Start, Value *End,
Value *Step, Instruction *DL);
/// Handle all cross-iteration phis in the header.
void fixCrossIterationPHIs();
/// Fix a first-order recurrence. This is the second phase of vectorizing
/// this phi node.
void fixFirstOrderRecurrence(PHINode *Phi);
/// Fix a reduction cross-iteration phi. This is the second phase of
/// vectorizing this phi node.
void fixReduction(PHINode *Phi);
/// The Loop exit block may have single value PHI nodes with some
/// incoming value. While vectorizing we only handled real values
/// that were defined inside the loop and we should have one value for
/// each predecessor of its parent basic block. See PR14725.
void fixLCSSAPHIs();
/// Iteratively sink the scalarized operands of a predicated instruction into
/// the block that was created for it.
void sinkScalarOperands(Instruction *PredInst);
/// Shrinks vector element sizes to the smallest bitwidth they can be legally
/// represented as.
void truncateToMinimalBitwidths();
/// Insert the new loop to the loop hierarchy and pass manager
/// and update the analysis passes.
void updateAnalysis();
/// Create a broadcast instruction. This method generates a broadcast
/// instruction (shuffle) for loop invariant values and for the induction
/// value. If this is the induction variable then we extend it to N, N+1, ...
/// this is needed because each iteration in the loop corresponds to a SIMD
/// element.
virtual Value *getBroadcastInstrs(Value *V);
/// This function adds (StartIdx, StartIdx + Step, StartIdx + 2*Step, ...)
/// to each vector element of Val. The sequence starts at StartIndex.
/// \p Opcode is relevant for FP induction variable.
virtual Value *getStepVector(Value *Val, int StartIdx, Value *Step,
Instruction::BinaryOps Opcode =
Instruction::BinaryOpsEnd);
/// Compute scalar induction steps. \p ScalarIV is the scalar induction
/// variable on which to base the steps, \p Step is the size of the step, and
/// \p EntryVal is the value from the original loop that maps to the steps.
/// Note that \p EntryVal doesn't have to be an induction variable - it
/// can also be a truncate instruction.
void buildScalarSteps(Value *ScalarIV, Value *Step, Instruction *EntryVal,
const InductionDescriptor &ID);
/// Create a vector induction phi node based on an existing scalar one. \p
/// EntryVal is the value from the original loop that maps to the vector phi
/// node, and \p Step is the loop-invariant step. If \p EntryVal is a
/// truncate instruction, instead of widening the original IV, we widen a
/// version of the IV truncated to \p EntryVal's type.
void createVectorIntOrFpInductionPHI(const InductionDescriptor &II,
Value *Step, Instruction *EntryVal);
/// Returns true if an instruction \p I should be scalarized instead of
/// vectorized for the chosen vectorization factor.
bool shouldScalarizeInstruction(Instruction *I) const;
/// Returns true if we should generate a scalar version of \p IV.
bool needsScalarInduction(Instruction *IV) const;
/// If there is a cast involved in the induction variable \p ID, which should
/// be ignored in the vectorized loop body, this function records the
/// VectorLoopValue of the respective Phi also as the VectorLoopValue of the
/// cast. We had already proved that the casted Phi is equal to the uncasted
/// Phi in the vectorized loop (under a runtime guard), and therefore
/// there is no need to vectorize the cast - the same value can be used in the
/// vector loop for both the Phi and the cast.
/// If \p VectorLoopValue is a scalarized value, \p Lane is also specified,
/// Otherwise, \p VectorLoopValue is a widened/vectorized value.
///
/// \p EntryVal is the value from the original loop that maps to the vector
/// phi node and is used to distinguish what is the IV currently being
/// processed - original one (if \p EntryVal is a phi corresponding to the
/// original IV) or the "newly-created" one based on the proof mentioned above
/// (see also buildScalarSteps() and createVectorIntOrFPInductionPHI()). In the
/// latter case \p EntryVal is a TruncInst and we must not record anything for
/// that IV, but it's error-prone to expect callers of this routine to care
/// about that, hence this explicit parameter.
void recordVectorLoopValueForInductionCast(const InductionDescriptor &ID,
const Instruction *EntryVal,
Value *VectorLoopValue,
unsigned Part,
unsigned Lane = UINT_MAX);
/// Generate a shuffle sequence that will reverse the vector Vec.
virtual Value *reverseVector(Value *Vec);
/// Returns (and creates if needed) the original loop trip count.
Value *getOrCreateTripCount(Loop *NewLoop);
/// Returns (and creates if needed) the trip count of the widened loop.
Value *getOrCreateVectorTripCount(Loop *NewLoop);
/// Returns a bitcasted value to the requested vector type.
/// Also handles bitcasts of vector<float> <-> vector<pointer> types.
Value *createBitOrPointerCast(Value *V, VectorType *DstVTy,
const DataLayout &DL);
/// Emit a bypass check to see if the vector trip count is zero, including if
/// it overflows.
void emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass);
/// Emit a bypass check to see if all of the SCEV assumptions we've
/// had to make are correct.
void emitSCEVChecks(Loop *L, BasicBlock *Bypass);
/// Emit bypass checks to check any memory assumptions we may have made.
void emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass);
/// Compute the transformed value of Index at offset StartValue using step
/// StepValue.
/// For integer induction, returns StartValue + Index * StepValue.
/// For pointer induction, returns StartValue[Index * StepValue].
/// FIXME: The newly created binary instructions should contain nsw/nuw
/// flags, which can be found from the original scalar operations.
Value *emitTransformedIndex(IRBuilder<> &B, Value *Index, ScalarEvolution *SE,
const DataLayout &DL,
const InductionDescriptor &ID) const;
/// Add additional metadata to \p To that was not present on \p Orig.
///
/// Currently this is used to add the noalias annotations based on the
/// inserted memchecks. Use this for instructions that are *cloned* into the
/// vector loop.
void addNewMetadata(Instruction *To, const Instruction *Orig);
/// Add metadata from one instruction to another.
///
/// This includes both the original MDs from \p From and additional ones (\see
/// addNewMetadata). Use this for *newly created* instructions in the vector
/// loop.
void addMetadata(Instruction *To, Instruction *From);
/// Similar to the previous function but it adds the metadata to a
/// vector of instructions.
void addMetadata(ArrayRef<Value *> To, Instruction *From);
/// The original loop.
Loop *OrigLoop;
/// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies
/// dynamic knowledge to simplify SCEV expressions and converts them to a
/// more usable form.
PredicatedScalarEvolution &PSE;
/// Loop Info.
LoopInfo *LI;
/// Dominator Tree.
DominatorTree *DT;
/// Alias Analysis.
AliasAnalysis *AA;
/// Target Library Info.
const TargetLibraryInfo *TLI;
/// Target Transform Info.
const TargetTransformInfo *TTI;
/// Assumption Cache.
AssumptionCache *AC;
/// Interface to emit optimization remarks.
OptimizationRemarkEmitter *ORE;
/// LoopVersioning. It's only set up (non-null) if memchecks were
/// used.
///
/// This is currently only used to add no-alias metadata based on the
/// memchecks. The actually versioning is performed manually.
std::unique_ptr<LoopVersioning> LVer;
/// The vectorization SIMD factor to use. Each vector will have this many
/// vector elements.
unsigned VF;
/// The vectorization unroll factor to use. Each scalar is vectorized to this
/// many different vector instructions.
unsigned UF;
/// The builder that we use
IRBuilder<> Builder;
// --- Vectorization state ---
/// The vector-loop preheader.
BasicBlock *LoopVectorPreHeader;
/// The scalar-loop preheader.
BasicBlock *LoopScalarPreHeader;
/// Middle Block between the vector and the scalar.
BasicBlock *LoopMiddleBlock;
/// The ExitBlock of the scalar loop.
BasicBlock *LoopExitBlock;
/// The vector loop body.
BasicBlock *LoopVectorBody;
/// The scalar loop body.
BasicBlock *LoopScalarBody;
/// A list of all bypass blocks. The first block is the entry of the loop.
SmallVector<BasicBlock *, 4> LoopBypassBlocks;
/// The new Induction variable which was added to the new block.
PHINode *Induction = nullptr;
/// The induction variable of the old basic block.
PHINode *OldInduction = nullptr;
/// Maps values from the original loop to their corresponding values in the
/// vectorized loop. A key value can map to either vector values, scalar
/// values or both kinds of values, depending on whether the key was
/// vectorized and scalarized.
VectorizerValueMap VectorLoopValueMap;
/// Store instructions that were predicated.
SmallVector<Instruction *, 4> PredicatedInstructions;
/// Trip count of the original loop.
Value *TripCount = nullptr;
/// Trip count of the widened loop (TripCount - TripCount % (VF*UF))
Value *VectorTripCount = nullptr;
/// The legality analysis.
LoopVectorizationLegality *Legal;
/// The profitablity analysis.
LoopVectorizationCostModel *Cost;
// Record whether runtime checks are added.
bool AddedSafetyChecks = false;
// Holds the end values for each induction variable. We save the end values
// so we can later fix-up the external users of the induction variables.
DenseMap<PHINode *, Value *> IVEndValues;
// Vector of original scalar PHIs whose corresponding widened PHIs need to be
// fixed up at the end of vector code generation.
SmallVector<PHINode *, 8> OrigPHIsToFix;
};
class InnerLoopUnroller : public InnerLoopVectorizer {
public:
InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE,
LoopInfo *LI, DominatorTree *DT,
const TargetLibraryInfo *TLI,
const TargetTransformInfo *TTI, AssumptionCache *AC,
OptimizationRemarkEmitter *ORE, unsigned UnrollFactor,
LoopVectorizationLegality *LVL,
LoopVectorizationCostModel *CM)
: InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 1,
UnrollFactor, LVL, CM) {}
private:
Value *getBroadcastInstrs(Value *V) override;
Value *getStepVector(Value *Val, int StartIdx, Value *Step,
Instruction::BinaryOps Opcode =
Instruction::BinaryOpsEnd) override;
Value *reverseVector(Value *Vec) override;
};
} // end namespace llvm
/// Look for a meaningful debug location on the instruction or it's
/// operands.
static Instruction *getDebugLocFromInstOrOperands(Instruction *I) {
if (!I)
return I;
DebugLoc Empty;
if (I->getDebugLoc() != Empty)
return I;
for (User::op_iterator OI = I->op_begin(), OE = I->op_end(); OI != OE; ++OI) {
if (Instruction *OpInst = dyn_cast<Instruction>(*OI))
if (OpInst->getDebugLoc() != Empty)
return OpInst;
}
return I;
}
void InnerLoopVectorizer::setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr) {
if (const Instruction *Inst = dyn_cast_or_null<Instruction>(Ptr)) {
const DILocation *DIL = Inst->getDebugLoc();
if (DIL && Inst->getFunction()->isDebugInfoForProfiling() &&
!isa<DbgInfoIntrinsic>(Inst))
B.SetCurrentDebugLocation(DIL->cloneWithDuplicationFactor(UF * VF));
else
B.SetCurrentDebugLocation(DIL);
} else
B.SetCurrentDebugLocation(DebugLoc());
}
#ifndef NDEBUG
/// \return string containing a file name and a line # for the given loop.
static std::string getDebugLocString(const Loop *L) {
std::string Result;
if (L) {
raw_string_ostream OS(Result);
if (const DebugLoc LoopDbgLoc = L->getStartLoc())
LoopDbgLoc.print(OS);
else
// Just print the module name.
OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier();
OS.flush();
}
return Result;
}
#endif
void InnerLoopVectorizer::addNewMetadata(Instruction *To,
const Instruction *Orig) {
// If the loop was versioned with memchecks, add the corresponding no-alias
// metadata.
if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig)))
LVer->annotateInstWithNoAlias(To, Orig);
}
void InnerLoopVectorizer::addMetadata(Instruction *To,
Instruction *From) {
propagateMetadata(To, From);
addNewMetadata(To, From);
}
void InnerLoopVectorizer::addMetadata(ArrayRef<Value *> To,
Instruction *From) {
for (Value *V : To) {
if (Instruction *I = dyn_cast<Instruction>(V))
addMetadata(I, From);
}
}
static void emitMissedWarning(Function *F, Loop *L,
const LoopVectorizeHints &LH,
OptimizationRemarkEmitter *ORE) {
LH.emitRemarkWithHints();
if (LH.getForce() == LoopVectorizeHints::FK_Enabled) {
if (LH.getWidth() != 1)
ORE->emit(DiagnosticInfoOptimizationFailure(
DEBUG_TYPE, "FailedRequestedVectorization",
L->getStartLoc(), L->getHeader())
<< "loop not vectorized: "
<< "failed explicitly specified loop vectorization");
else if (LH.getInterleave() != 1)
ORE->emit(DiagnosticInfoOptimizationFailure(
DEBUG_TYPE, "FailedRequestedInterleaving", L->getStartLoc(),
L->getHeader())
<< "loop not interleaved: "
<< "failed explicitly specified loop interleaving");
}
}
namespace llvm {
/// LoopVectorizationCostModel - estimates the expected speedups due to
/// vectorization.
/// In many cases vectorization is not profitable. This can happen because of
/// a number of reasons. In this class we mainly attempt to predict the
/// expected speedup/slowdowns due to the supported instruction set. We use the
/// TargetTransformInfo to query the different backends for the cost of
/// different operations.
class LoopVectorizationCostModel {
public:
LoopVectorizationCostModel(Loop *L, PredicatedScalarEvolution &PSE,
LoopInfo *LI, LoopVectorizationLegality *Legal,
const TargetTransformInfo &TTI,
const TargetLibraryInfo *TLI, DemandedBits *DB,
AssumptionCache *AC,
OptimizationRemarkEmitter *ORE, const Function *F,
const LoopVectorizeHints *Hints,
InterleavedAccessInfo &IAI)
: TheLoop(L), PSE(PSE), LI(LI), Legal(Legal), TTI(TTI), TLI(TLI), DB(DB),
AC(AC), ORE(ORE), TheFunction(F), Hints(Hints), InterleaveInfo(IAI) {}
/// \return An upper bound for the vectorization factor, or None if
/// vectorization should be avoided up front.
Optional<unsigned> computeMaxVF(bool OptForSize);
/// \return The most profitable vectorization factor and the cost of that VF.
/// This method checks every power of two up to MaxVF. If UserVF is not ZERO
/// then this vectorization factor will be selected if vectorization is
/// possible.
VectorizationFactor selectVectorizationFactor(unsigned MaxVF);
/// Setup cost-based decisions for user vectorization factor.
void selectUserVectorizationFactor(unsigned UserVF) {
collectUniformsAndScalars(UserVF);
collectInstsToScalarize(UserVF);
}
/// \return The size (in bits) of the smallest and widest types in the code
/// that needs to be vectorized. We ignore values that remain scalar such as
/// 64 bit loop indices.
std::pair<unsigned, unsigned> getSmallestAndWidestTypes();
/// \return The desired interleave count.
/// If interleave count has been specified by metadata it will be returned.
/// Otherwise, the interleave count is computed and returned. VF and LoopCost
/// are the selected vectorization factor and the cost of the selected VF.
unsigned selectInterleaveCount(bool OptForSize, unsigned VF,
unsigned LoopCost);
/// Memory access instruction may be vectorized in more than one way.
/// Form of instruction after vectorization depends on cost.
/// This function takes cost-based decisions for Load/Store instructions
/// and collects them in a map. This decisions map is used for building
/// the lists of loop-uniform and loop-scalar instructions.
/// The calculated cost is saved with widening decision in order to
/// avoid redundant calculations.
void setCostBasedWideningDecision(unsigned VF);
/// A struct that represents some properties of the register usage
/// of a loop.
struct RegisterUsage {
/// Holds the number of loop invariant values that are used in the loop.
unsigned LoopInvariantRegs;
/// Holds the maximum number of concurrent live intervals in the loop.
unsigned MaxLocalUsers;
};
/// \return Returns information about the register usages of the loop for the
/// given vectorization factors.
SmallVector<RegisterUsage, 8> calculateRegisterUsage(ArrayRef<unsigned> VFs);
/// Collect values we want to ignore in the cost model.
void collectValuesToIgnore();
/// \returns The smallest bitwidth each instruction can be represented with.
/// The vector equivalents of these instructions should be truncated to this
/// type.
const MapVector<Instruction *, uint64_t> &getMinimalBitwidths() const {
return MinBWs;
}
/// \returns True if it is more profitable to scalarize instruction \p I for
/// vectorization factor \p VF.
bool isProfitableToScalarize(Instruction *I, unsigned VF) const {
assert(VF > 1 && "Profitable to scalarize relevant only for VF > 1.");
// Cost model is not run in the VPlan-native path - return conservative
// result until this changes.
if (EnableVPlanNativePath)
return false;
auto Scalars = InstsToScalarize.find(VF);
assert(Scalars != InstsToScalarize.end() &&
"VF not yet analyzed for scalarization profitability");
return Scalars->second.find(I) != Scalars->second.end();
}
/// Returns true if \p I is known to be uniform after vectorization.
bool isUniformAfterVectorization(Instruction *I, unsigned VF) const {
if (VF == 1)
return true;
// Cost model is not run in the VPlan-native path - return conservative
// result until this changes.
if (EnableVPlanNativePath)
return false;
auto UniformsPerVF = Uniforms.find(VF);
assert(UniformsPerVF != Uniforms.end() &&
"VF not yet analyzed for uniformity");
return UniformsPerVF->second.find(I) != UniformsPerVF->second.end();
}
/// Returns true if \p I is known to be scalar after vectorization.
bool isScalarAfterVectorization(Instruction *I, unsigned VF) const {
if (VF == 1)
return true;
// Cost model is not run in the VPlan-native path - return conservative
// result until this changes.
if (EnableVPlanNativePath)
return false;
auto ScalarsPerVF = Scalars.find(VF);
assert(ScalarsPerVF != Scalars.end() &&
"Scalar values are not calculated for VF");
return ScalarsPerVF->second.find(I) != ScalarsPerVF->second.end();
}
/// \returns True if instruction \p I can be truncated to a smaller bitwidth
/// for vectorization factor \p VF.
bool canTruncateToMinimalBitwidth(Instruction *I, unsigned VF) const {
return VF > 1 && MinBWs.find(I) != MinBWs.end() &&
!isProfitableToScalarize(I, VF) &&
!isScalarAfterVectorization(I, VF);
}
/// Decision that was taken during cost calculation for memory instruction.
enum InstWidening {
CM_Unknown,
CM_Widen, // For consecutive accesses with stride +1.
CM_Widen_Reverse, // For consecutive accesses with stride -1.
CM_Interleave,
CM_GatherScatter,
CM_Scalarize
};
/// Save vectorization decision \p W and \p Cost taken by the cost model for
/// instruction \p I and vector width \p VF.
void setWideningDecision(Instruction *I, unsigned VF, InstWidening W,
unsigned Cost) {
assert(VF >= 2 && "Expected VF >=2");
WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost);
}
/// Save vectorization decision \p W and \p Cost taken by the cost model for
/// interleaving group \p Grp and vector width \p VF.
void setWideningDecision(const InterleaveGroup *Grp, unsigned VF,
InstWidening W, unsigned Cost) {
assert(VF >= 2 && "Expected VF >=2");
/// Broadcast this decicion to all instructions inside the group.
/// But the cost will be assigned to one instruction only.
for (unsigned i = 0; i < Grp->getFactor(); ++i) {
if (auto *I = Grp->getMember(i)) {
if (Grp->getInsertPos() == I)
WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost);
else
WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, 0);
}
}
}
/// Return the cost model decision for the given instruction \p I and vector
/// width \p VF. Return CM_Unknown if this instruction did not pass
/// through the cost modeling.
InstWidening getWideningDecision(Instruction *I, unsigned VF) {
assert(VF >= 2 && "Expected VF >=2");
// Cost model is not run in the VPlan-native path - return conservative
// result until this changes.
if (EnableVPlanNativePath)
return CM_GatherScatter;
std::pair<Instruction *, unsigned> InstOnVF = std::make_pair(I, VF);
auto Itr = WideningDecisions.find(InstOnVF);
if (Itr == WideningDecisions.end())
return CM_Unknown;
return Itr->second.first;
}
/// Return the vectorization cost for the given instruction \p I and vector
/// width \p VF.
unsigned getWideningCost(Instruction *I, unsigned VF) {
assert(VF >= 2 && "Expected VF >=2");
std::pair<Instruction *, unsigned> InstOnVF = std::make_pair(I, VF);
assert(WideningDecisions.find(InstOnVF) != WideningDecisions.end() &&
"The cost is not calculated");
return WideningDecisions[InstOnVF].second;
}
/// Return True if instruction \p I is an optimizable truncate whose operand
/// is an induction variable. Such a truncate will be removed by adding a new
/// induction variable with the destination type.
bool isOptimizableIVTruncate(Instruction *I, unsigned VF) {
// If the instruction is not a truncate, return false.
auto *Trunc = dyn_cast<TruncInst>(I);
if (!Trunc)
return false;
// Get the source and destination types of the truncate.
Type *SrcTy = ToVectorTy(cast<CastInst>(I)->getSrcTy(), VF);
Type *DestTy = ToVectorTy(cast<CastInst>(I)->getDestTy(), VF);
// If the truncate is free for the given types, return false. Replacing a
// free truncate with an induction variable would add an induction variable
// update instruction to each iteration of the loop. We exclude from this
// check the primary induction variable since it will need an update
// instruction regardless.
Value *Op = Trunc->getOperand(0);
if (Op != Legal->getPrimaryInduction() && TTI.isTruncateFree(SrcTy, DestTy))
return false;
// If the truncated value is not an induction variable, return false.
return Legal->isInductionPhi(Op);
}
/// Collects the instructions to scalarize for each predicated instruction in
/// the loop.
void collectInstsToScalarize(unsigned VF);
/// Collect Uniform and Scalar values for the given \p VF.
/// The sets depend on CM decision for Load/Store instructions
/// that may be vectorized as interleave, gather-scatter or scalarized.
void collectUniformsAndScalars(unsigned VF) {
// Do the analysis once.
if (VF == 1 || Uniforms.find(VF) != Uniforms.end())
return;
setCostBasedWideningDecision(VF);
collectLoopUniforms(VF);
collectLoopScalars(VF);
}
/// Returns true if the target machine supports masked store operation
/// for the given \p DataType and kind of access to \p Ptr.
bool isLegalMaskedStore(Type *DataType, Value *Ptr) {
return Legal->isConsecutivePtr(Ptr) && TTI.isLegalMaskedStore(DataType);
}
/// Returns true if the target machine supports masked load operation
/// for the given \p DataType and kind of access to \p Ptr.
bool isLegalMaskedLoad(Type *DataType, Value *Ptr) {
return Legal->isConsecutivePtr(Ptr) && TTI.isLegalMaskedLoad(DataType);
}
/// Returns true if the target machine supports masked scatter operation
/// for the given \p DataType.
bool isLegalMaskedScatter(Type *DataType) {
return TTI.isLegalMaskedScatter(DataType);
}
/// Returns true if the target machine supports masked gather operation
/// for the given \p DataType.
bool isLegalMaskedGather(Type *DataType) {
return TTI.isLegalMaskedGather(DataType);
}
/// Returns true if the target machine can represent \p V as a masked gather
/// or scatter operation.
bool isLegalGatherOrScatter(Value *V) {
bool LI = isa<LoadInst>(V);
bool SI = isa<StoreInst>(V);
if (!LI && !SI)
return false;
auto *Ty = getMemInstValueType(V);
return (LI && isLegalMaskedGather(Ty)) || (SI && isLegalMaskedScatter(Ty));
}
/// Returns true if \p I is an instruction that will be scalarized with
/// predication. Such instructions include conditional stores and
/// instructions that may divide by zero.
/// If a non-zero VF has been calculated, we check if I will be scalarized
/// predication for that VF.
bool isScalarWithPredication(Instruction *I, unsigned VF = 1);
// Returns true if \p I is an instruction that will be predicated either
// through scalar predication or masked load/store or masked gather/scatter.
// Superset of instructions that return true for isScalarWithPredication.
bool isPredicatedInst(Instruction *I) {
if (!Legal->blockNeedsPredication(I->getParent()))
return false;
// Loads and stores that need some form of masked operation are predicated
// instructions.
if (isa<LoadInst>(I) || isa<StoreInst>(I))
return Legal->isMaskRequired(I);
return isScalarWithPredication(I);
}
/// Returns true if \p I is a memory instruction with consecutive memory
/// access that can be widened.
bool memoryInstructionCanBeWidened(Instruction *I, unsigned VF = 1);
/// Check if \p Instr belongs to any interleaved access group.
bool isAccessInterleaved(Instruction *Instr) {
return InterleaveInfo.isInterleaved(Instr);
}
/// Get the interleaved access group that \p Instr belongs to.
const InterleaveGroup *getInterleavedAccessGroup(Instruction *Instr) {
return InterleaveInfo.getInterleaveGroup(Instr);
}
/// Returns true if an interleaved group requires a scalar iteration
/// to handle accesses with gaps.
bool requiresScalarEpilogue() const {
return InterleaveInfo.requiresScalarEpilogue();
}
private:
unsigned NumPredStores = 0;
/// \return An upper bound for the vectorization factor, larger than zero.
/// One is returned if vectorization should best be avoided due to cost.
unsigned computeFeasibleMaxVF(bool OptForSize, unsigned ConstTripCount);
/// The vectorization cost is a combination of the cost itself and a boolean
/// indicating whether any of the contributing operations will actually
/// operate on
/// vector values after type legalization in the backend. If this latter value
/// is
/// false, then all operations will be scalarized (i.e. no vectorization has
/// actually taken place).
using VectorizationCostTy = std::pair<unsigned, bool>;
/// Returns the expected execution cost. The unit of the cost does
/// not matter because we use the 'cost' units to compare different
/// vector widths. The cost that is returned is *not* normalized by
/// the factor width.
VectorizationCostTy expectedCost(unsigned VF);
/// Returns the execution time cost of an instruction for a given vector
/// width. Vector width of one means scalar.
VectorizationCostTy getInstructionCost(Instruction *I, unsigned VF);
/// The cost-computation logic from getInstructionCost which provides
/// the vector type as an output parameter.
unsigned getInstructionCost(Instruction *I, unsigned VF, Type *&VectorTy);
/// Calculate vectorization cost of memory instruction \p I.
unsigned getMemoryInstructionCost(Instruction *I, unsigned VF);
/// The cost computation for scalarized memory instruction.
unsigned getMemInstScalarizationCost(Instruction *I, unsigned VF);
/// The cost computation for interleaving group of memory instructions.
unsigned getInterleaveGroupCost(Instruction *I, unsigned VF);
/// The cost computation for Gather/Scatter instruction.
unsigned getGatherScatterCost(Instruction *I, unsigned VF);
/// The cost computation for widening instruction \p I with consecutive
/// memory access.
unsigned getConsecutiveMemOpCost(Instruction *I, unsigned VF);
/// The cost calculation for Load/Store instruction \p I with uniform pointer -
/// Load: scalar load + broadcast.
/// Store: scalar store + (loop invariant value stored? 0 : extract of last
/// element)
/// TODO: Test the extra cost of the extract when loop variant value stored.
unsigned getUniformMemOpCost(Instruction *I, unsigned VF);
/// Returns whether the instruction is a load or store and will be a emitted
/// as a vector operation.
bool isConsecutiveLoadOrStore(Instruction *I);
/// Returns true if an artificially high cost for emulated masked memrefs
/// should be used.
bool useEmulatedMaskMemRefHack(Instruction *I);
/// Create an analysis remark that explains why vectorization failed
///
/// \p RemarkName is the identifier for the remark. \return the remark object
/// that can be streamed to.
OptimizationRemarkAnalysis createMissedAnalysis(StringRef RemarkName) {
return createLVMissedAnalysis(Hints->vectorizeAnalysisPassName(),
RemarkName, TheLoop);
}
/// Map of scalar integer values to the smallest bitwidth they can be legally
/// represented as. The vector equivalents of these values should be truncated
/// to this type.
MapVector<Instruction *, uint64_t> MinBWs;
/// A type representing the costs for instructions if they were to be
/// scalarized rather than vectorized. The entries are Instruction-Cost
/// pairs.
using ScalarCostsTy = DenseMap<Instruction *, unsigned>;
/// A set containing all BasicBlocks that are known to present after
/// vectorization as a predicated block.
SmallPtrSet<BasicBlock *, 4> PredicatedBBsAfterVectorization;
/// A map holding scalar costs for different vectorization factors. The
/// presence of a cost for an instruction in the mapping indicates that the
/// instruction will be scalarized when vectorizing with the associated
/// vectorization factor. The entries are VF-ScalarCostTy pairs.
DenseMap<unsigned, ScalarCostsTy> InstsToScalarize;
/// Holds the instructions known to be uniform after vectorization.
/// The data is collected per VF.
DenseMap<unsigned, SmallPtrSet<Instruction *, 4>> Uniforms;
/// Holds the instructions known to be scalar after vectorization.
/// The data is collected per VF.
DenseMap<unsigned, SmallPtrSet<Instruction *, 4>> Scalars;
/// Holds the instructions (address computations) that are forced to be
/// scalarized.
DenseMap<unsigned, SmallPtrSet<Instruction *, 4>> ForcedScalars;
/// Returns the expected difference in cost from scalarizing the expression
/// feeding a predicated instruction \p PredInst. The instructions to
/// scalarize and their scalar costs are collected in \p ScalarCosts. A
/// non-negative return value implies the expression will be scalarized.
/// Currently, only single-use chains are considered for scalarization.
int computePredInstDiscount(Instruction *PredInst, ScalarCostsTy &ScalarCosts,
unsigned VF);
/// Collect the instructions that are uniform after vectorization. An
/// instruction is uniform if we represent it with a single scalar value in
/// the vectorized loop corresponding to each vector iteration. Examples of
/// uniform instructions include pointer operands of consecutive or
/// interleaved memory accesses. Note that although uniformity implies an
/// instruction will be scalar, the reverse is not true. In general, a
/// scalarized instruction will be represented by VF scalar values in the
/// vectorized loop, each corresponding to an iteration of the original
/// scalar loop.
void collectLoopUniforms(unsigned VF);
/// Collect the instructions that are scalar after vectorization. An
/// instruction is scalar if it is known to be uniform or will be scalarized
/// during vectorization. Non-uniform scalarized instructions will be
/// represented by VF values in the vectorized loop, each corresponding to an
/// iteration of the original scalar loop.
void collectLoopScalars(unsigned VF);
/// Keeps cost model vectorization decision and cost for instructions.
/// Right now it is used for memory instructions only.
using DecisionList = DenseMap<std::pair<Instruction *, unsigned>,
std::pair<InstWidening, unsigned>>;
DecisionList WideningDecisions;
public:
/// The loop that we evaluate.
Loop *TheLoop;
/// Predicated scalar evolution analysis.
PredicatedScalarEvolution &PSE;
/// Loop Info analysis.
LoopInfo *LI;
/// Vectorization legality.
LoopVectorizationLegality *Legal;
/// Vector target information.
const TargetTransformInfo &TTI;
/// Target Library Info.
const TargetLibraryInfo *TLI;
/// Demanded bits analysis.
DemandedBits *DB;
/// Assumption cache.
AssumptionCache *AC;
/// Interface to emit optimization remarks.
OptimizationRemarkEmitter *ORE;
const Function *TheFunction;
/// Loop Vectorize Hint.
const LoopVectorizeHints *Hints;
/// The interleave access information contains groups of interleaved accesses
/// with the same stride and close to each other.
InterleavedAccessInfo &InterleaveInfo;
/// Values to ignore in the cost model.
SmallPtrSet<const Value *, 16> ValuesToIgnore;
/// Values to ignore in the cost model when VF > 1.
SmallPtrSet<const Value *, 16> VecValuesToIgnore;
};
} // end namespace llvm
// Return true if \p OuterLp is an outer loop annotated with hints for explicit
// vectorization. The loop needs to be annotated with #pragma omp simd
// simdlen(#) or #pragma clang vectorize(enable) vectorize_width(#). If the
// vector length information is not provided, vectorization is not considered
// explicit. Interleave hints are not allowed either. These limitations will be
// relaxed in the future.
// Please, note that we are currently forced to abuse the pragma 'clang
// vectorize' semantics. This pragma provides *auto-vectorization hints*
// (i.e., LV must check that vectorization is legal) whereas pragma 'omp simd'
// provides *explicit vectorization hints* (LV can bypass legal checks and
// assume that vectorization is legal). However, both hints are implemented
// using the same metadata (llvm.loop.vectorize, processed by
// LoopVectorizeHints). This will be fixed in the future when the native IR
// representation for pragma 'omp simd' is introduced.
static bool isExplicitVecOuterLoop(Loop *OuterLp,
OptimizationRemarkEmitter *ORE) {
assert(!OuterLp->empty() && "This is not an outer loop");
LoopVectorizeHints Hints(OuterLp, true /*DisableInterleaving*/, *ORE);
// Only outer loops with an explicit vectorization hint are supported.
// Unannotated outer loops are ignored.
if (Hints.getForce() == LoopVectorizeHints::FK_Undefined)
return false;
Function *Fn = OuterLp->getHeader()->getParent();
if (!Hints.allowVectorization(Fn, OuterLp, false /*AlwaysVectorize*/)) {
LLVM_DEBUG(dbgs() << "LV: Loop hints prevent outer loop vectorization.\n");
return false;
}
if (!Hints.getWidth()) {
LLVM_DEBUG(dbgs() << "LV: Not vectorizing: No user vector width.\n");
emitMissedWarning(Fn, OuterLp, Hints, ORE);
return false;
}
if (Hints.getInterleave() > 1) {
// TODO: Interleave support is future work.
LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Interleave is not supported for "
"outer loops.\n");
emitMissedWarning(Fn, OuterLp, Hints, ORE);
return false;
}
return true;
}
static void collectSupportedLoops(Loop &L, LoopInfo *LI,
OptimizationRemarkEmitter *ORE,
SmallVectorImpl<Loop *> &V) {
// Collect inner loops and outer loops without irreducible control flow. For
// now, only collect outer loops that have explicit vectorization hints. If we
// are stress testing the VPlan H-CFG construction, we collect the outermost
// loop of every loop nest.
if (L.empty() || VPlanBuildStressTest ||
(EnableVPlanNativePath && isExplicitVecOuterLoop(&L, ORE))) {
LoopBlocksRPO RPOT(&L);
RPOT.perform(LI);
if (!containsIrreducibleCFG<const BasicBlock *>(RPOT, *LI)) {
V.push_back(&L);
// TODO: Collect inner loops inside marked outer loops in case
// vectorization fails for the outer loop. Do not invoke
// 'containsIrreducibleCFG' again for inner loops when the outer loop is
// already known to be reducible. We can use an inherited attribute for
// that.
return;
}
}
for (Loop *InnerL : L)
collectSupportedLoops(*InnerL, LI, ORE, V);
}
namespace {
/// The LoopVectorize Pass.
struct LoopVectorize : public FunctionPass {
/// Pass identification, replacement for typeid
static char ID;
LoopVectorizePass Impl;
explicit LoopVectorize(bool NoUnrolling = false, bool AlwaysVectorize = true)
: FunctionPass(ID) {
Impl.DisableUnrolling = NoUnrolling;
Impl.AlwaysVectorize = AlwaysVectorize;
initializeLoopVectorizePass(*PassRegistry::getPassRegistry());
}
bool runOnFunction(Function &F) override {
if (skipFunction(F))
return false;
auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI();
auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
auto *TLI = TLIP ? &TLIP->getTLI() : nullptr;
auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
auto *LAA = &getAnalysis<LoopAccessLegacyAnalysis>();
auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits();
auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
std::function<const LoopAccessInfo &(Loop &)> GetLAA =
[&](Loop &L) -> const LoopAccessInfo & { return LAA->getInfo(&L); };
return Impl.runImpl(F, *SE, *LI, *TTI, *DT, *BFI, TLI, *DB, *AA, *AC,
GetLAA, *ORE);
}
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.addRequired<AssumptionCacheTracker>();
AU.addRequired<BlockFrequencyInfoWrapperPass>();
AU.addRequired<DominatorTreeWrapperPass>();
AU.addRequired<LoopInfoWrapperPass>();
AU.addRequired<ScalarEvolutionWrapperPass>();
AU.addRequired<TargetTransformInfoWrapperPass>();
AU.addRequired<AAResultsWrapperPass>();
AU.addRequired<LoopAccessLegacyAnalysis>();
AU.addRequired<DemandedBitsWrapperPass>();
AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
// We currently do not preserve loopinfo/dominator analyses with outer loop
// vectorization. Until this is addressed, mark these analyses as preserved
// only for non-VPlan-native path.
// TODO: Preserve Loop and Dominator analyses for VPlan-native path.
if (!EnableVPlanNativePath) {
AU.addPreserved<LoopInfoWrapperPass>();
AU.addPreserved<DominatorTreeWrapperPass>();
}
AU.addPreserved<BasicAAWrapperPass>();
AU.addPreserved<GlobalsAAWrapperPass>();
}
};
} // end anonymous namespace
//===----------------------------------------------------------------------===//
// Implementation of LoopVectorizationLegality, InnerLoopVectorizer and
// LoopVectorizationCostModel and LoopVectorizationPlanner.
//===----------------------------------------------------------------------===//
Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) {
// We need to place the broadcast of invariant variables outside the loop,
// but only if it's proven safe to do so. Else, broadcast will be inside
// vector loop body.
Instruction *Instr = dyn_cast<Instruction>(V);
bool SafeToHoist = OrigLoop->isLoopInvariant(V) &&
(!Instr ||
DT->dominates(Instr->getParent(), LoopVectorPreHeader));
// Place the code for broadcasting invariant variables in the new preheader.
IRBuilder<>::InsertPointGuard Guard(Builder);
if (SafeToHoist)
Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
// Broadcast the scalar into all locations in the vector.
Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast");
return Shuf;
}
void InnerLoopVectorizer::createVectorIntOrFpInductionPHI(
const InductionDescriptor &II, Value *Step, Instruction *EntryVal) {
assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) &&
"Expected either an induction phi-node or a truncate of it!");
Value *Start = II.getStartValue();
// Construct the initial value of the vector IV in the vector loop preheader
auto CurrIP = Builder.saveIP();
Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
if (isa<TruncInst>(EntryVal)) {
assert(Start->getType()->isIntegerTy() &&
"Truncation requires an integer type");
auto *TruncType = cast<IntegerType>(EntryVal->getType());
Step = Builder.CreateTrunc(Step, TruncType);
Start = Builder.CreateCast(Instruction::Trunc, Start, TruncType);
}
Value *SplatStart = Builder.CreateVectorSplat(VF, Start);
Value *SteppedStart =
getStepVector(SplatStart, 0, Step, II.getInductionOpcode());
// We create vector phi nodes for both integer and floating-point induction
// variables. Here, we determine the kind of arithmetic we will perform.
Instruction::BinaryOps AddOp;
Instruction::BinaryOps MulOp;
if (Step->getType()->isIntegerTy()) {
AddOp = Instruction::Add;
MulOp = Instruction::Mul;
} else {
AddOp = II.getInductionOpcode();
MulOp = Instruction::FMul;
}
// Multiply the vectorization factor by the step using integer or
// floating-point arithmetic as appropriate.
Value *ConstVF = getSignedIntOrFpConstant(Step->getType(), VF);
Value *Mul = addFastMathFlag(Builder.CreateBinOp(MulOp, Step, ConstVF));
// Create a vector splat to use in the induction update.
//
// FIXME: If the step is non-constant, we create the vector splat with
// IRBuilder. IRBuilder can constant-fold the multiply, but it doesn't
// handle a constant vector splat.
Value *SplatVF = isa<Constant>(Mul)
? ConstantVector::getSplat(VF, cast<Constant>(Mul))
: Builder.CreateVectorSplat(VF, Mul);
Builder.restoreIP(CurrIP);
// We may need to add the step a number of times, depending on the unroll
// factor. The last of those goes into the PHI.
PHINode *VecInd = PHINode::Create(SteppedStart->getType(), 2, "vec.ind",
&*LoopVectorBody->getFirstInsertionPt());
VecInd->setDebugLoc(EntryVal->getDebugLoc());
Instruction *LastInduction = VecInd;
for (unsigned Part = 0; Part < UF; ++Part) {
VectorLoopValueMap.setVectorValue(EntryVal, Part, LastInduction);
if (isa<TruncInst>(EntryVal))
addMetadata(LastInduction, EntryVal);
recordVectorLoopValueForInductionCast(II, EntryVal, LastInduction, Part);
LastInduction = cast<Instruction>(addFastMathFlag(
Builder.CreateBinOp(AddOp, LastInduction, SplatVF, "step.add")));
LastInduction->setDebugLoc(EntryVal->getDebugLoc());
}
// Move the last step to the end of the latch block. This ensures consistent
// placement of all induction updates.
auto *LoopVectorLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch();
auto *Br = cast<BranchInst>(LoopVectorLatch->getTerminator());
auto *ICmp = cast<Instruction>(Br->getCondition());
LastInduction->moveBefore(ICmp);
LastInduction->setName("vec.ind.next");
VecInd->addIncoming(SteppedStart, LoopVectorPreHeader);
VecInd->addIncoming(LastInduction, LoopVectorLatch);
}
bool InnerLoopVectorizer::shouldScalarizeInstruction(Instruction *I) const {
return Cost->isScalarAfterVectorization(I, VF) ||
Cost->isProfitableToScalarize(I, VF);
}
bool InnerLoopVectorizer::needsScalarInduction(Instruction *IV) const {
if (shouldScalarizeInstruction(IV))
return true;
auto isScalarInst = [&](User *U) -> bool {
auto *I = cast<Instruction>(U);
return (OrigLoop->contains(I) && shouldScalarizeInstruction(I));
};
return llvm::any_of(IV->users(), isScalarInst);
}
void InnerLoopVectorizer::recordVectorLoopValueForInductionCast(
const InductionDescriptor &ID, const Instruction *EntryVal,
Value *VectorLoopVal, unsigned Part, unsigned Lane) {
assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) &&
"Expected either an induction phi-node or a truncate of it!");
// This induction variable is not the phi from the original loop but the
// newly-created IV based on the proof that casted Phi is equal to the
// uncasted Phi in the vectorized loop (under a runtime guard possibly). It
// re-uses the same InductionDescriptor that original IV uses but we don't
// have to do any recording in this case - that is done when original IV is
// processed.
if (isa<TruncInst>(EntryVal))
return;
const SmallVectorImpl<Instruction *> &Casts = ID.getCastInsts();
if (Casts.empty())
return;
// Only the first Cast instruction in the Casts vector is of interest.
// The rest of the Casts (if exist) have no uses outside the
// induction update chain itself.
Instruction *CastInst = *Casts.begin();
if (Lane < UINT_MAX)
VectorLoopValueMap.setScalarValue(CastInst, {Part, Lane}, VectorLoopVal);
else
VectorLoopValueMap.setVectorValue(CastInst, Part, VectorLoopVal);
}
void InnerLoopVectorizer::widenIntOrFpInduction(PHINode *IV, TruncInst *Trunc) {
assert((IV->getType()->isIntegerTy() || IV != OldInduction) &&
"Primary induction variable must have an integer type");
auto II = Legal->getInductionVars()->find(IV);
assert(II != Legal->getInductionVars()->end() && "IV is not an induction");
auto ID = II->second;
assert(IV->getType() == ID.getStartValue()->getType() && "Types must match");
// The scalar value to broadcast. This will be derived from the canonical
// induction variable.
Value *ScalarIV = nullptr;
// The value from the original loop to which we are mapping the new induction
// variable.
Instruction *EntryVal = Trunc ? cast<Instruction>(Trunc) : IV;
// True if we have vectorized the induction variable.
auto VectorizedIV = false;
// Determine if we want a scalar version of the induction variable. This is
// true if the induction variable itself is not widened, or if it has at
// least one user in the loop that is not widened.
auto NeedsScalarIV = VF > 1 && needsScalarInduction(EntryVal);
// Generate code for the induction step. Note that induction steps are
// required to be loop-invariant
assert(PSE.getSE()->isLoopInvariant(ID.getStep(), OrigLoop) &&
"Induction step should be loop invariant");
auto &DL = OrigLoop->getHeader()->getModule()->getDataLayout();
Value *Step = nullptr;
if (PSE.getSE()->isSCEVable(IV->getType())) {
SCEVExpander Exp(*PSE.getSE(), DL, "induction");
Step = Exp.expandCodeFor(ID.getStep(), ID.getStep()->getType(),
LoopVectorPreHeader->getTerminator());
} else {
Step = cast<SCEVUnknown>(ID.getStep())->getValue();
}
// Try to create a new independent vector induction variable. If we can't
// create the phi node, we will splat the scalar induction variable in each
// loop iteration.
if (VF > 1 && !shouldScalarizeInstruction(EntryVal)) {
createVectorIntOrFpInductionPHI(ID, Step, EntryVal);
VectorizedIV = true;
}
// If we haven't yet vectorized the induction variable, or if we will create
// a scalar one, we need to define the scalar induction variable and step
// values. If we were given a truncation type, truncate the canonical
// induction variable and step. Otherwise, derive these values from the
// induction descriptor.
if (!VectorizedIV || NeedsScalarIV) {
ScalarIV = Induction;
if (IV != OldInduction) {
ScalarIV = IV->getType()->isIntegerTy()
? Builder.CreateSExtOrTrunc(Induction, IV->getType())
: Builder.CreateCast(Instruction::SIToFP, Induction,
IV->getType());
ScalarIV = emitTransformedIndex(Builder, ScalarIV, PSE.getSE(), DL, ID);
ScalarIV->setName("offset.idx");
}
if (Trunc) {
auto *TruncType = cast<IntegerType>(Trunc->getType());
assert(Step->getType()->isIntegerTy() &&
"Truncation requires an integer step");
ScalarIV = Builder.CreateTrunc(ScalarIV, TruncType);
Step = Builder.CreateTrunc(Step, TruncType);
}
}
// If we haven't yet vectorized the induction variable, splat the scalar
// induction variable, and build the necessary step vectors.
// TODO: Don't do it unless the vectorized IV is really required.
if (!VectorizedIV) {
Value *Broadcasted = getBroadcastInstrs(ScalarIV);
for (unsigned Part = 0; Part < UF; ++Part) {
Value *EntryPart =
getStepVector(Broadcasted, VF * Part, Step, ID.getInductionOpcode());
VectorLoopValueMap.setVectorValue(EntryVal, Part, EntryPart);
if (Trunc)
addMetadata(EntryPart, Trunc);
recordVectorLoopValueForInductionCast(ID, EntryVal, EntryPart, Part);
}
}
// If an induction variable is only used for counting loop iterations or
// calculating addresses, it doesn't need to be widened. Create scalar steps
// that can be used by instructions we will later scalarize. Note that the
// addition of the scalar steps will not increase the number of instructions
// in the loop in the common case prior to InstCombine. We will be trading
// one vector extract for each scalar step.
if (NeedsScalarIV)
buildScalarSteps(ScalarIV, Step, EntryVal, ID);
}
Value *InnerLoopVectorizer::getStepVector(Value *Val, int StartIdx, Value *Step,
Instruction::BinaryOps BinOp) {
// Create and check the types.
assert(Val->getType()->isVectorTy() && "Must be a vector");
int VLen = Val->getType()->getVectorNumElements();
Type *STy = Val->getType()->getScalarType();
assert((STy->isIntegerTy() || STy->isFloatingPointTy()) &&
"Induction Step must be an integer or FP");
assert(Step->getType() == STy && "Step has wrong type");
SmallVector<Constant *, 8> Indices;
if (STy->isIntegerTy()) {
// Create a vector of consecutive numbers from zero to VF.
for (int i = 0; i < VLen; ++i)
Indices.push_back(ConstantInt::get(STy, StartIdx + i));
// Add the consecutive indices to the vector value.
Constant *Cv = ConstantVector::get(Indices);
assert(Cv->getType() == Val->getType() && "Invalid consecutive vec");
Step = Builder.CreateVectorSplat(VLen, Step);
assert(Step->getType() == Val->getType() && "Invalid step vec");
// FIXME: The newly created binary instructions should contain nsw/nuw flags,
// which can be found from the original scalar operations.
Step = Builder.CreateMul(Cv, Step);
return Builder.CreateAdd(Val, Step, "induction");
}
// Floating point induction.
assert((BinOp == Instruction::FAdd || BinOp == Instruction::FSub) &&
"Binary Opcode should be specified for FP induction");
// Create a vector of consecutive numbers from zero to VF.
for (int i = 0; i < VLen; ++i)
Indices.push_back(ConstantFP::get(STy, (double)(StartIdx + i)));
// Add the consecutive indices to the vector value.
Constant *Cv = ConstantVector::get(Indices);
Step = Builder.CreateVectorSplat(VLen, Step);
// Floating point operations had to be 'fast' to enable the induction.
FastMathFlags Flags;
Flags.setFast();
Value *MulOp = Builder.CreateFMul(Cv, Step);
if (isa<Instruction>(MulOp))
// Have to check, MulOp may be a constant
cast<Instruction>(MulOp)->setFastMathFlags(Flags);
Value *BOp = Builder.CreateBinOp(BinOp, Val, MulOp, "induction");
if (isa<Instruction>(BOp))
cast<Instruction>(BOp)->setFastMathFlags(Flags);
return BOp;
}
void InnerLoopVectorizer::buildScalarSteps(Value *ScalarIV, Value *Step,
Instruction *EntryVal,
const InductionDescriptor &ID) {
// We shouldn't have to build scalar steps if we aren't vectorizing.
assert(VF > 1 && "VF should be greater than one");
// Get the value type and ensure it and the step have the same integer type.
Type *ScalarIVTy = ScalarIV->getType()->getScalarType();
assert(ScalarIVTy == Step->getType() &&
"Val and Step should have the same type");
// We build scalar steps for both integer and floating-point induction
// variables. Here, we determine the kind of arithmetic we will perform.
Instruction::BinaryOps AddOp;
Instruction::BinaryOps MulOp;
if (ScalarIVTy->isIntegerTy()) {
AddOp = Instruction::Add;
MulOp = Instruction::Mul;
} else {
AddOp = ID.getInductionOpcode();
MulOp = Instruction::FMul;
}
// Determine the number of scalars we need to generate for each unroll
// iteration. If EntryVal is uniform, we only need to generate the first
// lane. Otherwise, we generate all VF values.
unsigned Lanes =
Cost->isUniformAfterVectorization(cast<Instruction>(EntryVal), VF) ? 1
: VF;
// Compute the scalar steps and save the results in VectorLoopValueMap.
for (unsigned Part = 0; Part < UF; ++Part) {
for (unsigned Lane = 0; Lane < Lanes; ++Lane) {
auto *StartIdx = getSignedIntOrFpConstant(ScalarIVTy, VF * Part + Lane);
auto *Mul = addFastMathFlag(Builder.CreateBinOp(MulOp, StartIdx, Step));
auto *Add = addFastMathFlag(Builder.CreateBinOp(AddOp, ScalarIV, Mul));
VectorLoopValueMap.setScalarValue(EntryVal, {Part, Lane}, Add);
recordVectorLoopValueForInductionCast(ID, EntryVal, Add, Part, Lane);
}
}
}
Value *InnerLoopVectorizer::getOrCreateVectorValue(Value *V, unsigned Part) {
assert(V != Induction && "The new induction variable should not be used.");
assert(!V->getType()->isVectorTy() && "Can't widen a vector");
assert(!V->getType()->isVoidTy() && "Type does not produce a value");
// If we have a stride that is replaced by one, do it here. Defer this for
// the VPlan-native path until we start running Legal checks in that path.
if (!EnableVPlanNativePath && Legal->hasStride(V))
V = ConstantInt::get(V->getType(), 1);
// If we have a vector mapped to this value, return it.
if (VectorLoopValueMap.hasVectorValue(V, Part))
return VectorLoopValueMap.getVectorValue(V, Part);
// If the value has not been vectorized, check if it has been scalarized
// instead. If it has been scalarized, and we actually need the value in
// vector form, we will construct the vector values on demand.
if (VectorLoopValueMap.hasAnyScalarValue(V)) {
Value *ScalarValue = VectorLoopValueMap.getScalarValue(V, {Part, 0});
// If we've scalarized a value, that value should be an instruction.
auto *I = cast<Instruction>(V);
// If we aren't vectorizing, we can just copy the scalar map values over to
// the vector map.
if (VF == 1) {
VectorLoopValueMap.setVectorValue(V, Part, ScalarValue);
return ScalarValue;
}
// Get the last scalar instruction we generated for V and Part. If the value
// is known to be uniform after vectorization, this corresponds to lane zero
// of the Part unroll iteration. Otherwise, the last instruction is the one
// we created for the last vector lane of the Part unroll iteration.
unsigned LastLane = Cost->isUniformAfterVectorization(I, VF) ? 0 : VF - 1;
auto *LastInst = cast<Instruction>(
VectorLoopValueMap.getScalarValue(V, {Part, LastLane}));
// Set the insert point after the last scalarized instruction. This ensures
// the insertelement sequence will directly follow the scalar definitions.
auto OldIP = Builder.saveIP();
auto NewIP = std::next(BasicBlock::iterator(LastInst));
Builder.SetInsertPoint(&*NewIP);
// However, if we are vectorizing, we need to construct the vector values.
// If the value is known to be uniform after vectorization, we can just
// broadcast the scalar value corresponding to lane zero for each unroll
// iteration. Otherwise, we construct the vector values using insertelement
// instructions. Since the resulting vectors are stored in
// VectorLoopValueMap, we will only generate the insertelements once.
Value *VectorValue = nullptr;
if (Cost->isUniformAfterVectorization(I, VF)) {
VectorValue = getBroadcastInstrs(ScalarValue);
VectorLoopValueMap.setVectorValue(V, Part, VectorValue);
} else {
// Initialize packing with insertelements to start from undef.
Value *Undef = UndefValue::get(VectorType::get(V->getType(), VF));
VectorLoopValueMap.setVectorValue(V, Part, Undef);
for (unsigned Lane = 0; Lane < VF; ++Lane)
packScalarIntoVectorValue(V, {Part, Lane});
VectorValue = VectorLoopValueMap.getVectorValue(V, Part);
}
Builder.restoreIP(OldIP);
return VectorValue;
}
// If this scalar is unknown, assume that it is a constant or that it is
// loop invariant. Broadcast V and save the value for future uses.
Value *B = getBroadcastInstrs(V);
VectorLoopValueMap.setVectorValue(V, Part, B);
return B;
}
Value *
InnerLoopVectorizer::getOrCreateScalarValue(Value *V,
const VPIteration &Instance) {
// If the value is not an instruction contained in the loop, it should
// already be scalar.
if (OrigLoop->isLoopInvariant(V))
return V;
assert(Instance.Lane > 0
? !Cost->isUniformAfterVectorization(cast<Instruction>(V), VF)
: true && "Uniform values only have lane zero");
// If the value from the original loop has not been vectorized, it is
// represented by UF x VF scalar values in the new loop. Return the requested
// scalar value.
if (VectorLoopValueMap.hasScalarValue(V, Instance))
return VectorLoopValueMap.getScalarValue(V, Instance);
// If the value has not been scalarized, get its entry in VectorLoopValueMap
// for the given unroll part. If this entry is not a vector type (i.e., the
// vectorization factor is one), there is no need to generate an
// extractelement instruction.
auto *U = getOrCreateVectorValue(V, Instance.Part);
if (!U->getType()->isVectorTy()) {
assert(VF == 1 && "Value not scalarized has non-vector type");
return U;
}
// Otherwise, the value from the original loop has been vectorized and is
// represented by UF vector values. Extract and return the requested scalar
// value from the appropriate vector lane.
return Builder.CreateExtractElement(U, Builder.getInt32(Instance.Lane));
}
void InnerLoopVectorizer::packScalarIntoVectorValue(
Value *V, const VPIteration &Instance) {
assert(V != Induction && "The new induction variable should not be used.");
assert(!V->getType()->isVectorTy() && "Can't pack a vector");
assert(!V->getType()->isVoidTy() && "Type does not produce a value");
Value *ScalarInst = VectorLoopValueMap.getScalarValue(V, Instance);
Value *VectorValue = VectorLoopValueMap.getVectorValue(V, Instance.Part);
VectorValue = Builder.CreateInsertElement(VectorValue, ScalarInst,
Builder.getInt32(Instance.Lane));
VectorLoopValueMap.resetVectorValue(V, Instance.Part, VectorValue);
}
Value *InnerLoopVectorizer::reverseVector(Value *Vec) {
assert(Vec->getType()->isVectorTy() && "Invalid type");
SmallVector<Constant *, 8> ShuffleMask;
for (unsigned i = 0; i < VF; ++i)
ShuffleMask.push_back(Builder.getInt32(VF - i - 1));
return Builder.CreateShuffleVector(Vec, UndefValue::get(Vec->getType()),
ConstantVector::get(ShuffleMask),
"reverse");
}
// Try to vectorize the interleave group that \p Instr belongs to.
//
// E.g. Translate following interleaved load group (factor = 3):
// for (i = 0; i < N; i+=3) {
// R = Pic[i]; // Member of index 0
// G = Pic[i+1]; // Member of index 1
// B = Pic[i+2]; // Member of index 2
// ... // do something to R, G, B
// }
// To:
// %wide.vec = load <12 x i32> ; Read 4 tuples of R,G,B
// %R.vec = shuffle %wide.vec, undef, <0, 3, 6, 9> ; R elements
// %G.vec = shuffle %wide.vec, undef, <1, 4, 7, 10> ; G elements
// %B.vec = shuffle %wide.vec, undef, <2, 5, 8, 11> ; B elements
//
// Or translate following interleaved store group (factor = 3):
// for (i = 0; i < N; i+=3) {
// ... do something to R, G, B
// Pic[i] = R; // Member of index 0
// Pic[i+1] = G; // Member of index 1
// Pic[i+2] = B; // Member of index 2
// }
// To:
// %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7>
// %B_U.vec = shuffle %B.vec, undef, <0, 1, 2, 3, u, u, u, u>
// %interleaved.vec = shuffle %R_G.vec, %B_U.vec,
// <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11> ; Interleave R,G,B elements
// store <12 x i32> %interleaved.vec ; Write 4 tuples of R,G,B
void InnerLoopVectorizer::vectorizeInterleaveGroup(Instruction *Instr) {
const InterleaveGroup *Group = Cost->getInterleavedAccessGroup(Instr);
assert(Group && "Fail to get an interleaved access group.");
// Skip if current instruction is not the insert position.
if (Instr != Group->getInsertPos())
return;
const DataLayout &DL = Instr->getModule()->getDataLayout();
Value *Ptr = getLoadStorePointerOperand(Instr);
// Prepare for the vector type of the interleaved load/store.
Type *ScalarTy = getMemInstValueType(Instr);
unsigned InterleaveFactor = Group->getFactor();
Type *VecTy = VectorType::get(ScalarTy, InterleaveFactor * VF);
Type *PtrTy = VecTy->getPointerTo(getLoadStoreAddressSpace(Instr));
// Prepare for the new pointers.
setDebugLocFromInst(Builder, Ptr);
SmallVector<Value *, 2> NewPtrs;
unsigned Index = Group->getIndex(Instr);
// If the group is reverse, adjust the index to refer to the last vector lane
// instead of the first. We adjust the index from the first vector lane,
// rather than directly getting the pointer for lane VF - 1, because the
// pointer operand of the interleaved access is supposed to be uniform. For
// uniform instructions, we're only required to generate a value for the
// first vector lane in each unroll iteration.
if (Group->isReverse())
Index += (VF - 1) * Group->getFactor();
bool InBounds = false;
if (auto *gep = dyn_cast<GetElementPtrInst>(Ptr->stripPointerCasts()))
InBounds = gep->isInBounds();
for (unsigned Part = 0; Part < UF; Part++) {
Value *NewPtr = getOrCreateScalarValue(Ptr, {Part, 0});
// Notice current instruction could be any index. Need to adjust the address
// to the member of index 0.
//
// E.g. a = A[i+1]; // Member of index 1 (Current instruction)
// b = A[i]; // Member of index 0
// Current pointer is pointed to A[i+1], adjust it to A[i].
//
// E.g. A[i+1] = a; // Member of index 1
// A[i] = b; // Member of index 0
// A[i+2] = c; // Member of index 2 (Current instruction)
// Current pointer is pointed to A[i+2], adjust it to A[i].
NewPtr = Builder.CreateGEP(NewPtr, Builder.getInt32(-Index));
if (InBounds)
cast<GetElementPtrInst>(NewPtr)->setIsInBounds(true);
// Cast to the vector pointer type.
NewPtrs.push_back(Builder.CreateBitCast(NewPtr, PtrTy));
}
setDebugLocFromInst(Builder, Instr);
Value *UndefVec = UndefValue::get(VecTy);
// Vectorize the interleaved load group.
if (isa<LoadInst>(Instr)) {
// For each unroll part, create a wide load for the group.
SmallVector<Value *, 2> NewLoads;
for (unsigned Part = 0; Part < UF; Part++) {
auto *NewLoad = Builder.CreateAlignedLoad(
NewPtrs[Part], Group->getAlignment(), "wide.vec");
Group->addMetadata(NewLoad);
NewLoads.push_back(NewLoad);
}
// For each member in the group, shuffle out the appropriate data from the
// wide loads.
for (unsigned I = 0; I < InterleaveFactor; ++I) {
Instruction *Member = Group->getMember(I);
// Skip the gaps in the group.
if (!Member)
continue;
Constant *StrideMask = createStrideMask(Builder, I, InterleaveFactor, VF);
for (unsigned Part = 0; Part < UF; Part++) {
Value *StridedVec = Builder.CreateShuffleVector(
NewLoads[Part], UndefVec, StrideMask, "strided.vec");
// If this member has different type, cast the result type.
if (Member->getType() != ScalarTy) {
VectorType *OtherVTy = VectorType::get(Member->getType(), VF);
StridedVec = createBitOrPointerCast(StridedVec, OtherVTy, DL);
}
if (Group->isReverse())
StridedVec = reverseVector(StridedVec);
VectorLoopValueMap.setVectorValue(Member, Part, StridedVec);
}
}
return;
}
// The sub vector type for current instruction.
VectorType *SubVT = VectorType::get(ScalarTy, VF);
// Vectorize the interleaved store group.
for (unsigned Part = 0; Part < UF; Part++) {
// Collect the stored vector from each member.
SmallVector<Value *, 4> StoredVecs;
for (unsigned i = 0; i < InterleaveFactor; i++) {
// Interleaved store group doesn't allow a gap, so each index has a member
Instruction *Member = Group->getMember(i);
assert(Member && "Fail to get a member from an interleaved store group");
Value *StoredVec = getOrCreateVectorValue(
cast<StoreInst>(Member)->getValueOperand(), Part);
if (Group->isReverse())
StoredVec = reverseVector(StoredVec);
// If this member has different type, cast it to a unified type.
if (StoredVec->getType() != SubVT)
StoredVec = createBitOrPointerCast(StoredVec, SubVT, DL);
StoredVecs.push_back(StoredVec);
}
// Concatenate all vectors into a wide vector.
Value *WideVec = concatenateVectors(Builder, StoredVecs);
// Interleave the elements in the wide vector.
Constant *IMask = createInterleaveMask(Builder, VF, InterleaveFactor);
Value *IVec = Builder.CreateShuffleVector(WideVec, UndefVec, IMask,
"interleaved.vec");
Instruction *NewStoreInstr =
Builder.CreateAlignedStore(IVec, NewPtrs[Part], Group->getAlignment());
Group->addMetadata(NewStoreInstr);
}
}
void InnerLoopVectorizer::vectorizeMemoryInstruction(Instruction *Instr,
VectorParts *BlockInMask) {
// Attempt to issue a wide load.
LoadInst *LI = dyn_cast<LoadInst>(Instr);
StoreInst *SI = dyn_cast<StoreInst>(Instr);
assert((LI || SI) && "Invalid Load/Store instruction");
LoopVectorizationCostModel::InstWidening Decision =
Cost->getWideningDecision(Instr, VF);
assert(Decision != LoopVectorizationCostModel::CM_Unknown &&
"CM decision should be taken at this point");
if (Decision == LoopVectorizationCostModel::CM_Interleave)
return vectorizeInterleaveGroup(Instr);
Type *ScalarDataTy = getMemInstValueType(Instr);
Type *DataTy = VectorType::get(ScalarDataTy, VF);
Value *Ptr = getLoadStorePointerOperand(Instr);
unsigned Alignment = getLoadStoreAlignment(Instr);
// An alignment of 0 means target abi alignment. We need to use the scalar's
// target abi alignment in such a case.
const DataLayout &DL = Instr->getModule()->getDataLayout();
if (!Alignment)
Alignment = DL.getABITypeAlignment(ScalarDataTy);
unsigned AddressSpace = getLoadStoreAddressSpace(Instr);
// Determine if the pointer operand of the access is either consecutive or
// reverse consecutive.
bool Reverse = (Decision == LoopVectorizationCostModel::CM_Widen_Reverse);
bool ConsecutiveStride =
Reverse || (Decision == LoopVectorizationCostModel::CM_Widen);
bool CreateGatherScatter =
(Decision == LoopVectorizationCostModel::CM_GatherScatter);
// Either Ptr feeds a vector load/store, or a vector GEP should feed a vector
// gather/scatter. Otherwise Decision should have been to Scalarize.
assert((ConsecutiveStride || CreateGatherScatter) &&
"The instruction should be scalarized");
// Handle consecutive loads/stores.
if (ConsecutiveStride)
Ptr = getOrCreateScalarValue(Ptr, {0, 0});
VectorParts Mask;
bool isMaskRequired = BlockInMask;
if (isMaskRequired)
Mask = *BlockInMask;
bool InBounds = false;
if (auto *gep = dyn_cast<GetElementPtrInst>(
getLoadStorePointerOperand(Instr)->stripPointerCasts()))
InBounds = gep->isInBounds();
const auto CreateVecPtr = [&](unsigned Part, Value *Ptr) -> Value * {
// Calculate the pointer for the specific unroll-part.
GetElementPtrInst *PartPtr = nullptr;
if (Reverse) {
// If the address is consecutive but reversed, then the
// wide store needs to start at the last vector element.
PartPtr = cast<GetElementPtrInst>(
Builder.CreateGEP(Ptr, Builder.getInt32(-Part * VF)));
PartPtr->setIsInBounds(InBounds);
PartPtr = cast<GetElementPtrInst>(
Builder.CreateGEP(PartPtr, Builder.getInt32(1 - VF)));
PartPtr->setIsInBounds(InBounds);
if (isMaskRequired) // Reverse of a null all-one mask is a null mask.
Mask[Part] = reverseVector(Mask[Part]);
} else {
PartPtr = cast<GetElementPtrInst>(
Builder.CreateGEP(Ptr, Builder.getInt32(Part * VF)));
PartPtr->setIsInBounds(InBounds);
}
return Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace));
};
// Handle Stores:
if (SI) {
setDebugLocFromInst(Builder, SI);
for (unsigned Part = 0; Part < UF; ++Part) {
Instruction *NewSI = nullptr;
Value *StoredVal = getOrCreateVectorValue(SI->getValueOperand(), Part);
if (CreateGatherScatter) {
Value *MaskPart = isMaskRequired ? Mask[Part] : nullptr;
Value *VectorGep = getOrCreateVectorValue(Ptr, Part);
NewSI = Builder.CreateMaskedScatter(StoredVal, VectorGep, Alignment,
MaskPart);
} else {
if (Reverse) {
// If we store to reverse consecutive memory locations, then we need
// to reverse the order of elements in the stored value.
StoredVal = reverseVector(StoredVal);
// We don't want to update the value in the map as it might be used in
// another expression. So don't call resetVectorValue(StoredVal).
}
auto *VecPtr = CreateVecPtr(Part, Ptr);
if (isMaskRequired)
NewSI = Builder.CreateMaskedStore(StoredVal, VecPtr, Alignment,
Mask[Part]);
else
NewSI = Builder.CreateAlignedStore(StoredVal, VecPtr, Alignment);
}
addMetadata(NewSI, SI);
}
return;
}
// Handle loads.
assert(LI && "Must have a load instruction");
setDebugLocFromInst(Builder, LI);
for (unsigned Part = 0; Part < UF; ++Part) {
Value *NewLI;
if (CreateGatherScatter) {
Value *MaskPart = isMaskRequired ? Mask[Part] : nullptr;
Value *VectorGep = getOrCreateVectorValue(Ptr, Part);
NewLI = Builder.CreateMaskedGather(VectorGep, Alignment, MaskPart,
nullptr, "wide.masked.gather");
addMetadata(NewLI, LI);
} else {
auto *VecPtr = CreateVecPtr(Part, Ptr);
if (isMaskRequired)
NewLI = Builder.CreateMaskedLoad(VecPtr, Alignment, Mask[Part],
UndefValue::get(DataTy),
"wide.masked.load");
else
NewLI = Builder.CreateAlignedLoad(VecPtr, Alignment, "wide.load");
// Add metadata to the load, but setVectorValue to the reverse shuffle.
addMetadata(NewLI, LI);
if (Reverse)
NewLI = reverseVector(NewLI);
}
VectorLoopValueMap.setVectorValue(Instr, Part, NewLI);
}
}
void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr,
const VPIteration &Instance,
bool IfPredicateInstr) {
assert(!Instr->getType()->isAggregateType() && "Can't handle vectors");
setDebugLocFromInst(Builder, Instr);
// Does this instruction return a value ?
bool IsVoidRetTy = Instr->getType()->isVoidTy();
Instruction *Cloned = Instr->clone();
if (!IsVoidRetTy)
Cloned->setName(Instr->getName() + ".cloned");
// Replace the operands of the cloned instructions with their scalar
// equivalents in the new loop.
for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) {
auto *NewOp = getOrCreateScalarValue(Instr->getOperand(op), Instance);
Cloned->setOperand(op, NewOp);
}
addNewMetadata(Cloned, Instr);
// Place the cloned scalar in the new loop.
Builder.Insert(Cloned);
// Add the cloned scalar to the scalar map entry.
VectorLoopValueMap.setScalarValue(Instr, Instance, Cloned);
// If we just cloned a new assumption, add it the assumption cache.
if (auto *II = dyn_cast<IntrinsicInst>(Cloned))
if (II->getIntrinsicID() == Intrinsic::assume)
AC->registerAssumption(II);
// End if-block.
if (IfPredicateInstr)
PredicatedInstructions.push_back(Cloned);
}
PHINode *InnerLoopVectorizer::createInductionVariable(Loop *L, Value *Start,
Value *End, Value *Step,
Instruction *DL) {
BasicBlock *Header = L->getHeader();
BasicBlock *Latch = L->getLoopLatch();
// As we're just creating this loop, it's possible no latch exists
// yet. If so, use the header as this will be a single block loop.
if (!Latch)
Latch = Header;
IRBuilder<> Builder(&*Header->getFirstInsertionPt());
Instruction *OldInst = getDebugLocFromInstOrOperands(OldInduction);
setDebugLocFromInst(Builder, OldInst);
auto *Induction = Builder.CreatePHI(Start->getType(), 2, "index");
Builder.SetInsertPoint(Latch->getTerminator());
setDebugLocFromInst(Builder, OldInst);
// Create i+1 and fill the PHINode.
Value *Next = Builder.CreateAdd(Induction, Step, "index.next");
Induction->addIncoming(Start, L->getLoopPreheader());
Induction->addIncoming(Next, Latch);
// Create the compare.
Value *ICmp = Builder.CreateICmpEQ(Next, End);
Builder.CreateCondBr(ICmp, L->getExitBlock(), Header);
// Now we have two terminators. Remove the old one from the block.
Latch->getTerminator()->eraseFromParent();
return Induction;
}
Value *InnerLoopVectorizer::getOrCreateTripCount(Loop *L) {
if (TripCount)
return TripCount;
IRBuilder<> Builder(L->getLoopPreheader()->getTerminator());
// Find the loop boundaries.
ScalarEvolution *SE = PSE.getSE();
const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount();
assert(BackedgeTakenCount != SE->getCouldNotCompute() &&
"Invalid loop count");
Type *IdxTy = Legal->getWidestInductionType();
assert(IdxTy && "No type for induction");
// The exit count might have the type of i64 while the phi is i32. This can
// happen if we have an induction variable that is sign extended before the
// compare. The only way that we get a backedge taken count is that the
// induction variable was signed and as such will not overflow. In such a case
// truncation is legal.
if (BackedgeTakenCount->getType()->getPrimitiveSizeInBits() >
IdxTy->getPrimitiveSizeInBits())
BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, IdxTy);
BackedgeTakenCount = SE->getNoopOrZeroExtend(BackedgeTakenCount, IdxTy);
// Get the total trip count from the count by adding 1.
const SCEV *ExitCount = SE->getAddExpr(
BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType()));
const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
// Expand the trip count and place the new instructions in the preheader.
// Notice that the pre-header does not change, only the loop body.
SCEVExpander Exp(*SE, DL, "induction");
// Count holds the overall loop count (N).
TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(),
L->getLoopPreheader()->getTerminator());
if (TripCount->getType()->isPointerTy())
TripCount =
CastInst::CreatePointerCast(TripCount, IdxTy, "exitcount.ptrcnt.to.int",
L->getLoopPreheader()->getTerminator());
return TripCount;
}
Value *InnerLoopVectorizer::getOrCreateVectorTripCount(Loop *L) {
if (VectorTripCount)
return VectorTripCount;
Value *TC = getOrCreateTripCount(L);
IRBuilder<> Builder(L->getLoopPreheader()->getTerminator());
// Now we need to generate the expression for the part of the loop that the
// vectorized body will execute. This is equal to N - (N % Step) if scalar
// iterations are not required for correctness, or N - Step, otherwise. Step
// is equal to the vectorization factor (number of SIMD elements) times the
// unroll factor (number of SIMD instructions).
Constant *Step = ConstantInt::get(TC->getType(), VF * UF);
Value *R = Builder.CreateURem(TC, Step, "n.mod.vf");
// If there is a non-reversed interleaved group that may speculatively access
// memory out-of-bounds, we need to ensure that there will be at least one
// iteration of the scalar epilogue loop. Thus, if the step evenly divides
// the trip count, we set the remainder to be equal to the step. If the step
// does not evenly divide the trip count, no adjustment is necessary since
// there will already be scalar iterations. Note that the minimum iterations
// check ensures that N >= Step.
if (VF > 1 && Cost->requiresScalarEpilogue()) {
auto *IsZero = Builder.CreateICmpEQ(R, ConstantInt::get(R->getType(), 0));
R = Builder.CreateSelect(IsZero, Step, R);
}
VectorTripCount = Builder.CreateSub(TC, R, "n.vec");
return VectorTripCount;
}
Value *InnerLoopVectorizer::createBitOrPointerCast(Value *V, VectorType *DstVTy,
const DataLayout &DL) {
// Verify that V is a vector type with same number of elements as DstVTy.
unsigned VF = DstVTy->getNumElements();
VectorType *SrcVecTy = cast<VectorType>(V->getType());
assert((VF == SrcVecTy->getNumElements()) && "Vector dimensions do not match");
Type *SrcElemTy = SrcVecTy->getElementType();
Type *DstElemTy = DstVTy->getElementType();
assert((DL.getTypeSizeInBits(SrcElemTy) == DL.getTypeSizeInBits(DstElemTy)) &&
"Vector elements must have same size");
// Do a direct cast if element types are castable.
if (CastInst::isBitOrNoopPointerCastable(SrcElemTy, DstElemTy, DL)) {
return Builder.CreateBitOrPointerCast(V, DstVTy);
}
// V cannot be directly casted to desired vector type.
// May happen when V is a floating point vector but DstVTy is a vector of
// pointers or vice-versa. Handle this using a two-step bitcast using an
// intermediate Integer type for the bitcast i.e. Ptr <-> Int <-> Float.
assert((DstElemTy->isPointerTy() != SrcElemTy->isPointerTy()) &&
"Only one type should be a pointer type");
assert((DstElemTy->isFloatingPointTy() != SrcElemTy->isFloatingPointTy()) &&
"Only one type should be a floating point type");
Type *IntTy =
IntegerType::getIntNTy(V->getContext(), DL.getTypeSizeInBits(SrcElemTy));
VectorType *VecIntTy = VectorType::get(IntTy, VF);
Value *CastVal = Builder.CreateBitOrPointerCast(V, VecIntTy);
return Builder.CreateBitOrPointerCast(CastVal, DstVTy);
}
void InnerLoopVectorizer::emitMinimumIterationCountCheck(Loop *L,
BasicBlock *Bypass) {
Value *Count = getOrCreateTripCount(L);
BasicBlock *BB = L->getLoopPreheader();
IRBuilder<> Builder(BB->getTerminator());
// Generate code to check if the loop's trip count is less than VF * UF, or
// equal to it in case a scalar epilogue is required; this implies that the
// vector trip count is zero. This check also covers the case where adding one
// to the backedge-taken count overflowed leading to an incorrect trip count
// of zero. In this case we will also jump to the scalar loop.
auto P = Cost->requiresScalarEpilogue() ? ICmpInst::ICMP_ULE
: ICmpInst::ICMP_ULT;
Value *CheckMinIters = Builder.CreateICmp(
P, Count, ConstantInt::get(Count->getType(), VF * UF), "min.iters.check");
BasicBlock *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph");
// Update dominator tree immediately if the generated block is a
// LoopBypassBlock because SCEV expansions to generate loop bypass
// checks may query it before the current function is finished.
DT->addNewBlock(NewBB, BB);
if (L->getParentLoop())
L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI);
ReplaceInstWithInst(BB->getTerminator(),
BranchInst::Create(Bypass, NewBB, CheckMinIters));
LoopBypassBlocks.push_back(BB);
}
void InnerLoopVectorizer::emitSCEVChecks(Loop *L, BasicBlock *Bypass) {
BasicBlock *BB = L->getLoopPreheader();
// Generate the code to check that the SCEV assumptions that we made.
// We want the new basic block to start at the first instruction in a
// sequence of instructions that form a check.
SCEVExpander Exp(*PSE.getSE(), Bypass->getModule()->getDataLayout(),
"scev.check");
Value *SCEVCheck =
Exp.expandCodeForPredicate(&PSE.getUnionPredicate(), BB->getTerminator());
if (auto *C = dyn_cast<ConstantInt>(SCEVCheck))
if (C->isZero())
return;
// Create a new block containing the stride check.
BB->setName("vector.scevcheck");
auto *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph");
// Update dominator tree immediately if the generated block is a
// LoopBypassBlock because SCEV expansions to generate loop bypass
// checks may query it before the current function is finished.
DT->addNewBlock(NewBB, BB);
if (L->getParentLoop())
L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI);
ReplaceInstWithInst(BB->getTerminator(),
BranchInst::Create(Bypass, NewBB, SCEVCheck));
LoopBypassBlocks.push_back(BB);
AddedSafetyChecks = true;
}
void InnerLoopVectorizer::emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass) {
// VPlan-native path does not do any analysis for runtime checks currently.
if (EnableVPlanNativePath)
return;
BasicBlock *BB = L->getLoopPreheader();
// Generate the code that checks in runtime if arrays overlap. We put the
// checks into a separate block to make the more common case of few elements
// faster.
Instruction *FirstCheckInst;
Instruction *MemRuntimeCheck;
std::tie(FirstCheckInst, MemRuntimeCheck) =
Legal->getLAI()->addRuntimeChecks(BB->getTerminator());
if (!MemRuntimeCheck)
return;
// Create a new block containing the memory check.
BB->setName("vector.memcheck");
auto *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph");
// Update dominator tree immediately if the generated block is a
// LoopBypassBlock because SCEV expansions to generate loop bypass
// checks may query it before the current function is finished.
DT->addNewBlock(NewBB, BB);
if (L->getParentLoop())
L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI);
ReplaceInstWithInst(BB->getTerminator(),
BranchInst::Create(Bypass, NewBB, MemRuntimeCheck));
LoopBypassBlocks.push_back(BB);
AddedSafetyChecks = true;
// We currently don't use LoopVersioning for the actual loop cloning but we
// still use it to add the noalias metadata.
LVer = llvm::make_unique<LoopVersioning>(*Legal->getLAI(), OrigLoop, LI, DT,
PSE.getSE());
LVer->prepareNoAliasMetadata();
}
Value *InnerLoopVectorizer::emitTransformedIndex(
IRBuilder<> &B, Value *Index, ScalarEvolution *SE, const DataLayout &DL,
const InductionDescriptor &ID) const {
SCEVExpander Exp(*SE, DL, "induction");
auto Step = ID.getStep();
auto StartValue = ID.getStartValue();
assert(Index->getType() == Step->getType() &&
"Index type does not match StepValue type");
switch (ID.getKind()) {
case InductionDescriptor::IK_IntInduction: {
assert(Index->getType() == StartValue->getType() &&
"Index type does not match StartValue type");
// FIXME: Theoretically, we can call getAddExpr() of ScalarEvolution
// and calculate (Start + Index * Step) for all cases, without
// special handling for "isOne" and "isMinusOne".
// But in the real life the result code getting worse. We mix SCEV
// expressions and ADD/SUB operations and receive redundant
// intermediate values being calculated in different ways and
// Instcombine is unable to reduce them all.
if (ID.getConstIntStepValue() && ID.getConstIntStepValue()->isMinusOne())
return B.CreateSub(StartValue, Index);
if (ID.getConstIntStepValue() && ID.getConstIntStepValue()->isOne())
return B.CreateAdd(StartValue, Index);
const SCEV *S = SE->getAddExpr(SE->getSCEV(StartValue),
SE->getMulExpr(Step, SE->getSCEV(Index)));
return Exp.expandCodeFor(S, StartValue->getType(), &*B.GetInsertPoint());
}
case InductionDescriptor::IK_PtrInduction: {
assert(isa<SCEVConstant>(Step) &&
"Expected constant step for pointer induction");
const SCEV *S = SE->getMulExpr(SE->getSCEV(Index), Step);
Index = Exp.expandCodeFor(S, Index->getType(), &*B.GetInsertPoint());
return B.CreateGEP(nullptr, StartValue, Index);
}
case InductionDescriptor::IK_FpInduction: {
assert(Step->getType()->isFloatingPointTy() && "Expected FP Step value");
auto InductionBinOp = ID.getInductionBinOp();
assert(InductionBinOp &&
(InductionBinOp->getOpcode() == Instruction::FAdd ||
InductionBinOp->getOpcode() == Instruction::FSub) &&
"Original bin op should be defined for FP induction");
Value *StepValue = cast<SCEVUnknown>(Step)->getValue();
// Floating point operations had to be 'fast' to enable the induction.
FastMathFlags Flags;
Flags.setFast();
Value *MulExp = B.CreateFMul(StepValue, Index);
if (isa<Instruction>(MulExp))
// We have to check, the MulExp may be a constant.
cast<Instruction>(MulExp)->setFastMathFlags(Flags);
Value *BOp = B.CreateBinOp(InductionBinOp->getOpcode(), StartValue, MulExp,
"induction");
if (isa<Instruction>(BOp))
cast<Instruction>(BOp)->setFastMathFlags(Flags);
return BOp;
}
case InductionDescriptor::IK_NoInduction:
return nullptr;
}
llvm_unreachable("invalid enum");
}
BasicBlock *InnerLoopVectorizer::createVectorizedLoopSkeleton() {
/*
In this function we generate a new loop. The new loop will contain
the vectorized instructions while the old loop will continue to run the
scalar remainder.
[ ] <-- loop iteration number check.
/ |
/ v
| [ ] <-- vector loop bypass (may consist of multiple blocks).
| / |
| / v
|| [ ] <-- vector pre header.
|/ |
| v
| [ ] \
| [ ]_| <-- vector loop.
| |
| v
| -[ ] <--- middle-block.
| / |
| / v
-|- >[ ] <--- new preheader.
| |
| v
| [ ] \
| [ ]_| <-- old scalar loop to handle remainder.
\ |
\ v
>[ ] <-- exit block.
...
*/
BasicBlock *OldBasicBlock = OrigLoop->getHeader();
BasicBlock *VectorPH = OrigLoop->getLoopPreheader();
BasicBlock *ExitBlock = OrigLoop->getExitBlock();
assert(VectorPH && "Invalid loop structure");
assert(ExitBlock && "Must have an exit block");
// Some loops have a single integer induction variable, while other loops
// don't. One example is c++ iterators that often have multiple pointer
// induction variables. In the code below we also support a case where we
// don't have a single induction variable.
//
// We try to obtain an induction variable from the original loop as hard
// as possible. However if we don't find one that:
// - is an integer
// - counts from zero, stepping by one
// - is the size of the widest induction variable type
// then we create a new one.
OldInduction = Legal->getPrimaryInduction();
Type *IdxTy = Legal->getWidestInductionType();
// Split the single block loop into the two loop structure described above.
BasicBlock *VecBody =
VectorPH->splitBasicBlock(VectorPH->getTerminator(), "vector.body");
BasicBlock *MiddleBlock =
VecBody->splitBasicBlock(VecBody->getTerminator(), "middle.block");
BasicBlock *ScalarPH =
MiddleBlock->splitBasicBlock(MiddleBlock->getTerminator(), "scalar.ph");
// Create and register the new vector loop.
Loop *Lp = LI->AllocateLoop();
Loop *ParentLoop = OrigLoop->getParentLoop();
// Insert the new loop into the loop nest and register the new basic blocks
// before calling any utilities such as SCEV that require valid LoopInfo.
if (ParentLoop) {
ParentLoop->addChildLoop(Lp);
ParentLoop->addBasicBlockToLoop(ScalarPH, *LI);
ParentLoop->addBasicBlockToLoop(MiddleBlock, *LI);
} else {
LI->addTopLevelLoop(Lp);
}
Lp->addBasicBlockToLoop(VecBody, *LI);
// Find the loop boundaries.
Value *Count = getOrCreateTripCount(Lp);
Value *StartIdx = ConstantInt::get(IdxTy, 0);
// Now, compare the new count to zero. If it is zero skip the vector loop and
// jump to the scalar loop. This check also covers the case where the
// backedge-taken count is uint##_max: adding one to it will overflow leading
// to an incorrect trip count of zero. In this (rare) case we will also jump
// to the scalar loop.
emitMinimumIterationCountCheck(Lp, ScalarPH);
// Generate the code to check any assumptions that we've made for SCEV
// expressions.
emitSCEVChecks(Lp, ScalarPH);
// Generate the code that checks in runtime if arrays overlap. We put the
// checks into a separate block to make the more common case of few elements
// faster.
emitMemRuntimeChecks(Lp, ScalarPH);
// Generate the induction variable.
// The loop step is equal to the vectorization factor (num of SIMD elements)
// times the unroll factor (num of SIMD instructions).
Value *CountRoundDown = getOrCreateVectorTripCount(Lp);
Constant *Step = ConstantInt::get(IdxTy, VF * UF);
Induction =
createInductionVariable(Lp, StartIdx, CountRoundDown, Step,
getDebugLocFromInstOrOperands(OldInduction));
// We are going to resume the execution of the scalar loop.
// Go over all of the induction variables that we found and fix the
// PHIs that are left in the scalar version of the loop.
// The starting values of PHI nodes depend on the counter of the last
// iteration in the vectorized loop.
// If we come from a bypass edge then we need to start from the original
// start value.
// This variable saves the new starting index for the scalar loop. It is used
// to test if there are any tail iterations left once the vector loop has
// completed.
LoopVectorizationLegality::InductionList *List = Legal->getInductionVars();
for (auto &InductionEntry : *List) {
PHINode *OrigPhi = InductionEntry.first;
InductionDescriptor II = InductionEntry.second;
// Create phi nodes to merge from the backedge-taken check block.
PHINode *BCResumeVal = PHINode::Create(
OrigPhi->getType(), 3, "bc.resume.val", ScalarPH->getTerminator());
// Copy original phi DL over to the new one.
BCResumeVal->setDebugLoc(OrigPhi->getDebugLoc());
Value *&EndValue = IVEndValues[OrigPhi];
if (OrigPhi == OldInduction) {
// We know what the end value is.
EndValue = CountRoundDown;
} else {
IRBuilder<> B(Lp->getLoopPreheader()->getTerminator());
Type *StepType = II.getStep()->getType();
Instruction::CastOps CastOp =
CastInst::getCastOpcode(CountRoundDown, true, StepType, true);
Value *CRD = B.CreateCast(CastOp, CountRoundDown, StepType, "cast.crd");
const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout();
EndValue = emitTransformedIndex(B, CRD, PSE.getSE(), DL, II);
EndValue->setName("ind.end");
}
// The new PHI merges the original incoming value, in case of a bypass,
// or the value at the end of the vectorized loop.
BCResumeVal->addIncoming(EndValue, MiddleBlock);
// Fix the scalar body counter (PHI node).
unsigned BlockIdx = OrigPhi->getBasicBlockIndex(ScalarPH);
// The old induction's phi node in the scalar body needs the truncated
// value.
for (BasicBlock *BB : LoopBypassBlocks)
BCResumeVal->addIncoming(II.getStartValue(), BB);
OrigPhi->setIncomingValue(BlockIdx, BCResumeVal);
}
// Add a check in the middle block to see if we have completed
// all of the iterations in the first vector loop.
// If (N - N%VF) == N, then we *don't* need to run the remainder.
Value *CmpN =
CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, Count,
CountRoundDown, "cmp.n", MiddleBlock->getTerminator());
ReplaceInstWithInst(MiddleBlock->getTerminator(),
BranchInst::Create(ExitBlock, ScalarPH, CmpN));
// Get ready to start creating new instructions into the vectorized body.
Builder.SetInsertPoint(&*VecBody->getFirstInsertionPt());
// Save the state.
LoopVectorPreHeader = Lp->getLoopPreheader();
LoopScalarPreHeader = ScalarPH;
LoopMiddleBlock = MiddleBlock;
LoopExitBlock = ExitBlock;
LoopVectorBody = VecBody;
LoopScalarBody = OldBasicBlock;
// Keep all loop hints from the original loop on the vector loop (we'll
// replace the vectorizer-specific hints below).
if (MDNode *LID = OrigLoop->getLoopID())
Lp->setLoopID(LID);
LoopVectorizeHints Hints(Lp, true, *ORE);
Hints.setAlreadyVectorized();
return LoopVectorPreHeader;
}
// Fix up external users of the induction variable. At this point, we are
// in LCSSA form, with all external PHIs that use the IV having one input value,
// coming from the remainder loop. We need those PHIs to also have a correct
// value for the IV when arriving directly from the middle block.
void InnerLoopVectorizer::fixupIVUsers(PHINode *OrigPhi,
const InductionDescriptor &II,
Value *CountRoundDown, Value *EndValue,
BasicBlock *MiddleBlock) {
// There are two kinds of external IV usages - those that use the value
// computed in the last iteration (the PHI) and those that use the penultimate
// value (the value that feeds into the phi from the loop latch).
// We allow both, but they, obviously, have different values.
assert(OrigLoop->getExitBlock() && "Expected a single exit block");
DenseMap<Value *, Value *> MissingVals;
// An external user of the last iteration's value should see the value that
// the remainder loop uses to initialize its own IV.
Value *PostInc = OrigPhi->getIncomingValueForBlock(OrigLoop->getLoopLatch());
for (User *U : PostInc->users()) {
Instruction *UI = cast<Instruction>(U);
if (!OrigLoop->contains(UI)) {
assert(isa<PHINode>(UI) && "Expected LCSSA form");
MissingVals[UI] = EndValue;
}
}
// An external user of the penultimate value need to see EndValue - Step.
// The simplest way to get this is to recompute it from the constituent SCEVs,
// that is Start + (Step * (CRD - 1)).
for (User *U : OrigPhi->users()) {
auto *UI = cast<Instruction>(U);
if (!OrigLoop->contains(UI)) {
const DataLayout &DL =
OrigLoop->getHeader()->getModule()->getDataLayout();
assert(isa<PHINode>(UI) && "Expected LCSSA form");
IRBuilder<> B(MiddleBlock->getTerminator());
Value *CountMinusOne = B.CreateSub(
CountRoundDown, ConstantInt::get(CountRoundDown->getType(), 1));
Value *CMO =
!II.getStep()->getType()->isIntegerTy()
? B.CreateCast(Instruction::SIToFP, CountMinusOne,
II.getStep()->getType())
: B.CreateSExtOrTrunc(CountMinusOne, II.getStep()->getType());
CMO->setName("cast.cmo");
Value *Escape = emitTransformedIndex(B, CMO, PSE.getSE(), DL, II);
Escape->setName("ind.escape");
MissingVals[UI] = Escape;
}
}
for (auto &I : MissingVals) {
PHINode *PHI = cast<PHINode>(I.first);
// One corner case we have to handle is two IVs "chasing" each-other,
// that is %IV2 = phi [...], [ %IV1, %latch ]
// In this case, if IV1 has an external use, we need to avoid adding both
// "last value of IV1" and "penultimate value of IV2". So, verify that we
// don't already have an incoming value for the middle block.
if (PHI->getBasicBlockIndex(MiddleBlock) == -1)
PHI->addIncoming(I.second, MiddleBlock);
}
}
namespace {
struct CSEDenseMapInfo {
static bool canHandle(const Instruction *I) {
return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) ||
isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I);
}
static inline Instruction *getEmptyKey() {
return DenseMapInfo<Instruction *>::getEmptyKey();
}
static inline Instruction *getTombstoneKey() {
return DenseMapInfo<Instruction *>::getTombstoneKey();
}
static unsigned getHashValue(const Instruction *I) {
assert(canHandle(I) && "Unknown instruction!");
return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(),
I->value_op_end()));
}
static bool isEqual(const Instruction *LHS, const Instruction *RHS) {
if (LHS == getEmptyKey() || RHS == getEmptyKey() ||
LHS == getTombstoneKey() || RHS == getTombstoneKey())
return LHS == RHS;
return LHS->isIdenticalTo(RHS);
}
};
} // end anonymous namespace
///Perform cse of induction variable instructions.
static void cse(BasicBlock *BB) {
// Perform simple cse.
SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap;
for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) {
Instruction *In = &*I++;
if (!CSEDenseMapInfo::canHandle(In))
continue;
// Check if we can replace this instruction with any of the
// visited instructions.
if (Instruction *V = CSEMap.lookup(In)) {
In->replaceAllUsesWith(V);
In->eraseFromParent();
continue;
}
CSEMap[In] = In;
}
}
/// Estimate the overhead of scalarizing an instruction. This is a
/// convenience wrapper for the type-based getScalarizationOverhead API.
static unsigned getScalarizationOverhead(Instruction *I, unsigned VF,
const TargetTransformInfo &TTI) {
if (VF == 1)
return 0;
unsigned Cost = 0;
Type *RetTy = ToVectorTy(I->getType(), VF);
if (!RetTy->isVoidTy() &&
(!isa<LoadInst>(I) ||
!TTI.supportsEfficientVectorElementLoadStore()))
Cost += TTI.getScalarizationOverhead(RetTy, true, false);
if (CallInst *CI = dyn_cast<CallInst>(I)) {
SmallVector<const Value *, 4> Operands(CI->arg_operands());
Cost += TTI.getOperandsScalarizationOverhead(Operands, VF);
}
else if (!isa<StoreInst>(I) ||
!TTI.supportsEfficientVectorElementLoadStore()) {
SmallVector<const Value *, 4> Operands(I->operand_values());
Cost += TTI.getOperandsScalarizationOverhead(Operands, VF);
}
return Cost;
}
// Estimate cost of a call instruction CI if it were vectorized with factor VF.
// Return the cost of the instruction, including scalarization overhead if it's
// needed. The flag NeedToScalarize shows if the call needs to be scalarized -
// i.e. either vector version isn't available, or is too expensive.
static unsigned getVectorCallCost(CallInst *CI, unsigned VF,
const TargetTransformInfo &TTI,
const TargetLibraryInfo *TLI,
bool &NeedToScalarize) {
Function *F = CI->getCalledFunction();
StringRef FnName = CI->getCalledFunction()->getName();
Type *ScalarRetTy = CI->getType();
SmallVector<Type *, 4> Tys, ScalarTys;
for (auto &ArgOp : CI->arg_operands())
ScalarTys.push_back(ArgOp->getType());
// Estimate cost of scalarized vector call. The source operands are assumed
// to be vectors, so we need to extract individual elements from there,
// execute VF scalar calls, and then gather the result into the vector return
// value.
unsigned ScalarCallCost = TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys);
if (VF == 1)
return ScalarCallCost;
// Compute corresponding vector type for return value and arguments.
Type *RetTy = ToVectorTy(ScalarRetTy, VF);
for (Type *ScalarTy : ScalarTys)
Tys.push_back(ToVectorTy(ScalarTy, VF));
// Compute costs of unpacking argument values for the scalar calls and
// packing the return values to a vector.
unsigned ScalarizationCost = getScalarizationOverhead(CI, VF, TTI);
unsigned Cost = ScalarCallCost * VF + ScalarizationCost;
// If we can't emit a vector call for this function, then the currently found
// cost is the cost we need to return.
NeedToScalarize = true;
if (!TLI || !TLI->isFunctionVectorizable(FnName, VF) || CI->isNoBuiltin())
return Cost;
// If the corresponding vector cost is cheaper, return its cost.
unsigned VectorCallCost = TTI.getCallInstrCost(nullptr, RetTy, Tys);
if (VectorCallCost < Cost) {
NeedToScalarize = false;
return VectorCallCost;
}
return Cost;
}
// Estimate cost of an intrinsic call instruction CI if it were vectorized with
// factor VF. Return the cost of the instruction, including scalarization
// overhead if it's needed.
static unsigned getVectorIntrinsicCost(CallInst *CI, unsigned VF,
const TargetTransformInfo &TTI,
const TargetLibraryInfo *TLI) {
Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
assert(ID && "Expected intrinsic call!");
FastMathFlags FMF;
if (auto *FPMO = dyn_cast<FPMathOperator>(CI))
FMF = FPMO->getFastMathFlags();
SmallVector<Value *, 4> Operands(CI->arg_operands());
return TTI.getIntrinsicInstrCost(ID, CI->getType(), Operands, FMF, VF);
}
static Type *smallestIntegerVectorType(Type *T1, Type *T2) {
auto *I1 = cast<IntegerType>(T1->getVectorElementType());
auto *I2 = cast<IntegerType>(T2->getVectorElementType());
return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2;
}
static Type *largestIntegerVectorType(Type *T1, Type *T2) {
auto *I1 = cast<IntegerType>(T1->getVectorElementType());
auto *I2 = cast<IntegerType>(T2->getVectorElementType());
return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2;
}
void InnerLoopVectorizer::truncateToMinimalBitwidths() {
// For every instruction `I` in MinBWs, truncate the operands, create a
// truncated version of `I` and reextend its result. InstCombine runs
// later and will remove any ext/trunc pairs.
SmallPtrSet<Value *, 4> Erased;
for (const auto &KV : Cost->getMinimalBitwidths()) {
// If the value wasn't vectorized, we must maintain the original scalar
// type. The absence of the value from VectorLoopValueMap indicates that it
// wasn't vectorized.
if (!VectorLoopValueMap.hasAnyVectorValue(KV.first))
continue;
for (unsigned Part = 0; Part < UF; ++Part) {
Value *I = getOrCreateVectorValue(KV.first, Part);
if (Erased.find(I) != Erased.end() || I->use_empty() ||
!isa<Instruction>(I))
continue;
Type *OriginalTy = I->getType();
Type *ScalarTruncatedTy =
IntegerType::get(OriginalTy->getContext(), KV.second);
Type *TruncatedTy = VectorType::get(ScalarTruncatedTy,
OriginalTy->getVectorNumElements());
if (TruncatedTy == OriginalTy)
continue;
IRBuilder<> B(cast<Instruction>(I));
auto ShrinkOperand = [&](Value *V) -> Value * {
if (auto *ZI = dyn_cast<ZExtInst>(V))
if (ZI->getSrcTy() == TruncatedTy)
return ZI->getOperand(0);
return B.CreateZExtOrTrunc(V, TruncatedTy);
};
// The actual instruction modification depends on the instruction type,
// unfortunately.
Value *NewI = nullptr;
if (auto *BO = dyn_cast<BinaryOperator>(I)) {
NewI = B.CreateBinOp(BO->getOpcode(), ShrinkOperand(BO->getOperand(0)),
ShrinkOperand(BO->getOperand(1)));
// Any wrapping introduced by shrinking this operation shouldn't be
// considered undefined behavior. So, we can't unconditionally copy
// arithmetic wrapping flags to NewI.
cast<BinaryOperator>(NewI)->copyIRFlags(I, /*IncludeWrapFlags=*/false);
} else if (auto *CI = dyn_cast<ICmpInst>(I)) {
NewI =
B.CreateICmp(CI->getPredicate(), ShrinkOperand(CI->getOperand(0)),
ShrinkOperand(CI->getOperand(1)));
} else if (auto *SI = dyn_cast<SelectInst>(I)) {
NewI = B.CreateSelect(SI->getCondition(),
ShrinkOperand(SI->getTrueValue()),
ShrinkOperand(SI->getFalseValue()));
} else if (auto *CI = dyn_cast<CastInst>(I)) {
switch (CI->getOpcode()) {
default:
llvm_unreachable("Unhandled cast!");
case Instruction::Trunc:
NewI = ShrinkOperand(CI->getOperand(0));
break;
case Instruction::SExt:
NewI = B.CreateSExtOrTrunc(
CI->getOperand(0),
smallestIntegerVectorType(OriginalTy, TruncatedTy));
break;
case Instruction::ZExt:
NewI = B.CreateZExtOrTrunc(
CI->getOperand(0),
smallestIntegerVectorType(OriginalTy, TruncatedTy));
break;
}
} else if (auto *SI = dyn_cast<ShuffleVectorInst>(I)) {
auto Elements0 = SI->getOperand(0)->getType()->getVectorNumElements();
auto *O0 = B.CreateZExtOrTrunc(
SI->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements0));
auto Elements1 = SI->getOperand(1)->getType()->getVectorNumElements();
auto *O1 = B.CreateZExtOrTrunc(
SI->getOperand(1), VectorType::get(ScalarTruncatedTy, Elements1));
NewI = B.CreateShuffleVector(O0, O1, SI->getMask());
} else if (isa<LoadInst>(I) || isa<PHINode>(I)) {
// Don't do anything with the operands, just extend the result.
continue;
} else if (auto *IE = dyn_cast<InsertElementInst>(I)) {
auto Elements = IE->getOperand(0)->getType()->getVectorNumElements();
auto *O0 = B.CreateZExtOrTrunc(
IE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements));
auto *O1 = B.CreateZExtOrTrunc(IE->getOperand(1), ScalarTruncatedTy);
NewI = B.CreateInsertElement(O0, O1, IE->getOperand(2));
} else if (auto *EE = dyn_cast<ExtractElementInst>(I)) {
auto Elements = EE->getOperand(0)->getType()->getVectorNumElements();
auto *O0 = B.CreateZExtOrTrunc(
EE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements));
NewI = B.CreateExtractElement(O0, EE->getOperand(2));
} else {
// If we don't know what to do, be conservative and don't do anything.
continue;
}
// Lastly, extend the result.
NewI->takeName(cast<Instruction>(I));
Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy);
I->replaceAllUsesWith(Res);
cast<Instruction>(I)->eraseFromParent();
Erased.insert(I);
VectorLoopValueMap.resetVectorValue(KV.first, Part, Res);
}
}
// We'll have created a bunch of ZExts that are now parentless. Clean up.
for (const auto &KV : Cost->getMinimalBitwidths()) {
// If the value wasn't vectorized, we must maintain the original scalar
// type. The absence of the value from VectorLoopValueMap indicates that it
// wasn't vectorized.
if (!VectorLoopValueMap.hasAnyVectorValue(KV.first))
continue;
for (unsigned Part = 0; Part < UF; ++Part) {
Value *I = getOrCreateVectorValue(KV.first, Part);
ZExtInst *Inst = dyn_cast<ZExtInst>(I);
if (Inst && Inst->use_empty()) {
Value *NewI = Inst->getOperand(0);
Inst->eraseFromParent();
VectorLoopValueMap.resetVectorValue(KV.first, Part, NewI);
}
}
}
}
void InnerLoopVectorizer::fixVectorizedLoop() {
// Insert truncates and extends for any truncated instructions as hints to
// InstCombine.
if (VF > 1)
truncateToMinimalBitwidths();
// Fix widened non-induction PHIs by setting up the PHI operands.
if (OrigPHIsToFix.size()) {
assert(EnableVPlanNativePath &&
"Unexpected non-induction PHIs for fixup in non VPlan-native path");
fixNonInductionPHIs();
}
// At this point every instruction in the original loop is widened to a
// vector form. Now we need to fix the recurrences in the loop. These PHI
// nodes are currently empty because we did not want to introduce cycles.
// This is the second stage of vectorizing recurrences.
fixCrossIterationPHIs();
// Update the dominator tree.
//
// FIXME: After creating the structure of the new loop, the dominator tree is
// no longer up-to-date, and it remains that way until we update it
// here. An out-of-date dominator tree is problematic for SCEV,
// because SCEVExpander uses it to guide code generation. The
// vectorizer use SCEVExpanders in several places. Instead, we should
// keep the dominator tree up-to-date as we go.
updateAnalysis();
// Fix-up external users of the induction variables.
for (auto &Entry : *Legal->getInductionVars())
fixupIVUsers(Entry.first, Entry.second,
getOrCreateVectorTripCount(LI->getLoopFor(LoopVectorBody)),
IVEndValues[Entry.first], LoopMiddleBlock);
fixLCSSAPHIs();
for (Instruction *PI : PredicatedInstructions)
sinkScalarOperands(&*PI);
// Remove redundant induction instructions.
cse(LoopVectorBody);
}
void InnerLoopVectorizer::fixCrossIterationPHIs() {
// In order to support recurrences we need to be able to vectorize Phi nodes.
// Phi nodes have cycles, so we need to vectorize them in two stages. This is
// stage #2: We now need to fix the recurrences by adding incoming edges to
// the currently empty PHI nodes. At this point every instruction in the
// original loop is widened to a vector form so we can use them to construct
// the incoming edges.
for (PHINode &Phi : OrigLoop->getHeader()->phis()) {
// Handle first-order recurrences and reductions that need to be fixed.
if (Legal->isFirstOrderRecurrence(&Phi))
fixFirstOrderRecurrence(&Phi);
else if (Legal->isReductionVariable(&Phi))
fixReduction(&Phi);
}
}
void InnerLoopVectorizer::fixFirstOrderRecurrence(PHINode *Phi) {
// This is the second phase of vectorizing first-order recurrences. An
// overview of the transformation is described below. Suppose we have the
// following loop.
//
// for (int i = 0; i < n; ++i)
// b[i] = a[i] - a[i - 1];
//
// There is a first-order recurrence on "a". For this loop, the shorthand
// scalar IR looks like:
//
// scalar.ph:
// s_init = a[-1]
// br scalar.body
//
// scalar.body:
// i = phi [0, scalar.ph], [i+1, scalar.body]
// s1 = phi [s_init, scalar.ph], [s2, scalar.body]
// s2 = a[i]
// b[i] = s2 - s1
// br cond, scalar.body, ...
//
// In this example, s1 is a recurrence because it's value depends on the
// previous iteration. In the first phase of vectorization, we created a
// temporary value for s1. We now complete the vectorization and produce the
// shorthand vector IR shown below (for VF = 4, UF = 1).
//
// vector.ph:
// v_init = vector(..., ..., ..., a[-1])
// br vector.body
//
// vector.body
// i = phi [0, vector.ph], [i+4, vector.body]
// v1 = phi [v_init, vector.ph], [v2, vector.body]
// v2 = a[i, i+1, i+2, i+3];
// v3 = vector(v1(3), v2(0, 1, 2))
// b[i, i+1, i+2, i+3] = v2 - v3
// br cond, vector.body, middle.block
//
// middle.block:
// x = v2(3)
// br scalar.ph
//
// scalar.ph:
// s_init = phi [x, middle.block], [a[-1], otherwise]
// br scalar.body
//
// After execution completes the vector loop, we extract the next value of
// the recurrence (x) to use as the initial value in the scalar loop.
// Get the original loop preheader and single loop latch.
auto *Preheader = OrigLoop->getLoopPreheader();
auto *Latch = OrigLoop->getLoopLatch();
// Get the initial and previous values of the scalar recurrence.
auto *ScalarInit = Phi->getIncomingValueForBlock(Preheader);
auto *Previous = Phi->getIncomingValueForBlock(Latch);
// Create a vector from the initial value.
auto *VectorInit = ScalarInit;
if (VF > 1) {
Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
VectorInit = Builder.CreateInsertElement(
UndefValue::get(VectorType::get(VectorInit->getType(), VF)), VectorInit,
Builder.getInt32(VF - 1), "vector.recur.init");
}
// We constructed a temporary phi node in the first phase of vectorization.
// This phi node will eventually be deleted.
Builder.SetInsertPoint(
cast<Instruction>(VectorLoopValueMap.getVectorValue(Phi, 0)));
// Create a phi node for the new recurrence. The current value will either be
// the initial value inserted into a vector or loop-varying vector value.
auto *VecPhi = Builder.CreatePHI(VectorInit->getType(), 2, "vector.recur");
VecPhi->addIncoming(VectorInit, LoopVectorPreHeader);
// Get the vectorized previous value of the last part UF - 1. It appears last
// among all unrolled iterations, due to the order of their construction.
Value *PreviousLastPart = getOrCreateVectorValue(Previous, UF - 1);
// Set the insertion point after the previous value if it is an instruction.
// Note that the previous value may have been constant-folded so it is not
// guaranteed to be an instruction in the vector loop. Also, if the previous
// value is a phi node, we should insert after all the phi nodes to avoid
// breaking basic block verification.
if (LI->getLoopFor(LoopVectorBody)->isLoopInvariant(PreviousLastPart) ||
isa<PHINode>(PreviousLastPart))
Builder.SetInsertPoint(&*LoopVectorBody->getFirstInsertionPt());
else
Builder.SetInsertPoint(
&*++BasicBlock::iterator(cast<Instruction>(PreviousLastPart)));
// We will construct a vector for the recurrence by combining the values for
// the current and previous iterations. This is the required shuffle mask.
SmallVector<Constant *, 8> ShuffleMask(VF);
ShuffleMask[0] = Builder.getInt32(VF - 1);
for (unsigned I = 1; I < VF; ++I)
ShuffleMask[I] = Builder.getInt32(I + VF - 1);
// The vector from which to take the initial value for the current iteration
// (actual or unrolled). Initially, this is the vector phi node.
Value *Incoming = VecPhi;
// Shuffle the current and previous vector and update the vector parts.
for (unsigned Part = 0; Part < UF; ++Part) {
Value *PreviousPart = getOrCreateVectorValue(Previous, Part);
Value *PhiPart = VectorLoopValueMap.getVectorValue(Phi, Part);
auto *Shuffle =
VF > 1 ? Builder.CreateShuffleVector(Incoming, PreviousPart,
ConstantVector::get(ShuffleMask))
: Incoming;
PhiPart->replaceAllUsesWith(Shuffle);
cast<Instruction>(PhiPart)->eraseFromParent();
VectorLoopValueMap.resetVectorValue(Phi, Part, Shuffle);
Incoming = PreviousPart;
}
// Fix the latch value of the new recurrence in the vector loop.
VecPhi->addIncoming(Incoming, LI->getLoopFor(LoopVectorBody)->getLoopLatch());
// Extract the last vector element in the middle block. This will be the
// initial value for the recurrence when jumping to the scalar loop.
auto *ExtractForScalar = Incoming;
if (VF > 1) {
Builder.SetInsertPoint(LoopMiddleBlock->getTerminator());
ExtractForScalar = Builder.CreateExtractElement(
ExtractForScalar, Builder.getInt32(VF - 1), "vector.recur.extract");
}
// Extract the second last element in the middle block if the
// Phi is used outside the loop. We need to extract the phi itself
// and not the last element (the phi update in the current iteration). This
// will be the value when jumping to the exit block from the LoopMiddleBlock,
// when the scalar loop is not run at all.
Value *ExtractForPhiUsedOutsideLoop = nullptr;
if (VF > 1)
ExtractForPhiUsedOutsideLoop = Builder.CreateExtractElement(
Incoming, Builder.getInt32(VF - 2), "vector.recur.extract.for.phi");
// When loop is unrolled without vectorizing, initialize
// ExtractForPhiUsedOutsideLoop with the value just prior to unrolled value of
// `Incoming`. This is analogous to the vectorized case above: extracting the
// second last element when VF > 1.
else if (UF > 1)
ExtractForPhiUsedOutsideLoop = getOrCreateVectorValue(Previous, UF - 2);
// Fix the initial value of the original recurrence in the scalar loop.
Builder.SetInsertPoint(&*LoopScalarPreHeader->begin());
auto *Start = Builder.CreatePHI(Phi->getType(), 2, "scalar.recur.init");
for (auto *BB : predecessors(LoopScalarPreHeader)) {
auto *Incoming = BB == LoopMiddleBlock ? ExtractForScalar : ScalarInit;
Start->addIncoming(Incoming, BB);
}
Phi->setIncomingValue(Phi->getBasicBlockIndex(LoopScalarPreHeader), Start);
Phi->setName("scalar.recur");
// Finally, fix users of the recurrence outside the loop. The users will need
// either the last value of the scalar recurrence or the last value of the
// vector recurrence we extracted in the middle block. Since the loop is in
// LCSSA form, we just need to find all the phi nodes for the original scalar
// recurrence in the exit block, and then add an edge for the middle block.
for (PHINode &LCSSAPhi : LoopExitBlock->phis()) {
if (LCSSAPhi.getIncomingValue(0) == Phi) {
LCSSAPhi.addIncoming(ExtractForPhiUsedOutsideLoop, LoopMiddleBlock);
}
}
}
void InnerLoopVectorizer::fixReduction(PHINode *Phi) {
Constant *Zero = Builder.getInt32(0);
// Get it's reduction variable descriptor.
assert(Legal->isReductionVariable(Phi) &&
"Unable to find the reduction variable");
RecurrenceDescriptor RdxDesc = (*Legal->getReductionVars())[Phi];
RecurrenceDescriptor::RecurrenceKind RK = RdxDesc.getRecurrenceKind();
TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue();
Instruction *LoopExitInst = RdxDesc.getLoopExitInstr();
RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind =
RdxDesc.getMinMaxRecurrenceKind();
setDebugLocFromInst(Builder, ReductionStartValue);
// We need to generate a reduction vector from the incoming scalar.
// To do so, we need to generate the 'identity' vector and override
// one of the elements with the incoming scalar reduction. We need
// to do it in the vector-loop preheader.
Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
// This is the vector-clone of the value that leaves the loop.
Type *VecTy = getOrCreateVectorValue(LoopExitInst, 0)->getType();
// Find the reduction identity variable. Zero for addition, or, xor,
// one for multiplication, -1 for And.
Value *Identity;
Value *VectorStart;
if (RK == RecurrenceDescriptor::RK_IntegerMinMax ||
RK == RecurrenceDescriptor::RK_FloatMinMax) {
// MinMax reduction have the start value as their identify.
if (VF == 1) {
VectorStart = Identity = ReductionStartValue;
} else {
VectorStart = Identity =
Builder.CreateVectorSplat(VF, ReductionStartValue, "minmax.ident");
}
} else {
// Handle other reduction kinds:
Constant *Iden = RecurrenceDescriptor::getRecurrenceIdentity(
RK, VecTy->getScalarType());
if (VF == 1) {
Identity = Iden;
// This vector is the Identity vector where the first element is the
// incoming scalar reduction.
VectorStart = ReductionStartValue;
} else {
Identity = ConstantVector::getSplat(VF, Iden);
// This vector is the Identity vector where the first element is the
// incoming scalar reduction.
VectorStart =
Builder.CreateInsertElement(Identity, ReductionStartValue, Zero);
}
}
// Fix the vector-loop phi.
// Reductions do not have to start at zero. They can start with
// any loop invariant values.
BasicBlock *Latch = OrigLoop->getLoopLatch();
Value *LoopVal = Phi->getIncomingValueForBlock(Latch);
for (unsigned Part = 0; Part < UF; ++Part) {
Value *VecRdxPhi = getOrCreateVectorValue(Phi, Part);
Value *Val = getOrCreateVectorValue(LoopVal, Part);
// Make sure to add the reduction stat value only to the
// first unroll part.
Value *StartVal = (Part == 0) ? VectorStart : Identity;
cast<PHINode>(VecRdxPhi)->addIncoming(StartVal, LoopVectorPreHeader);
cast<PHINode>(VecRdxPhi)
->addIncoming(Val, LI->getLoopFor(LoopVectorBody)->getLoopLatch());
}
// Before each round, move the insertion point right between
// the PHIs and the values we are going to write.
// This allows us to write both PHINodes and the extractelement
// instructions.
Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt());
setDebugLocFromInst(Builder, LoopExitInst);
// If the vector reduction can be performed in a smaller type, we truncate
// then extend the loop exit value to enable InstCombine to evaluate the
// entire expression in the smaller type.
if (VF > 1 && Phi->getType() != RdxDesc.getRecurrenceType()) {
Type *RdxVecTy = VectorType::get(RdxDesc.getRecurrenceType(), VF);
Builder.SetInsertPoint(
LI->getLoopFor(LoopVectorBody)->getLoopLatch()->getTerminator());
VectorParts RdxParts(UF);
for (unsigned Part = 0; Part < UF; ++Part) {
RdxParts[Part] = VectorLoopValueMap.getVectorValue(LoopExitInst, Part);
Value *Trunc = Builder.CreateTrunc(RdxParts[Part], RdxVecTy);
Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy)
: Builder.CreateZExt(Trunc, VecTy);
for (Value::user_iterator UI = RdxParts[Part]->user_begin();
UI != RdxParts[Part]->user_end();)
if (*UI != Trunc) {
(*UI++)->replaceUsesOfWith(RdxParts[Part], Extnd);
RdxParts[Part] = Extnd;
} else {
++UI;
}
}
Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt());
for (unsigned Part = 0; Part < UF; ++Part) {
RdxParts[Part] = Builder.CreateTrunc(RdxParts[Part], RdxVecTy);
VectorLoopValueMap.resetVectorValue(LoopExitInst, Part, RdxParts[Part]);
}
}
// Reduce all of the unrolled parts into a single vector.
Value *ReducedPartRdx = VectorLoopValueMap.getVectorValue(LoopExitInst, 0);
unsigned Op = RecurrenceDescriptor::getRecurrenceBinOp(RK);
setDebugLocFromInst(Builder, ReducedPartRdx);
for (unsigned Part = 1; Part < UF; ++Part) {
Value *RdxPart = VectorLoopValueMap.getVectorValue(LoopExitInst, Part);
if (Op != Instruction::ICmp && Op != Instruction::FCmp)
// Floating point operations had to be 'fast' to enable the reduction.
ReducedPartRdx = addFastMathFlag(
Builder.CreateBinOp((Instruction::BinaryOps)Op, RdxPart,
ReducedPartRdx, "bin.rdx"));
else
ReducedPartRdx = createMinMaxOp(Builder, MinMaxKind, ReducedPartRdx,
RdxPart);
}
if (VF > 1) {
bool NoNaN = Legal->hasFunNoNaNAttr();
ReducedPartRdx =
createTargetReduction(Builder, TTI, RdxDesc, ReducedPartRdx, NoNaN);
// If the reduction can be performed in a smaller type, we need to extend
// the reduction to the wider type before we branch to the original loop.
if (Phi->getType() != RdxDesc.getRecurrenceType())
ReducedPartRdx =
RdxDesc.isSigned()
? Builder.CreateSExt(ReducedPartRdx, Phi->getType())
: Builder.CreateZExt(ReducedPartRdx, Phi->getType());
}
// Create a phi node that merges control-flow from the backedge-taken check
// block and the middle block.
PHINode *BCBlockPhi = PHINode::Create(Phi->getType(), 2, "bc.merge.rdx",
LoopScalarPreHeader->getTerminator());
for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I)
BCBlockPhi->addIncoming(ReductionStartValue, LoopBypassBlocks[I]);
BCBlockPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock);
// Now, we need to fix the users of the reduction variable
// inside and outside of the scalar remainder loop.
// We know that the loop is in LCSSA form. We need to update the
// PHI nodes in the exit blocks.
for (PHINode &LCSSAPhi : LoopExitBlock->phis()) {
// All PHINodes need to have a single entry edge, or two if
// we already fixed them.
assert(LCSSAPhi.getNumIncomingValues() < 3 && "Invalid LCSSA PHI");
// We found a reduction value exit-PHI. Update it with the
// incoming bypass edge.
if (LCSSAPhi.getIncomingValue(0) == LoopExitInst)
LCSSAPhi.addIncoming(ReducedPartRdx, LoopMiddleBlock);
} // end of the LCSSA phi scan.
// Fix the scalar loop reduction variable with the incoming reduction sum
// from the vector body and from the backedge value.
int IncomingEdgeBlockIdx =
Phi->getBasicBlockIndex(OrigLoop->getLoopLatch());
assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index");
// Pick the other block.
int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1);
Phi->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi);
Phi->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst);
}
void InnerLoopVectorizer::fixLCSSAPHIs() {
for (PHINode &LCSSAPhi : LoopExitBlock->phis()) {
if (LCSSAPhi.getNumIncomingValues() == 1) {
auto *IncomingValue = LCSSAPhi.getIncomingValue(0);
// Non-instruction incoming values will have only one value.
unsigned LastLane = 0;
if (isa<Instruction>(IncomingValue))
LastLane = Cost->isUniformAfterVectorization(
cast<Instruction>(IncomingValue), VF)
? 0
: VF - 1;
// Can be a loop invariant incoming value or the last scalar value to be
// extracted from the vectorized loop.
Builder.SetInsertPoint(LoopMiddleBlock->getTerminator());
Value *lastIncomingValue =
getOrCreateScalarValue(IncomingValue, { UF - 1, LastLane });
LCSSAPhi.addIncoming(lastIncomingValue, LoopMiddleBlock);
}
}
}
void InnerLoopVectorizer::sinkScalarOperands(Instruction *PredInst) {
// The basic block and loop containing the predicated instruction.
auto *PredBB = PredInst->getParent();
auto *VectorLoop = LI->getLoopFor(PredBB);
// Initialize a worklist with the operands of the predicated instruction.
SetVector<Value *> Worklist(PredInst->op_begin(), PredInst->op_end());
// Holds instructions that we need to analyze again. An instruction may be
// reanalyzed if we don't yet know if we can sink it or not.
SmallVector<Instruction *, 8> InstsToReanalyze;
// Returns true if a given use occurs in the predicated block. Phi nodes use
// their operands in their corresponding predecessor blocks.
auto isBlockOfUsePredicated = [&](Use &U) -> bool {
auto *I = cast<Instruction>(U.getUser());
BasicBlock *BB = I->getParent();
if (auto *Phi = dyn_cast<PHINode>(I))
BB = Phi->getIncomingBlock(
PHINode::getIncomingValueNumForOperand(U.getOperandNo()));
return BB == PredBB;
};
// Iteratively sink the scalarized operands of the predicated instruction
// into the block we created for it. When an instruction is sunk, it's
// operands are then added to the worklist. The algorithm ends after one pass
// through the worklist doesn't sink a single instruction.
bool Changed;
do {
// Add the instructions that need to be reanalyzed to the worklist, and
// reset the changed indicator.
Worklist.insert(InstsToReanalyze.begin(), InstsToReanalyze.end());
InstsToReanalyze.clear();
Changed = false;
while (!Worklist.empty()) {
auto *I = dyn_cast<Instruction>(Worklist.pop_back_val());
// We can't sink an instruction if it is a phi node, is already in the
// predicated block, is not in the loop, or may have side effects.
if (!I || isa<PHINode>(I) || I->getParent() == PredBB ||
!VectorLoop->contains(I) || I->mayHaveSideEffects())
continue;
// It's legal to sink the instruction if all its uses occur in the
// predicated block. Otherwise, there's nothing to do yet, and we may
// need to reanalyze the instruction.
if (!llvm::all_of(I->uses(), isBlockOfUsePredicated)) {
InstsToReanalyze.push_back(I);
continue;
}
// Move the instruction to the beginning of the predicated block, and add
// it's operands to the worklist.
I->moveBefore(&*PredBB->getFirstInsertionPt());
Worklist.insert(I->op_begin(), I->op_end());
// The sinking may have enabled other instructions to be sunk, so we will
// need to iterate.
Changed = true;
}
} while (Changed);
}
void InnerLoopVectorizer::fixNonInductionPHIs() {
for (PHINode *OrigPhi : OrigPHIsToFix) {
PHINode *NewPhi =
cast<PHINode>(VectorLoopValueMap.getVectorValue(OrigPhi, 0));
unsigned NumIncomingValues = OrigPhi->getNumIncomingValues();
SmallVector<BasicBlock *, 2> ScalarBBPredecessors(
predecessors(OrigPhi->getParent()));
SmallVector<BasicBlock *, 2> VectorBBPredecessors(
predecessors(NewPhi->getParent()));
assert(ScalarBBPredecessors.size() == VectorBBPredecessors.size() &&
"Scalar and Vector BB should have the same number of predecessors");
// The insertion point in Builder may be invalidated by the time we get
// here. Force the Builder insertion point to something valid so that we do
// not run into issues during insertion point restore in
// getOrCreateVectorValue calls below.
Builder.SetInsertPoint(NewPhi);
// The predecessor order is preserved and we can rely on mapping between
// scalar and vector block predecessors.
for (unsigned i = 0; i < NumIncomingValues; ++i) {
BasicBlock *NewPredBB = VectorBBPredecessors[i];
// When looking up the new scalar/vector values to fix up, use incoming
// values from original phi.
Value *ScIncV =
OrigPhi->getIncomingValueForBlock(ScalarBBPredecessors[i]);
// Scalar incoming value may need a broadcast
Value *NewIncV = getOrCreateVectorValue(ScIncV, 0);
NewPhi->addIncoming(NewIncV, NewPredBB);
}
}
}
void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN, unsigned UF,
unsigned VF) {
PHINode *P = cast<PHINode>(PN);
if (EnableVPlanNativePath) {
// Currently we enter here in the VPlan-native path for non-induction
// PHIs where all control flow is uniform. We simply widen these PHIs.
// Create a vector phi with no operands - the vector phi operands will be
// set at the end of vector code generation.
Type *VecTy =
(VF == 1) ? PN->getType() : VectorType::get(PN->getType(), VF);
Value *VecPhi = Builder.CreatePHI(VecTy, PN->getNumOperands(), "vec.phi");
VectorLoopValueMap.setVectorValue(P, 0, VecPhi);
OrigPHIsToFix.push_back(P);
return;
}
assert(PN->getParent() == OrigLoop->getHeader() &&
"Non-header phis should have been handled elsewhere");
// In order to support recurrences we need to be able to vectorize Phi nodes.
// Phi nodes have cycles, so we need to vectorize them in two stages. This is
// stage #1: We create a new vector PHI node with no incoming edges. We'll use
// this value when we vectorize all of the instructions that use the PHI.
if (Legal->isReductionVariable(P) || Legal->isFirstOrderRecurrence(P)) {
for (unsigned Part = 0; Part < UF; ++Part) {
// This is phase one of vectorizing PHIs.
Type *VecTy =
(VF == 1) ? PN->getType() : VectorType::get(PN->getType(), VF);
Value *EntryPart = PHINode::Create(
VecTy, 2, "vec.phi", &*LoopVectorBody->getFirstInsertionPt());
VectorLoopValueMap.setVectorValue(P, Part, EntryPart);
}
return;
}
setDebugLocFromInst(Builder, P);
// This PHINode must be an induction variable.
// Make sure that we know about it.
assert(Legal->getInductionVars()->count(P) && "Not an induction variable");
InductionDescriptor II = Legal->getInductionVars()->lookup(P);
const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout();
// FIXME: The newly created binary instructions should contain nsw/nuw flags,
// which can be found from the original scalar operations.
switch (II.getKind()) {
case InductionDescriptor::IK_NoInduction:
llvm_unreachable("Unknown induction");
case InductionDescriptor::IK_IntInduction:
case InductionDescriptor::IK_FpInduction:
llvm_unreachable("Integer/fp induction is handled elsewhere.");
case InductionDescriptor::IK_PtrInduction: {
// Handle the pointer induction variable case.
assert(P->getType()->isPointerTy() && "Unexpected type.");
// This is the normalized GEP that starts counting at zero.
Value *PtrInd = Induction;
PtrInd = Builder.CreateSExtOrTrunc(PtrInd, II.getStep()->getType());
// Determine the number of scalars we need to generate for each unroll
// iteration. If the instruction is uniform, we only need to generate the
// first lane. Otherwise, we generate all VF values.
unsigned Lanes = Cost->isUniformAfterVectorization(P, VF) ? 1 : VF;
// These are the scalar results. Notice that we don't generate vector GEPs
// because scalar GEPs result in better code.
for (unsigned Part = 0; Part < UF; ++Part) {
for (unsigned Lane = 0; Lane < Lanes; ++Lane) {
Constant *Idx = ConstantInt::get(PtrInd->getType(), Lane + Part * VF);
Value *GlobalIdx = Builder.CreateAdd(PtrInd, Idx);
Value *SclrGep =
emitTransformedIndex(Builder, GlobalIdx, PSE.getSE(), DL, II);
SclrGep->setName("next.gep");
VectorLoopValueMap.setScalarValue(P, {Part, Lane}, SclrGep);
}
}
return;
}
}
}
/// A helper function for checking whether an integer division-related
/// instruction may divide by zero (in which case it must be predicated if
/// executed conditionally in the scalar code).
/// TODO: It may be worthwhile to generalize and check isKnownNonZero().
/// Non-zero divisors that are non compile-time constants will not be
/// converted into multiplication, so we will still end up scalarizing
/// the division, but can do so w/o predication.
static bool mayDivideByZero(Instruction &I) {
assert((I.getOpcode() == Instruction::UDiv ||
I.getOpcode() == Instruction::SDiv ||
I.getOpcode() == Instruction::URem ||
I.getOpcode() == Instruction::SRem) &&
"Unexpected instruction");
Value *Divisor = I.getOperand(1);
auto *CInt = dyn_cast<ConstantInt>(Divisor);
return !CInt || CInt->isZero();
}
void InnerLoopVectorizer::widenInstruction(Instruction &I) {
switch (I.getOpcode()) {
case Instruction::Br:
case Instruction::PHI:
llvm_unreachable("This instruction is handled by a different recipe.");
case Instruction::GetElementPtr: {
// Construct a vector GEP by widening the operands of the scalar GEP as
// necessary. We mark the vector GEP 'inbounds' if appropriate. A GEP
// results in a vector of pointers when at least one operand of the GEP
// is vector-typed. Thus, to keep the representation compact, we only use
// vector-typed operands for loop-varying values.
auto *GEP = cast<GetElementPtrInst>(&I);
if (VF > 1 && OrigLoop->hasLoopInvariantOperands(GEP)) {
// If we are vectorizing, but the GEP has only loop-invariant operands,
// the GEP we build (by only using vector-typed operands for
// loop-varying values) would be a scalar pointer. Thus, to ensure we
// produce a vector of pointers, we need to either arbitrarily pick an
// operand to broadcast, or broadcast a clone of the original GEP.
// Here, we broadcast a clone of the original.
//
// TODO: If at some point we decide to scalarize instructions having
// loop-invariant operands, this special case will no longer be
// required. We would add the scalarization decision to
// collectLoopScalars() and teach getVectorValue() to broadcast
// the lane-zero scalar value.
auto *Clone = Builder.Insert(GEP->clone());
for (unsigned Part = 0; Part < UF; ++Part) {
Value *EntryPart = Builder.CreateVectorSplat(VF, Clone);
VectorLoopValueMap.setVectorValue(&I, Part, EntryPart);
addMetadata(EntryPart, GEP);
}
} else {
// If the GEP has at least one loop-varying operand, we are sure to
// produce a vector of pointers. But if we are only unrolling, we want
// to produce a scalar GEP for each unroll part. Thus, the GEP we
// produce with the code below will be scalar (if VF == 1) or vector
// (otherwise). Note that for the unroll-only case, we still maintain
// values in the vector mapping with initVector, as we do for other
// instructions.
for (unsigned Part = 0; Part < UF; ++Part) {
// The pointer operand of the new GEP. If it's loop-invariant, we
// won't broadcast it.
auto *Ptr =
OrigLoop->isLoopInvariant(GEP->getPointerOperand())
? GEP->getPointerOperand()
: getOrCreateVectorValue(GEP->getPointerOperand(), Part);
// Collect all the indices for the new GEP. If any index is
// loop-invariant, we won't broadcast it.
SmallVector<Value *, 4> Indices;
for (auto &U : make_range(GEP->idx_begin(), GEP->idx_end())) {
if (OrigLoop->isLoopInvariant(U.get()))
Indices.push_back(U.get());
else
Indices.push_back(getOrCreateVectorValue(U.get(), Part));
}
// Create the new GEP. Note that this GEP may be a scalar if VF == 1,
// but it should be a vector, otherwise.
auto *NewGEP = GEP->isInBounds()
? Builder.CreateInBoundsGEP(Ptr, Indices)
: Builder.CreateGEP(Ptr, Indices);
assert((VF == 1 || NewGEP->getType()->isVectorTy()) &&
"NewGEP is not a pointer vector");
VectorLoopValueMap.setVectorValue(&I, Part, NewGEP);
addMetadata(NewGEP, GEP);
}
}
break;
}
case Instruction::UDiv:
case Instruction::SDiv:
case Instruction::SRem:
case Instruction::URem:
case Instruction::Add:
case Instruction::FAdd:
case Instruction::Sub:
case Instruction::FSub:
case Instruction::Mul:
case Instruction::FMul:
case Instruction::FDiv:
case Instruction::FRem:
case Instruction::Shl:
case Instruction::LShr:
case Instruction::AShr:
case Instruction::And:
case Instruction::Or:
case Instruction::Xor: {
// Just widen binops.
auto *BinOp = cast<BinaryOperator>(&I);
setDebugLocFromInst(Builder, BinOp);
for (unsigned Part = 0; Part < UF; ++Part) {
Value *A = getOrCreateVectorValue(BinOp->getOperand(0), Part);
Value *B = getOrCreateVectorValue(BinOp->getOperand(1), Part);
Value *V = Builder.CreateBinOp(BinOp->getOpcode(), A, B);
if (BinaryOperator *VecOp = dyn_cast<BinaryOperator>(V))
VecOp->copyIRFlags(BinOp);
// Use this vector value for all users of the original instruction.
VectorLoopValueMap.setVectorValue(&I, Part, V);
addMetadata(V, BinOp);
}
break;
}
case Instruction::Select: {
// Widen selects.
// If the selector is loop invariant we can create a select
// instruction with a scalar condition. Otherwise, use vector-select.
auto *SE = PSE.getSE();
bool InvariantCond =
SE->isLoopInvariant(PSE.getSCEV(I.getOperand(0)), OrigLoop);
setDebugLocFromInst(Builder, &I);
// The condition can be loop invariant but still defined inside the
// loop. This means that we can't just use the original 'cond' value.
// We have to take the 'vectorized' value and pick the first lane.
// Instcombine will make this a no-op.
auto *ScalarCond = getOrCreateScalarValue(I.getOperand(0), {0, 0});
for (unsigned Part = 0; Part < UF; ++Part) {
Value *Cond = getOrCreateVectorValue(I.getOperand(0), Part);
Value *Op0 = getOrCreateVectorValue(I.getOperand(1), Part);
Value *Op1 = getOrCreateVectorValue(I.getOperand(2), Part);
Value *Sel =
Builder.CreateSelect(InvariantCond ? ScalarCond : Cond, Op0, Op1);
VectorLoopValueMap.setVectorValue(&I, Part, Sel);
addMetadata(Sel, &I);
}
break;
}
case Instruction::ICmp:
case Instruction::FCmp: {
// Widen compares. Generate vector compares.
bool FCmp = (I.getOpcode() == Instruction::FCmp);
auto *Cmp = dyn_cast<CmpInst>(&I);
setDebugLocFromInst(Builder, Cmp);
for (unsigned Part = 0; Part < UF; ++Part) {
Value *A = getOrCreateVectorValue(Cmp->getOperand(0), Part);
Value *B = getOrCreateVectorValue(Cmp->getOperand(1), Part);
Value *C = nullptr;
if (FCmp) {
// Propagate fast math flags.
IRBuilder<>::FastMathFlagGuard FMFG(Builder);
Builder.setFastMathFlags(Cmp->getFastMathFlags());
C = Builder.CreateFCmp(Cmp->getPredicate(), A, B);
} else {
C = Builder.CreateICmp(Cmp->getPredicate(), A, B);
}
VectorLoopValueMap.setVectorValue(&I, Part, C);
addMetadata(C, &I);
}
break;
}
case Instruction::ZExt:
case Instruction::SExt:
case Instruction::FPToUI:
case Instruction::FPToSI:
case Instruction::FPExt:
case Instruction::PtrToInt:
case Instruction::IntToPtr:
case Instruction::SIToFP:
case Instruction::UIToFP:
case Instruction::Trunc:
case Instruction::FPTrunc:
case Instruction::BitCast: {
auto *CI = dyn_cast<CastInst>(&I);
setDebugLocFromInst(Builder, CI);
/// Vectorize casts.
Type *DestTy =
(VF == 1) ? CI->getType() : VectorType::get(CI->getType(), VF);
for (unsigned Part = 0; Part < UF; ++Part) {
Value *A = getOrCreateVectorValue(CI->getOperand(0), Part);
Value *Cast = Builder.CreateCast(CI->getOpcode(), A, DestTy);
VectorLoopValueMap.setVectorValue(&I, Part, Cast);
addMetadata(Cast, &I);
}
break;
}
case Instruction::Call: {
// Ignore dbg intrinsics.
if (isa<DbgInfoIntrinsic>(I))
break;
setDebugLocFromInst(Builder, &I);
Module *M = I.getParent()->getParent()->getParent();
auto *CI = cast<CallInst>(&I);
StringRef FnName = CI->getCalledFunction()->getName();
Function *F = CI->getCalledFunction();
Type *RetTy = ToVectorTy(CI->getType(), VF);
SmallVector<Type *, 4> Tys;
for (Value *ArgOperand : CI->arg_operands())
Tys.push_back(ToVectorTy(ArgOperand->getType(), VF));
Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
// The flag shows whether we use Intrinsic or a usual Call for vectorized
// version of the instruction.
// Is it beneficial to perform intrinsic call compared to lib call?
bool NeedToScalarize;
unsigned CallCost = getVectorCallCost(CI, VF, *TTI, TLI, NeedToScalarize);
bool UseVectorIntrinsic =
ID && getVectorIntrinsicCost(CI, VF, *TTI, TLI) <= CallCost;
assert((UseVectorIntrinsic || !NeedToScalarize) &&
"Instruction should be scalarized elsewhere.");
for (unsigned Part = 0; Part < UF; ++Part) {
SmallVector<Value *, 4> Args;
for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) {
Value *Arg = CI->getArgOperand(i);
// Some intrinsics have a scalar argument - don't replace it with a
// vector.
if (!UseVectorIntrinsic || !hasVectorInstrinsicScalarOpd(ID, i))
Arg = getOrCreateVectorValue(CI->getArgOperand(i), Part);
Args.push_back(Arg);
}
Function *VectorF;
if (UseVectorIntrinsic) {
// Use vector version of the intrinsic.
Type *TysForDecl[] = {CI->getType()};
if (VF > 1)
TysForDecl[0] = VectorType::get(CI->getType()->getScalarType(), VF);
VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl);
} else {
// Use vector version of the library call.
StringRef VFnName = TLI->getVectorizedFunction(FnName, VF);
assert(!VFnName.empty() && "Vector function name is empty.");
VectorF = M->getFunction(VFnName);
if (!VectorF) {
// Generate a declaration
FunctionType *FTy = FunctionType::get(RetTy, Tys, false);
VectorF =
Function::Create(FTy, Function::ExternalLinkage, VFnName, M);
VectorF->copyAttributesFrom(F);
}
}
assert(VectorF && "Can't create vector function.");
SmallVector<OperandBundleDef, 1> OpBundles;
CI->getOperandBundlesAsDefs(OpBundles);
CallInst *V = Builder.CreateCall(VectorF, Args, OpBundles);
if (isa<FPMathOperator>(V))
V->copyFastMathFlags(CI);
VectorLoopValueMap.setVectorValue(&I, Part, V);
addMetadata(V, &I);
}
break;
}
default:
// This instruction is not vectorized by simple widening.
LLVM_DEBUG(dbgs() << "LV: Found an unhandled instruction: " << I);
llvm_unreachable("Unhandled instruction!");
} // end of switch.
}
void InnerLoopVectorizer::updateAnalysis() {
// Forget the original basic block.
PSE.getSE()->forgetLoop(OrigLoop);
// DT is not kept up-to-date for outer loop vectorization
if (EnableVPlanNativePath)
return;
// Update the dominator tree information.
assert(DT->properlyDominates(LoopBypassBlocks.front(), LoopExitBlock) &&
"Entry does not dominate exit.");
DT->addNewBlock(LoopMiddleBlock,
LI->getLoopFor(LoopVectorBody)->getLoopLatch());
DT->addNewBlock(LoopScalarPreHeader, LoopBypassBlocks[0]);
DT->changeImmediateDominator(LoopScalarBody, LoopScalarPreHeader);
DT->changeImmediateDominator(LoopExitBlock, LoopBypassBlocks[0]);
assert(DT->verify(DominatorTree::VerificationLevel::Fast));
}
void LoopVectorizationCostModel::collectLoopScalars(unsigned VF) {
// We should not collect Scalars more than once per VF. Right now, this
// function is called from collectUniformsAndScalars(), which already does
// this check. Collecting Scalars for VF=1 does not make any sense.
assert(VF >= 2 && Scalars.find(VF) == Scalars.end() &&
"This function should not be visited twice for the same VF");
SmallSetVector<Instruction *, 8> Worklist;
// These sets are used to seed the analysis with pointers used by memory
// accesses that will remain scalar.
SmallSetVector<Instruction *, 8> ScalarPtrs;
SmallPtrSet<Instruction *, 8> PossibleNonScalarPtrs;
// A helper that returns true if the use of Ptr by MemAccess will be scalar.
// The pointer operands of loads and stores will be scalar as long as the
// memory access is not a gather or scatter operation. The value operand of a
// store will remain scalar if the store is scalarized.
auto isScalarUse = [&](Instruction *MemAccess, Value *Ptr) {
InstWidening WideningDecision = getWideningDecision(MemAccess, VF);
assert(WideningDecision != CM_Unknown &&
"Widening decision should be ready at this moment");
if (auto *Store = dyn_cast<StoreInst>(MemAccess))
if (Ptr == Store->getValueOperand())
return WideningDecision == CM_Scalarize;
assert(Ptr == getLoadStorePointerOperand(MemAccess) &&
"Ptr is neither a value or pointer operand");
return WideningDecision != CM_GatherScatter;
};
// A helper that returns true if the given value is a bitcast or
// getelementptr instruction contained in the loop.
auto isLoopVaryingBitCastOrGEP = [&](Value *V) {
return ((isa<BitCastInst>(V) && V->getType()->isPointerTy()) ||
isa<GetElementPtrInst>(V)) &&
!TheLoop->isLoopInvariant(V);
};
// A helper that evaluates a memory access's use of a pointer. If the use
// will be a scalar use, and the pointer is only used by memory accesses, we
// place the pointer in ScalarPtrs. Otherwise, the pointer is placed in
// PossibleNonScalarPtrs.
auto evaluatePtrUse = [&](Instruction *MemAccess, Value *Ptr) {
// We only care about bitcast and getelementptr instructions contained in
// the loop.
if (!isLoopVaryingBitCastOrGEP(Ptr))
return;
// If the pointer has already been identified as scalar (e.g., if it was
// also identified as uniform), there's nothing to do.
auto *I = cast<Instruction>(Ptr);
if (Worklist.count(I))
return;
// If the use of the pointer will be a scalar use, and all users of the
// pointer are memory accesses, place the pointer in ScalarPtrs. Otherwise,
// place the pointer in PossibleNonScalarPtrs.
if (isScalarUse(MemAccess, Ptr) && llvm::all_of(I->users(), [&](User *U) {
return isa<LoadInst>(U) || isa<StoreInst>(U);
}))
ScalarPtrs.insert(I);
else
PossibleNonScalarPtrs.insert(I);
};
// We seed the scalars analysis with three classes of instructions: (1)
// instructions marked uniform-after-vectorization, (2) bitcast and
// getelementptr instructions used by memory accesses requiring a scalar use,
// and (3) pointer induction variables and their update instructions (we
// currently only scalarize these).
//
// (1) Add to the worklist all instructions that have been identified as
// uniform-after-vectorization.
Worklist.insert(Uniforms[VF].begin(), Uniforms[VF].end());
// (2) Add to the worklist all bitcast and getelementptr instructions used by
// memory accesses requiring a scalar use. The pointer operands of loads and
// stores will be scalar as long as the memory accesses is not a gather or
// scatter operation. The value operand of a store will remain scalar if the
// store is scalarized.
for (auto *BB : TheLoop->blocks())
for (auto &I : *BB) {
if (auto *Load = dyn_cast<LoadInst>(&I)) {
evaluatePtrUse(Load, Load->getPointerOperand());
} else if (auto *Store = dyn_cast<StoreInst>(&I)) {
evaluatePtrUse(Store, Store->getPointerOperand());
evaluatePtrUse(Store, Store->getValueOperand());
}
}
for (auto *I : ScalarPtrs)
if (PossibleNonScalarPtrs.find(I) == PossibleNonScalarPtrs.end()) {
LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *I << "\n");
Worklist.insert(I);
}
// (3) Add to the worklist all pointer induction variables and their update
// instructions.
//
// TODO: Once we are able to vectorize pointer induction variables we should
// no longer insert them into the worklist here.
auto *Latch = TheLoop->getLoopLatch();
for (auto &Induction : *Legal->getInductionVars()) {
auto *Ind = Induction.first;
auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
if (Induction.second.getKind() != InductionDescriptor::IK_PtrInduction)
continue;
Worklist.insert(Ind);
Worklist.insert(IndUpdate);
LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n");
LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate
<< "\n");
}
// Insert the forced scalars.
// FIXME: Currently widenPHIInstruction() often creates a dead vector
// induction variable when the PHI user is scalarized.
auto ForcedScalar = ForcedScalars.find(VF);
if (ForcedScalar != ForcedScalars.end())
for (auto *I : ForcedScalar->second)
Worklist.insert(I);
// Expand the worklist by looking through any bitcasts and getelementptr
// instructions we've already identified as scalar. This is similar to the
// expansion step in collectLoopUniforms(); however, here we're only
// expanding to include additional bitcasts and getelementptr instructions.
unsigned Idx = 0;
while (Idx != Worklist.size()) {
Instruction *Dst = Worklist[Idx++];
if (!isLoopVaryingBitCastOrGEP(Dst->getOperand(0)))
continue;
auto *Src = cast<Instruction>(Dst->getOperand(0));
if (llvm::all_of(Src->users(), [&](User *U) -> bool {
auto *J = cast<Instruction>(U);
return !TheLoop->contains(J) || Worklist.count(J) ||
((isa<LoadInst>(J) || isa<StoreInst>(J)) &&
isScalarUse(J, Src));
})) {
Worklist.insert(Src);
LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Src << "\n");
}
}
// An induction variable will remain scalar if all users of the induction
// variable and induction variable update remain scalar.
for (auto &Induction : *Legal->getInductionVars()) {
auto *Ind = Induction.first;
auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
// We already considered pointer induction variables, so there's no reason
// to look at their users again.
//
// TODO: Once we are able to vectorize pointer induction variables we
// should no longer skip over them here.
if (Induction.second.getKind() == InductionDescriptor::IK_PtrInduction)
continue;
// Determine if all users of the induction variable are scalar after
// vectorization.
auto ScalarInd = llvm::all_of(Ind->users(), [&](User *U) -> bool {
auto *I = cast<Instruction>(U);
return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I);
});
if (!ScalarInd)
continue;
// Determine if all users of the induction variable update instruction are
// scalar after vectorization.
auto ScalarIndUpdate =
llvm::all_of(IndUpdate->users(), [&](User *U) -> bool {
auto *I = cast<Instruction>(U);
return I == Ind || !TheLoop->contains(I) || Worklist.count(I);
});
if (!ScalarIndUpdate)
continue;
// The induction variable and its update instruction will remain scalar.
Worklist.insert(Ind);
Worklist.insert(IndUpdate);
LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n");
LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate
<< "\n");
}
Scalars[VF].insert(Worklist.begin(), Worklist.end());
}
bool LoopVectorizationCostModel::isScalarWithPredication(Instruction *I, unsigned VF) {
if (!Legal->blockNeedsPredication(I->getParent()))
return false;
switch(I->getOpcode()) {
default:
break;
case Instruction::Load:
case Instruction::Store: {
if (!Legal->isMaskRequired(I))
return false;
auto *Ptr = getLoadStorePointerOperand(I);
auto *Ty = getMemInstValueType(I);
// We have already decided how to vectorize this instruction, get that
// result.
if (VF > 1) {
InstWidening WideningDecision = getWideningDecision(I, VF);
assert(WideningDecision != CM_Unknown &&
"Widening decision should be ready at this moment");
return WideningDecision == CM_Scalarize;
}
return isa<LoadInst>(I) ?
!(isLegalMaskedLoad(Ty, Ptr) || isLegalMaskedGather(Ty))
: !(isLegalMaskedStore(Ty, Ptr) || isLegalMaskedScatter(Ty));
}
case Instruction::UDiv:
case Instruction::SDiv:
case Instruction::SRem:
case Instruction::URem:
return mayDivideByZero(*I);
}
return false;
}
bool LoopVectorizationCostModel::memoryInstructionCanBeWidened(Instruction *I,
unsigned VF) {
// Get and ensure we have a valid memory instruction.
LoadInst *LI = dyn_cast<LoadInst>(I);
StoreInst *SI = dyn_cast<StoreInst>(I);
assert((LI || SI) && "Invalid memory instruction");
auto *Ptr = getLoadStorePointerOperand(I);
// In order to be widened, the pointer should be consecutive, first of all.
if (!Legal->isConsecutivePtr(Ptr))
return false;
// If the instruction is a store located in a predicated block, it will be
// scalarized.
if (isScalarWithPredication(I))
return false;
// If the instruction's allocated size doesn't equal it's type size, it
// requires padding and will be scalarized.
auto &DL = I->getModule()->getDataLayout();
auto *ScalarTy = LI ? LI->getType() : SI->getValueOperand()->getType();
if (hasIrregularType(ScalarTy, DL, VF))
return false;
return true;
}
void LoopVectorizationCostModel::collectLoopUniforms(unsigned VF) {
// We should not collect Uniforms more than once per VF. Right now,
// this function is called from collectUniformsAndScalars(), which
// already does this check. Collecting Uniforms for VF=1 does not make any
// sense.
assert(VF >= 2 && Uniforms.find(VF) == Uniforms.end() &&
"This function should not be visited twice for the same VF");
// Visit the list of Uniforms. If we'll not find any uniform value, we'll
// not analyze again. Uniforms.count(VF) will return 1.
Uniforms[VF].clear();
// We now know that the loop is vectorizable!
// Collect instructions inside the loop that will remain uniform after
// vectorization.
// Global values, params and instructions outside of current loop are out of
// scope.
auto isOutOfScope = [&](Value *V) -> bool {
Instruction *I = dyn_cast<Instruction>(V);
return (!I || !TheLoop->contains(I));
};
SetVector<Instruction *> Worklist;
BasicBlock *Latch = TheLoop->getLoopLatch();
// Start with the conditional branch. If the branch condition is an
// instruction contained in the loop that is only used by the branch, it is
// uniform.
auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0));
if (Cmp && TheLoop->contains(Cmp) && Cmp->hasOneUse()) {
Worklist.insert(Cmp);
LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *Cmp << "\n");
}
// Holds consecutive and consecutive-like pointers. Consecutive-like pointers
// are pointers that are treated like consecutive pointers during
// vectorization. The pointer operands of interleaved accesses are an
// example.
SmallSetVector<Instruction *, 8> ConsecutiveLikePtrs;
// Holds pointer operands of instructions that are possibly non-uniform.
SmallPtrSet<Instruction *, 8> PossibleNonUniformPtrs;
auto isUniformDecision = [&](Instruction *I, unsigned VF) {
InstWidening WideningDecision = getWideningDecision(I, VF);
assert(WideningDecision != CM_Unknown &&
"Widening decision should be ready at this moment");
return (WideningDecision == CM_Widen ||
WideningDecision == CM_Widen_Reverse ||
WideningDecision == CM_Interleave);
};
// Iterate over the instructions in the loop, and collect all
// consecutive-like pointer operands in ConsecutiveLikePtrs. If it's possible
// that a consecutive-like pointer operand will be scalarized, we collect it
// in PossibleNonUniformPtrs instead. We use two sets here because a single
// getelementptr instruction can be used by both vectorized and scalarized
// memory instructions. For example, if a loop loads and stores from the same
// location, but the store is conditional, the store will be scalarized, and
// the getelementptr won't remain uniform.
for (auto *BB : TheLoop->blocks())
for (auto &I : *BB) {
// If there's no pointer operand, there's nothing to do.
auto *Ptr = dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I));
if (!Ptr)
continue;
// True if all users of Ptr are memory accesses that have Ptr as their
// pointer operand.
auto UsersAreMemAccesses =
llvm::all_of(Ptr->users(), [&](User *U) -> bool {
return getLoadStorePointerOperand(U) == Ptr;
});
// Ensure the memory instruction will not be scalarized or used by
// gather/scatter, making its pointer operand non-uniform. If the pointer
// operand is used by any instruction other than a memory access, we
// conservatively assume the pointer operand may be non-uniform.
if (!UsersAreMemAccesses || !isUniformDecision(&I, VF))
PossibleNonUniformPtrs.insert(Ptr);
// If the memory instruction will be vectorized and its pointer operand
// is consecutive-like, or interleaving - the pointer operand should
// remain uniform.
else
ConsecutiveLikePtrs.insert(Ptr);
}
// Add to the Worklist all consecutive and consecutive-like pointers that
// aren't also identified as possibly non-uniform.
for (auto *V : ConsecutiveLikePtrs)
if (PossibleNonUniformPtrs.find(V) == PossibleNonUniformPtrs.end()) {
LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *V << "\n");
Worklist.insert(V);
}
// Expand Worklist in topological order: whenever a new instruction
// is added , its users should be already inside Worklist. It ensures
// a uniform instruction will only be used by uniform instructions.
unsigned idx = 0;
while (idx != Worklist.size()) {
Instruction *I = Worklist[idx++];
for (auto OV : I->operand_values()) {
// isOutOfScope operands cannot be uniform instructions.
if (isOutOfScope(OV))
continue;
// First order recurrence Phi's should typically be considered
// non-uniform.
auto *OP = dyn_cast<PHINode>(OV);
if (OP && Legal->isFirstOrderRecurrence(OP))
continue;
// If all the users of the operand are uniform, then add the
// operand into the uniform worklist.
auto *OI = cast<Instruction>(OV);
if (llvm::all_of(OI->users(), [&](User *U) -> bool {
auto *J = cast<Instruction>(U);
return Worklist.count(J) ||
(OI == getLoadStorePointerOperand(J) &&
isUniformDecision(J, VF));
})) {
Worklist.insert(OI);
LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *OI << "\n");
}
}
}
// Returns true if Ptr is the pointer operand of a memory access instruction
// I, and I is known to not require scalarization.
auto isVectorizedMemAccessUse = [&](Instruction *I, Value *Ptr) -> bool {
return getLoadStorePointerOperand(I) == Ptr && isUniformDecision(I, VF);
};
// For an instruction to be added into Worklist above, all its users inside
// the loop should also be in Worklist. However, this condition cannot be
// true for phi nodes that form a cyclic dependence. We must process phi
// nodes separately. An induction variable will remain uniform if all users
// of the induction variable and induction variable update remain uniform.
// The code below handles both pointer and non-pointer induction variables.
for (auto &Induction : *Legal->getInductionVars()) {
auto *Ind = Induction.first;
auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
// Determine if all users of the induction variable are uniform after
// vectorization.
auto UniformInd = llvm::all_of(Ind->users(), [&](User *U) -> bool {
auto *I = cast<Instruction>(U);
return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) ||
isVectorizedMemAccessUse(I, Ind);
});
if (!UniformInd)
continue;
// Determine if all users of the induction variable update instruction are
// uniform after vectorization.
auto UniformIndUpdate =
llvm::all_of(IndUpdate->users(), [&](User *U) -> bool {
auto *I = cast<Instruction>(U);
return I == Ind || !TheLoop->contains(I) || Worklist.count(I) ||
isVectorizedMemAccessUse(I, IndUpdate);
});
if (!UniformIndUpdate)
continue;
// The induction variable and its update instruction will remain uniform.
Worklist.insert(Ind);
Worklist.insert(IndUpdate);
LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *Ind << "\n");
LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *IndUpdate
<< "\n");
}
Uniforms[VF].insert(Worklist.begin(), Worklist.end());
}
Optional<unsigned> LoopVectorizationCostModel::computeMaxVF(bool OptForSize) {
if (Legal->getRuntimePointerChecking()->Need && TTI.hasBranchDivergence()) {
// TODO: It may by useful to do since it's still likely to be dynamically
// uniform if the target can skip.
LLVM_DEBUG(
dbgs() << "LV: Not inserting runtime ptr check for divergent target");
ORE->emit(
createMissedAnalysis("CantVersionLoopWithDivergentTarget")
<< "runtime pointer checks needed. Not enabled for divergent target");
return None;
}
unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop);
if (!OptForSize) // Remaining checks deal with scalar loop when OptForSize.
return computeFeasibleMaxVF(OptForSize, TC);
if (Legal->getRuntimePointerChecking()->Need) {
ORE->emit(createMissedAnalysis("CantVersionLoopWithOptForSize")
<< "runtime pointer checks needed. Enable vectorization of this "
"loop with '#pragma clang loop vectorize(enable)' when "
"compiling with -Os/-Oz");
LLVM_DEBUG(
dbgs()
<< "LV: Aborting. Runtime ptr check is required with -Os/-Oz.\n");
return None;
}
// If we optimize the program for size, avoid creating the tail loop.
LLVM_DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n');
// If we don't know the precise trip count, don't try to vectorize.
if (TC < 2) {
ORE->emit(
createMissedAnalysis("UnknownLoopCountComplexCFG")
<< "unable to calculate the loop count due to complex control flow");
LLVM_DEBUG(
dbgs() << "LV: Aborting. A tail loop is required with -Os/-Oz.\n");
return None;
}
unsigned MaxVF = computeFeasibleMaxVF(OptForSize, TC);
if (TC % MaxVF != 0) {
// If the trip count that we found modulo the vectorization factor is not
// zero then we require a tail.
// FIXME: look for a smaller MaxVF that does divide TC rather than give up.
// FIXME: return None if loop requiresScalarEpilog(<MaxVF>), or look for a
// smaller MaxVF that does not require a scalar epilog.
ORE->emit(createMissedAnalysis("NoTailLoopWithOptForSize")
<< "cannot optimize for size and vectorize at the "
"same time. Enable vectorization of this loop "
"with '#pragma clang loop vectorize(enable)' "
"when compiling with -Os/-Oz");
LLVM_DEBUG(
dbgs() << "LV: Aborting. A tail loop is required with -Os/-Oz.\n");
return None;
}
return MaxVF;
}
unsigned
LoopVectorizationCostModel::computeFeasibleMaxVF(bool OptForSize,
unsigned ConstTripCount) {
MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI);
unsigned SmallestType, WidestType;
std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes();
unsigned WidestRegister = TTI.getRegisterBitWidth(true);
// Get the maximum safe dependence distance in bits computed by LAA.
// It is computed by MaxVF * sizeOf(type) * 8, where type is taken from
// the memory accesses that is most restrictive (involved in the smallest
// dependence distance).
unsigned MaxSafeRegisterWidth = Legal->getMaxSafeRegisterWidth();
WidestRegister = std::min(WidestRegister, MaxSafeRegisterWidth);
unsigned MaxVectorSize = WidestRegister / WidestType;
LLVM_DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType
<< " / " << WidestType << " bits.\n");
LLVM_DEBUG(dbgs() << "LV: The Widest register safe to use is: "
<< WidestRegister << " bits.\n");
assert(MaxVectorSize <= 256 && "Did not expect to pack so many elements"
" into one vector!");
if (MaxVectorSize == 0) {
LLVM_DEBUG(dbgs() << "LV: The target has no vector registers.\n");
MaxVectorSize = 1;
return MaxVectorSize;
} else if (ConstTripCount && ConstTripCount < MaxVectorSize &&
isPowerOf2_32(ConstTripCount)) {
// We need to clamp the VF to be the ConstTripCount. There is no point in
// choosing a higher viable VF as done in the loop below.
LLVM_DEBUG(dbgs() << "LV: Clamping the MaxVF to the constant trip count: "
<< ConstTripCount << "\n");
MaxVectorSize = ConstTripCount;
return MaxVectorSize;
}
unsigned MaxVF = MaxVectorSize;
if (TTI.shouldMaximizeVectorBandwidth(OptForSize) ||
(MaximizeBandwidth && !OptForSize)) {
// Collect all viable vectorization factors larger than the default MaxVF
// (i.e. MaxVectorSize).
SmallVector<unsigned, 8> VFs;
unsigned NewMaxVectorSize = WidestRegister / SmallestType;
for (unsigned VS = MaxVectorSize * 2; VS <= NewMaxVectorSize; VS *= 2)
VFs.push_back(VS);
// For each VF calculate its register usage.
auto RUs = calculateRegisterUsage(VFs);
// Select the largest VF which doesn't require more registers than existing
// ones.
unsigned TargetNumRegisters = TTI.getNumberOfRegisters(true);
for (int i = RUs.size() - 1; i >= 0; --i) {
if (RUs[i].MaxLocalUsers <= TargetNumRegisters) {
MaxVF = VFs[i];
break;
}
}
if (unsigned MinVF = TTI.getMinimumVF(SmallestType)) {
if (MaxVF < MinVF) {
LLVM_DEBUG(dbgs() << "LV: Overriding calculated MaxVF(" << MaxVF
<< ") with target's minimum: " << MinVF << '\n');
MaxVF = MinVF;
}
}
}
return MaxVF;
}
VectorizationFactor
LoopVectorizationCostModel::selectVectorizationFactor(unsigned MaxVF) {
float Cost = expectedCost(1).first;
const float ScalarCost = Cost;
unsigned Width = 1;
LLVM_DEBUG(dbgs() << "LV: Scalar loop costs: " << (int)ScalarCost << ".\n");
bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled;
if (ForceVectorization && MaxVF > 1) {
// Ignore scalar width, because the user explicitly wants vectorization.
// Initialize cost to max so that VF = 2 is, at least, chosen during cost
// evaluation.
Cost = std::numeric_limits<float>::max();
}
for (unsigned i = 2; i <= MaxVF; i *= 2) {
// Notice that the vector loop needs to be executed less times, so
// we need to divide the cost of the vector loops by the width of
// the vector elements.
VectorizationCostTy C = expectedCost(i);
float VectorCost = C.first / (float)i;
LLVM_DEBUG(dbgs() << "LV: Vector loop of width " << i
<< " costs: " << (int)VectorCost << ".\n");
if (!C.second && !ForceVectorization) {
LLVM_DEBUG(
dbgs() << "LV: Not considering vector loop of width " << i
<< " because it will not generate any vector instructions.\n");
continue;
}
if (VectorCost < Cost) {
Cost = VectorCost;
Width = i;
}
}
if (!EnableCondStoresVectorization && NumPredStores) {
ORE->emit(createMissedAnalysis("ConditionalStore")
<< "store that is conditionally executed prevents vectorization");
LLVM_DEBUG(
dbgs() << "LV: No vectorization. There are conditional stores.\n");
Width = 1;
Cost = ScalarCost;
}
LLVM_DEBUG(if (ForceVectorization && Width > 1 && Cost >= ScalarCost) dbgs()
<< "LV: Vectorization seems to be not beneficial, "
<< "but was forced by a user.\n");
LLVM_DEBUG(dbgs() << "LV: Selecting VF: " << Width << ".\n");
VectorizationFactor Factor = {Width, (unsigned)(Width * Cost)};
return Factor;
}
std::pair<unsigned, unsigned>
LoopVectorizationCostModel::getSmallestAndWidestTypes() {
unsigned MinWidth = -1U;
unsigned MaxWidth = 8;
const DataLayout &DL = TheFunction->getParent()->getDataLayout();
// For each block.
for (BasicBlock *BB : TheLoop->blocks()) {
// For each instruction in the loop.
for (Instruction &I : *BB) {
Type *T = I.getType();
// Skip ignored values.
if (ValuesToIgnore.find(&I) != ValuesToIgnore.end())
continue;
// Only examine Loads, Stores and PHINodes.
if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !isa<PHINode>(I))
continue;
// Examine PHI nodes that are reduction variables. Update the type to
// account for the recurrence type.
if (auto *PN = dyn_cast<PHINode>(&I)) {
if (!Legal->isReductionVariable(PN))
continue;
RecurrenceDescriptor RdxDesc = (*Legal->getReductionVars())[PN];
T = RdxDesc.getRecurrenceType();
}
// Examine the stored values.
if (auto *ST = dyn_cast<StoreInst>(&I))
T = ST->getValueOperand()->getType();
// Ignore loaded pointer types and stored pointer types that are not
// vectorizable.
//
// FIXME: The check here attempts to predict whether a load or store will
// be vectorized. We only know this for certain after a VF has
// been selected. Here, we assume that if an access can be
// vectorized, it will be. We should also look at extending this
// optimization to non-pointer types.
//
if (T->isPointerTy() && !isConsecutiveLoadOrStore(&I) &&
!isAccessInterleaved(&I) && !isLegalGatherOrScatter(&I))
continue;
MinWidth = std::min(MinWidth,
(unsigned)DL.getTypeSizeInBits(T->getScalarType()));
MaxWidth = std::max(MaxWidth,
(unsigned)DL.getTypeSizeInBits(T->getScalarType()));
}
}
return {MinWidth, MaxWidth};
}
unsigned LoopVectorizationCostModel::selectInterleaveCount(bool OptForSize,
unsigned VF,
unsigned LoopCost) {
// -- The interleave heuristics --
// We interleave the loop in order to expose ILP and reduce the loop overhead.
// There are many micro-architectural considerations that we can't predict
// at this level. For example, frontend pressure (on decode or fetch) due to
// code size, or the number and capabilities of the execution ports.
//
// We use the following heuristics to select the interleave count:
// 1. If the code has reductions, then we interleave to break the cross
// iteration dependency.
// 2. If the loop is really small, then we interleave to reduce the loop
// overhead.
// 3. We don't interleave if we think that we will spill registers to memory
// due to the increased register pressure.
// When we optimize for size, we don't interleave.
if (OptForSize)
return 1;
// We used the distance for the interleave count.
if (Legal->getMaxSafeDepDistBytes() != -1U)
return 1;
// Do not interleave loops with a relatively small trip count.
unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop);
if (TC > 1 && TC < TinyTripCountInterleaveThreshold)
return 1;
unsigned TargetNumRegisters = TTI.getNumberOfRegisters(VF > 1);
LLVM_DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters
<< " registers\n");
if (VF == 1) {
if (ForceTargetNumScalarRegs.getNumOccurrences() > 0)
TargetNumRegisters = ForceTargetNumScalarRegs;
} else {
if (ForceTargetNumVectorRegs.getNumOccurrences() > 0)
TargetNumRegisters = ForceTargetNumVectorRegs;
}
RegisterUsage R = calculateRegisterUsage({VF})[0];
// We divide by these constants so assume that we have at least one
// instruction that uses at least one register.
R.MaxLocalUsers = std::max(R.MaxLocalUsers, 1U);
// We calculate the interleave count using the following formula.
// Subtract the number of loop invariants from the number of available
// registers. These registers are used by all of the interleaved instances.
// Next, divide the remaining registers by the number of registers that is
// required by the loop, in order to estimate how many parallel instances
// fit without causing spills. All of this is rounded down if necessary to be
// a power of two. We want power of two interleave count to simplify any
// addressing operations or alignment considerations.
unsigned IC = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs) /
R.MaxLocalUsers);
// Don't count the induction variable as interleaved.
if (EnableIndVarRegisterHeur)
IC = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs - 1) /
std::max(1U, (R.MaxLocalUsers - 1)));
// Clamp the interleave ranges to reasonable counts.
unsigned MaxInterleaveCount = TTI.getMaxInterleaveFactor(VF);
// Check if the user has overridden the max.
if (VF == 1) {
if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0)
MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor;
} else {
if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0)
MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor;
}
// If we did not calculate the cost for VF (because the user selected the VF)
// then we calculate the cost of VF here.
if (LoopCost == 0)
LoopCost = expectedCost(VF).first;
// Clamp the calculated IC to be between the 1 and the max interleave count
// that the target allows.
if (IC > MaxInterleaveCount)
IC = MaxInterleaveCount;
else if (IC < 1)
IC = 1;
// Interleave if we vectorized this loop and there is a reduction that could
// benefit from interleaving.
if (VF > 1 && !Legal->getReductionVars()->empty()) {
LLVM_DEBUG(dbgs() << "LV: Interleaving because of reductions.\n");
return IC;
}
// Note that if we've already vectorized the loop we will have done the
// runtime check and so interleaving won't require further checks.
bool InterleavingRequiresRuntimePointerCheck =
(VF == 1 && Legal->getRuntimePointerChecking()->Need);
// We want to interleave small loops in order to reduce the loop overhead and
// potentially expose ILP opportunities.
LLVM_DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n');
if (!InterleavingRequiresRuntimePointerCheck && LoopCost < SmallLoopCost) {
// We assume that the cost overhead is 1 and we use the cost model
// to estimate the cost of the loop and interleave until the cost of the
// loop overhead is about 5% of the cost of the loop.
unsigned SmallIC =
std::min(IC, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost));
// Interleave until store/load ports (estimated by max interleave count) are
// saturated.
unsigned NumStores = Legal->getNumStores();
unsigned NumLoads = Legal->getNumLoads();
unsigned StoresIC = IC / (NumStores ? NumStores : 1);
unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1);
// If we have a scalar reduction (vector reductions are already dealt with
// by this point), we can increase the critical path length if the loop
// we're interleaving is inside another loop. Limit, by default to 2, so the
// critical path only gets increased by one reduction operation.
if (!Legal->getReductionVars()->empty() && TheLoop->getLoopDepth() > 1) {
unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC);
SmallIC = std::min(SmallIC, F);
StoresIC = std::min(StoresIC, F);
LoadsIC = std::min(LoadsIC, F);
}
if (EnableLoadStoreRuntimeInterleave &&
std::max(StoresIC, LoadsIC) > SmallIC) {
LLVM_DEBUG(
dbgs() << "LV: Interleaving to saturate store or load ports.\n");
return std::max(StoresIC, LoadsIC);
}
LLVM_DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n");
return SmallIC;
}
// Interleave if this is a large loop (small loops are already dealt with by
// this point) that could benefit from interleaving.
bool HasReductions = !Legal->getReductionVars()->empty();
if (TTI.enableAggressiveInterleaving(HasReductions)) {
LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n");
return IC;
}
LLVM_DEBUG(dbgs() << "LV: Not Interleaving.\n");
return 1;
}
SmallVector<LoopVectorizationCostModel::RegisterUsage, 8>
LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<unsigned> VFs) {
// This function calculates the register usage by measuring the highest number
// of values that are alive at a single location. Obviously, this is a very
// rough estimation. We scan the loop in a topological order in order and
// assign a number to each instruction. We use RPO to ensure that defs are
// met before their users. We assume that each instruction that has in-loop
// users starts an interval. We record every time that an in-loop value is
// used, so we have a list of the first and last occurrences of each
// instruction. Next, we transpose this data structure into a multi map that
// holds the list of intervals that *end* at a specific location. This multi
// map allows us to perform a linear search. We scan the instructions linearly
// and record each time that a new interval starts, by placing it in a set.
// If we find this value in the multi-map then we remove it from the set.
// The max register usage is the maximum size of the set.
// We also search for instructions that are defined outside the loop, but are
// used inside the loop. We need this number separately from the max-interval
// usage number because when we unroll, loop-invariant values do not take
// more register.
LoopBlocksDFS DFS(TheLoop);
DFS.perform(LI);
RegisterUsage RU;
// Each 'key' in the map opens a new interval. The values
// of the map are the index of the 'last seen' usage of the
// instruction that is the key.
using IntervalMap = DenseMap<Instruction *, unsigned>;
// Maps instruction to its index.
DenseMap<unsigned, Instruction *> IdxToInstr;
// Marks the end of each interval.
IntervalMap EndPoint;
// Saves the list of instruction indices that are used in the loop.
SmallPtrSet<Instruction *, 8> Ends;
// Saves the list of values that are used in the loop but are
// defined outside the loop, such as arguments and constants.
SmallPtrSet<Value *, 8> LoopInvariants;
unsigned Index = 0;
for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) {
for (Instruction &I : *BB) {
IdxToInstr[Index++] = &I;
// Save the end location of each USE.
for (Value *U : I.operands()) {
auto *Instr = dyn_cast<Instruction>(U);
// Ignore non-instruction values such as arguments, constants, etc.
if (!Instr)
continue;
// If this instruction is outside the loop then record it and continue.
if (!TheLoop->contains(Instr)) {
LoopInvariants.insert(Instr);
continue;
}
// Overwrite previous end points.
EndPoint[Instr] = Index;
Ends.insert(Instr);
}
}
}
// Saves the list of intervals that end with the index in 'key'.
using InstrList = SmallVector<Instruction *, 2>;
DenseMap<unsigned, InstrList> TransposeEnds;
// Transpose the EndPoints to a list of values that end at each index.
for (auto &Interval : EndPoint)
TransposeEnds[Interval.second].push_back(Interval.first);
SmallPtrSet<Instruction *, 8> OpenIntervals;
// Get the size of the widest register.
unsigned MaxSafeDepDist = -1U;
if (Legal->getMaxSafeDepDistBytes() != -1U)
MaxSafeDepDist = Legal->getMaxSafeDepDistBytes() * 8;
unsigned WidestRegister =
std::min(TTI.getRegisterBitWidth(true), MaxSafeDepDist);
const DataLayout &DL = TheFunction->getParent()->getDataLayout();
SmallVector<RegisterUsage, 8> RUs(VFs.size());
SmallVector<unsigned, 8> MaxUsages(VFs.size(), 0);
LLVM_DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n");
// A lambda that gets the register usage for the given type and VF.
auto GetRegUsage = [&DL, WidestRegister](Type *Ty, unsigned VF) {
if (Ty->isTokenTy())
return 0U;
unsigned TypeSize = DL.getTypeSizeInBits(Ty->getScalarType());
return std::max<unsigned>(1, VF * TypeSize / WidestRegister);
};
for (unsigned int i = 0; i < Index; ++i) {
Instruction *I = IdxToInstr[i];
// Remove all of the instructions that end at this location.
InstrList &List = TransposeEnds[i];
for (Instruction *ToRemove : List)
OpenIntervals.erase(ToRemove);
// Ignore instructions that are never used within the loop.
if (Ends.find(I) == Ends.end())
continue;
// Skip ignored values.
if (ValuesToIgnore.find(I) != ValuesToIgnore.end())
continue;
// For each VF find the maximum usage of registers.
for (unsigned j = 0, e = VFs.size(); j < e; ++j) {
if (VFs[j] == 1) {
MaxUsages[j] = std::max(MaxUsages[j], OpenIntervals.size());
continue;
}
collectUniformsAndScalars(VFs[j]);
// Count the number of live intervals.
unsigned RegUsage = 0;
for (auto Inst : OpenIntervals) {
// Skip ignored values for VF > 1.
if (VecValuesToIgnore.find(Inst) != VecValuesToIgnore.end() ||
isScalarAfterVectorization(Inst, VFs[j]))
continue;
RegUsage += GetRegUsage(Inst->getType(), VFs[j]);
}
MaxUsages[j] = std::max(MaxUsages[j], RegUsage);
}
LLVM_DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # "
<< OpenIntervals.size() << '\n');
// Add the current instruction to the list of open intervals.
OpenIntervals.insert(I);
}
for (unsigned i = 0, e = VFs.size(); i < e; ++i) {
unsigned Invariant = 0;
if (VFs[i] == 1)
Invariant = LoopInvariants.size();
else {
for (auto Inst : LoopInvariants)
Invariant += GetRegUsage(Inst->getType(), VFs[i]);
}
LLVM_DEBUG(dbgs() << "LV(REG): VF = " << VFs[i] << '\n');
LLVM_DEBUG(dbgs() << "LV(REG): Found max usage: " << MaxUsages[i] << '\n');
LLVM_DEBUG(dbgs() << "LV(REG): Found invariant usage: " << Invariant
<< '\n');
RU.LoopInvariantRegs = Invariant;
RU.MaxLocalUsers = MaxUsages[i];
RUs[i] = RU;
}
return RUs;
}
bool LoopVectorizationCostModel::useEmulatedMaskMemRefHack(Instruction *I){
// TODO: Cost model for emulated masked load/store is completely
// broken. This hack guides the cost model to use an artificially
// high enough value to practically disable vectorization with such
// operations, except where previously deployed legality hack allowed
// using very low cost values. This is to avoid regressions coming simply
// from moving "masked load/store" check from legality to cost model.
// Masked Load/Gather emulation was previously never allowed.
// Limited number of Masked Store/Scatter emulation was allowed.
assert(isPredicatedInst(I) && "Expecting a scalar emulated instruction");
return isa<LoadInst>(I) ||
(isa<StoreInst>(I) &&
NumPredStores > NumberOfStoresToPredicate);
}
void LoopVectorizationCostModel::collectInstsToScalarize(unsigned VF) {
// If we aren't vectorizing the loop, or if we've already collected the
// instructions to scalarize, there's nothing to do. Collection may already
// have occurred if we have a user-selected VF and are now computing the
// expected cost for interleaving.
if (VF < 2 || InstsToScalarize.find(VF) != InstsToScalarize.end())
return;
// Initialize a mapping for VF in InstsToScalalarize. If we find that it's
// not profitable to scalarize any instructions, the presence of VF in the
// map will indicate that we've analyzed it already.
ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF];
// Find all the instructions that are scalar with predication in the loop and
// determine if it would be better to not if-convert the blocks they are in.
// If so, we also record the instructions to scalarize.
for (BasicBlock *BB : TheLoop->blocks()) {
if (!Legal->blockNeedsPredication(BB))
continue;
for (Instruction &I : *BB)
if (isScalarWithPredication(&I)) {
ScalarCostsTy ScalarCosts;
// Do not apply discount logic if hacked cost is needed
// for emulated masked memrefs.
if (!useEmulatedMaskMemRefHack(&I) &&
computePredInstDiscount(&I, ScalarCosts, VF) >= 0)
ScalarCostsVF.insert(ScalarCosts.begin(), ScalarCosts.end());
// Remember that BB will remain after vectorization.
PredicatedBBsAfterVectorization.insert(BB);
}
}
}
int LoopVectorizationCostModel::computePredInstDiscount(
Instruction *PredInst, DenseMap<Instruction *, unsigned> &ScalarCosts,
unsigned VF) {
assert(!isUniformAfterVectorization(PredInst, VF) &&
"Instruction marked uniform-after-vectorization will be predicated");
// Initialize the discount to zero, meaning that the scalar version and the
// vector version cost the same.
int Discount = 0;
// Holds instructions to analyze. The instructions we visit are mapped in
// ScalarCosts. Those instructions are the ones that would be scalarized if
// we find that the scalar version costs less.
SmallVector<Instruction *, 8> Worklist;
// Returns true if the given instruction can be scalarized.
auto canBeScalarized = [&](Instruction *I) -> bool {
// We only attempt to scalarize instructions forming a single-use chain
// from the original predicated block that would otherwise be vectorized.
// Although not strictly necessary, we give up on instructions we know will
// already be scalar to avoid traversing chains that are unlikely to be
// beneficial.
if (!I->hasOneUse() || PredInst->getParent() != I->getParent() ||
isScalarAfterVectorization(I, VF))
return false;
// If the instruction is scalar with predication, it will be analyzed
// separately. We ignore it within the context of PredInst.
if (isScalarWithPredication(I))
return false;
// If any of the instruction's operands are uniform after vectorization,
// the instruction cannot be scalarized. This prevents, for example, a
// masked load from being scalarized.
//
// We assume we will only emit a value for lane zero of an instruction
// marked uniform after vectorization, rather than VF identical values.
// Thus, if we scalarize an instruction that uses a uniform, we would
// create uses of values corresponding to the lanes we aren't emitting code
// for. This behavior can be changed by allowing getScalarValue to clone
// the lane zero values for uniforms rather than asserting.
for (Use &U : I->operands())
if (auto *J = dyn_cast<Instruction>(U.get()))
if (isUniformAfterVectorization(J, VF))
return false;
// Otherwise, we can scalarize the instruction.
return true;
};
// Returns true if an operand that cannot be scalarized must be extracted
// from a vector. We will account for this scalarization overhead below. Note
// that the non-void predicated instructions are placed in their own blocks,
// and their return values are inserted into vectors. Thus, an extract would
// still be required.
auto needsExtract = [&](Instruction *I) -> bool {
return TheLoop->contains(I) && !isScalarAfterVectorization(I, VF);
};
// Compute the expected cost discount from scalarizing the entire expression
// feeding the predicated instruction. We currently only consider expressions
// that are single-use instruction chains.
Worklist.push_back(PredInst);
while (!Worklist.empty()) {
Instruction *I = Worklist.pop_back_val();
// If we've already analyzed the instruction, there's nothing to do.
if (ScalarCosts.find(I) != ScalarCosts.end())
continue;
// Compute the cost of the vector instruction. Note that this cost already
// includes the scalarization overhead of the predicated instruction.
unsigned VectorCost = getInstructionCost(I, VF).first;
// Compute the cost of the scalarized instruction. This cost is the cost of
// the instruction as if it wasn't if-converted and instead remained in the
// predicated block. We will scale this cost by block probability after
// computing the scalarization overhead.
unsigned ScalarCost = VF * getInstructionCost(I, 1).first;
// Compute the scalarization overhead of needed insertelement instructions
// and phi nodes.
if (isScalarWithPredication(I) && !I->getType()->isVoidTy()) {
ScalarCost += TTI.getScalarizationOverhead(ToVectorTy(I->getType(), VF),
true, false);
ScalarCost += VF * TTI.getCFInstrCost(Instruction::PHI);
}
// Compute the scalarization overhead of needed extractelement
// instructions. For each of the instruction's operands, if the operand can
// be scalarized, add it to the worklist; otherwise, account for the
// overhead.
for (Use &U : I->operands())
if (auto *J = dyn_cast<Instruction>(U.get())) {
assert(VectorType::isValidElementType(J->getType()) &&
"Instruction has non-scalar type");
if (canBeScalarized(J))
Worklist.push_back(J);
else if (needsExtract(J))
ScalarCost += TTI.getScalarizationOverhead(
ToVectorTy(J->getType(),VF), false, true);
}
// Scale the total scalar cost by block probability.
ScalarCost /= getReciprocalPredBlockProb();
// Compute the discount. A non-negative discount means the vector version
// of the instruction costs more, and scalarizing would be beneficial.
Discount += VectorCost - ScalarCost;
ScalarCosts[I] = ScalarCost;
}
return Discount;
}
LoopVectorizationCostModel::VectorizationCostTy
LoopVectorizationCostModel::expectedCost(unsigned VF) {
VectorizationCostTy Cost;
// For each block.
for (BasicBlock *BB : TheLoop->blocks()) {
VectorizationCostTy BlockCost;
// For each instruction in the old loop.
for (Instruction &I : BB->instructionsWithoutDebug()) {
// Skip ignored values.
if (ValuesToIgnore.find(&I) != ValuesToIgnore.end() ||
(VF > 1 && VecValuesToIgnore.find(&I) != VecValuesToIgnore.end()))
continue;
VectorizationCostTy C = getInstructionCost(&I, VF);
// Check if we should override the cost.
if (ForceTargetInstructionCost.getNumOccurrences() > 0)
C.first = ForceTargetInstructionCost;
BlockCost.first += C.first;
BlockCost.second |= C.second;
LLVM_DEBUG(dbgs() << "LV: Found an estimated cost of " << C.first
<< " for VF " << VF << " For instruction: " << I
<< '\n');
}
// If we are vectorizing a predicated block, it will have been
// if-converted. This means that the block's instructions (aside from
// stores and instructions that may divide by zero) will now be
// unconditionally executed. For the scalar case, we may not always execute
// the predicated block. Thus, scale the block's cost by the probability of
// executing it.
if (VF == 1 && Legal->blockNeedsPredication(BB))
BlockCost.first /= getReciprocalPredBlockProb();
Cost.first += BlockCost.first;
Cost.second |= BlockCost.second;
}
return Cost;
}
/// Gets Address Access SCEV after verifying that the access pattern
/// is loop invariant except the induction variable dependence.
///
/// This SCEV can be sent to the Target in order to estimate the address
/// calculation cost.
static const SCEV *getAddressAccessSCEV(
Value *Ptr,
LoopVectorizationLegality *Legal,
PredicatedScalarEvolution &PSE,
const Loop *TheLoop) {
auto *Gep = dyn_cast<GetElementPtrInst>(Ptr);
if (!Gep)
return nullptr;
// We are looking for a gep with all loop invariant indices except for one
// which should be an induction variable.
auto SE = PSE.getSE();
unsigned NumOperands = Gep->getNumOperands();
for (unsigned i = 1; i < NumOperands; ++i) {
Value *Opd = Gep->getOperand(i);
if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) &&
!Legal->isInductionVariable(Opd))
return nullptr;
}
// Now we know we have a GEP ptr, %inv, %ind, %inv. return the Ptr SCEV.
return PSE.getSCEV(Ptr);
}
static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) {
return Legal->hasStride(I->getOperand(0)) ||
Legal->hasStride(I->getOperand(1));
}
unsigned LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *I,
unsigned VF) {
Type *ValTy = getMemInstValueType(I);
auto SE = PSE.getSE();
unsigned Alignment = getLoadStoreAlignment(I);
unsigned AS = getLoadStoreAddressSpace(I);
Value *Ptr = getLoadStorePointerOperand(I);
Type *PtrTy = ToVectorTy(Ptr->getType(), VF);
// Figure out whether the access is strided and get the stride value
// if it's known in compile time
const SCEV *PtrSCEV = getAddressAccessSCEV(Ptr, Legal, PSE, TheLoop);
// Get the cost of the scalar memory instruction and address computation.
unsigned Cost = VF * TTI.getAddressComputationCost(PtrTy, SE, PtrSCEV);
Cost += VF *
TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), Alignment,
AS, I);
// Get the overhead of the extractelement and insertelement instructions
// we might create due to scalarization.
Cost += getScalarizationOverhead(I, VF, TTI);
// If we have a predicated store, it may not be executed for each vector
// lane. Scale the cost by the probability of executing the predicated
// block.
if (isPredicatedInst(I)) {
Cost /= getReciprocalPredBlockProb();
if (useEmulatedMaskMemRefHack(I))
// Artificially setting to a high enough value to practically disable
// vectorization with such operations.
Cost = 3000000;
}
return Cost;
}
unsigned LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *I,
unsigned VF) {
Type *ValTy = getMemInstValueType(I);
Type *VectorTy = ToVectorTy(ValTy, VF);
unsigned Alignment = getLoadStoreAlignment(I);
Value *Ptr = getLoadStorePointerOperand(I);
unsigned AS = getLoadStoreAddressSpace(I);
int ConsecutiveStride = Legal->isConsecutivePtr(Ptr);
assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) &&
"Stride should be 1 or -1 for consecutive memory access");
unsigned Cost = 0;
if (Legal->isMaskRequired(I))
Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS);
else
Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS, I);
bool Reverse = ConsecutiveStride < 0;
if (Reverse)
Cost += TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0);
return Cost;
}
unsigned LoopVectorizationCostModel::getUniformMemOpCost(Instruction *I,
unsigned VF) {
Type *ValTy = getMemInstValueType(I);
Type *VectorTy = ToVectorTy(ValTy, VF);
unsigned Alignment = getLoadStoreAlignment(I);
unsigned AS = getLoadStoreAddressSpace(I);
if (isa<LoadInst>(I)) {
return TTI.getAddressComputationCost(ValTy) +
TTI.getMemoryOpCost(Instruction::Load, ValTy, Alignment, AS) +
TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, VectorTy);
}
StoreInst *SI = cast<StoreInst>(I);
bool isLoopInvariantStoreValue = Legal->isUniform(SI->getValueOperand());
return TTI.getAddressComputationCost(ValTy) +
TTI.getMemoryOpCost(Instruction::Store, ValTy, Alignment, AS) +
(isLoopInvariantStoreValue ? 0 : TTI.getVectorInstrCost(
Instruction::ExtractElement,
VectorTy, VF - 1));
}
unsigned LoopVectorizationCostModel::getGatherScatterCost(Instruction *I,
unsigned VF) {
Type *ValTy = getMemInstValueType(I);
Type *VectorTy = ToVectorTy(ValTy, VF);
unsigned Alignment = getLoadStoreAlignment(I);
Value *Ptr = getLoadStorePointerOperand(I);
return TTI.getAddressComputationCost(VectorTy) +
TTI.getGatherScatterOpCost(I->getOpcode(), VectorTy, Ptr,
Legal->isMaskRequired(I), Alignment);
}
unsigned LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *I,
unsigned VF) {
Type *ValTy = getMemInstValueType(I);
Type *VectorTy = ToVectorTy(ValTy, VF);
unsigned AS = getLoadStoreAddressSpace(I);
auto Group = getInterleavedAccessGroup(I);
assert(Group && "Fail to get an interleaved access group.");
unsigned InterleaveFactor = Group->getFactor();
Type *WideVecTy = VectorType::get(ValTy, VF * InterleaveFactor);
// Holds the indices of existing members in an interleaved load group.
// An interleaved store group doesn't need this as it doesn't allow gaps.
SmallVector<unsigned, 4> Indices;
if (isa<LoadInst>(I)) {
for (unsigned i = 0; i < InterleaveFactor; i++)
if (Group->getMember(i))
Indices.push_back(i);
}
// Calculate the cost of the whole interleaved group.
unsigned Cost = TTI.getInterleavedMemoryOpCost(I->getOpcode(), WideVecTy,
Group->getFactor(), Indices,
Group->getAlignment(), AS);
if (Group->isReverse())
Cost += Group->getNumMembers() *
TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0);
return Cost;
}
unsigned LoopVectorizationCostModel::getMemoryInstructionCost(Instruction *I,
unsigned VF) {
// Calculate scalar cost only. Vectorization cost should be ready at this
// moment.
if (VF == 1) {
Type *ValTy = getMemInstValueType(I);
unsigned Alignment = getLoadStoreAlignment(I);
unsigned AS = getLoadStoreAddressSpace(I);
return TTI.getAddressComputationCost(ValTy) +
TTI.getMemoryOpCost(I->getOpcode(), ValTy, Alignment, AS, I);
}
return getWideningCost(I, VF);
}
LoopVectorizationCostModel::VectorizationCostTy
LoopVectorizationCostModel::getInstructionCost(Instruction *I, unsigned VF) {
// If we know that this instruction will remain uniform, check the cost of
// the scalar version.
if (isUniformAfterVectorization(I, VF))
VF = 1;
if (VF > 1 && isProfitableToScalarize(I, VF))
return VectorizationCostTy(InstsToScalarize[VF][I], false);
// Forced scalars do not have any scalarization overhead.
auto ForcedScalar = ForcedScalars.find(VF);
if (VF > 1 && ForcedScalar != ForcedScalars.end()) {
auto InstSet = ForcedScalar->second;
if (InstSet.find(I) != InstSet.end())
return VectorizationCostTy((getInstructionCost(I, 1).first * VF), false);
}
Type *VectorTy;
unsigned C = getInstructionCost(I, VF, VectorTy);
bool TypeNotScalarized =
VF > 1 && VectorTy->isVectorTy() && TTI.getNumberOfParts(VectorTy) < VF;
return VectorizationCostTy(C, TypeNotScalarized);
}
void LoopVectorizationCostModel::setCostBasedWideningDecision(unsigned VF) {
if (VF == 1)
return;
NumPredStores = 0;
for (BasicBlock *BB : TheLoop->blocks()) {
// For each instruction in the old loop.
for (Instruction &I : *BB) {
Value *Ptr = getLoadStorePointerOperand(&I);
if (!Ptr)
continue;
// TODO: We should generate better code and update the cost model for
// predicated uniform stores. Today they are treated as any other
// predicated store (see added test cases in
// invariant-store-vectorization.ll).
if (isa<StoreInst>(&I) && isScalarWithPredication(&I))
NumPredStores++;
if (Legal->isUniform(Ptr) &&
// Conditional loads and stores should be scalarized and predicated.
// isScalarWithPredication cannot be used here since masked
// gather/scatters are not considered scalar with predication.
!Legal->blockNeedsPredication(I.getParent())) {
// TODO: Avoid replicating loads and stores instead of
// relying on instcombine to remove them.
// Load: Scalar load + broadcast
// Store: Scalar store + isLoopInvariantStoreValue ? 0 : extract
unsigned Cost = getUniformMemOpCost(&I, VF);
setWideningDecision(&I, VF, CM_Scalarize, Cost);
continue;
}
// We assume that widening is the best solution when possible.
if (memoryInstructionCanBeWidened(&I, VF)) {
unsigned Cost = getConsecutiveMemOpCost(&I, VF);
int ConsecutiveStride =
Legal->isConsecutivePtr(getLoadStorePointerOperand(&I));
assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) &&
"Expected consecutive stride.");
InstWidening Decision =
ConsecutiveStride == 1 ? CM_Widen : CM_Widen_Reverse;
setWideningDecision(&I, VF, Decision, Cost);
continue;
}
// Choose between Interleaving, Gather/Scatter or Scalarization.
unsigned InterleaveCost = std::numeric_limits<unsigned>::max();
unsigned NumAccesses = 1;
if (isAccessInterleaved(&I)) {
auto Group = getInterleavedAccessGroup(&I);
assert(Group && "Fail to get an interleaved access group.");
// Make one decision for the whole group.
if (getWideningDecision(&I, VF) != CM_Unknown)
continue;
NumAccesses = Group->getNumMembers();
InterleaveCost = getInterleaveGroupCost(&I, VF);
}
unsigned GatherScatterCost =
isLegalGatherOrScatter(&I)
? getGatherScatterCost(&I, VF) * NumAccesses
: std::numeric_limits<unsigned>::max();
unsigned ScalarizationCost =
getMemInstScalarizationCost(&I, VF) * NumAccesses;
// Choose better solution for the current VF,
// write down this decision and use it during vectorization.
unsigned Cost;
InstWidening Decision;
if (InterleaveCost <= GatherScatterCost &&
InterleaveCost < ScalarizationCost) {
Decision = CM_Interleave;
Cost = InterleaveCost;
} else if (GatherScatterCost < ScalarizationCost) {
Decision = CM_GatherScatter;
Cost = GatherScatterCost;
} else {
Decision = CM_Scalarize;
Cost = ScalarizationCost;
}
// If the instructions belongs to an interleave group, the whole group
// receives the same decision. The whole group receives the cost, but
// the cost will actually be assigned to one instruction.
if (auto Group = getInterleavedAccessGroup(&I))
setWideningDecision(Group, VF, Decision, Cost);
else
setWideningDecision(&I, VF, Decision, Cost);
}
}
// Make sure that any load of address and any other address computation
// remains scalar unless there is gather/scatter support. This avoids
// inevitable extracts into address registers, and also has the benefit of
// activating LSR more, since that pass can't optimize vectorized
// addresses.
if (TTI.prefersVectorizedAddressing())
return;
// Start with all scalar pointer uses.
SmallPtrSet<Instruction *, 8> AddrDefs;
for (BasicBlock *BB : TheLoop->blocks())
for (Instruction &I : *BB) {
Instruction *PtrDef =
dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I));
if (PtrDef && TheLoop->contains(PtrDef) &&
getWideningDecision(&I, VF) != CM_GatherScatter)
AddrDefs.insert(PtrDef);
}
// Add all instructions used to generate the addresses.
SmallVector<Instruction *, 4> Worklist;
for (auto *I : AddrDefs)
Worklist.push_back(I);
while (!Worklist.empty()) {
Instruction *I = Worklist.pop_back_val();
for (auto &Op : I->operands())
if (auto *InstOp = dyn_cast<Instruction>(Op))
if ((InstOp->getParent() == I->getParent()) && !isa<PHINode>(InstOp) &&
AddrDefs.insert(InstOp).second)
Worklist.push_back(InstOp);
}
for (auto *I : AddrDefs) {
if (isa<LoadInst>(I)) {
// Setting the desired widening decision should ideally be handled in
// by cost functions, but since this involves the task of finding out
// if the loaded register is involved in an address computation, it is
// instead changed here when we know this is the case.
InstWidening Decision = getWideningDecision(I, VF);
if (Decision == CM_Widen || Decision == CM_Widen_Reverse)
// Scalarize a widened load of address.
setWideningDecision(I, VF, CM_Scalarize,
(VF * getMemoryInstructionCost(I, 1)));
else if (auto Group = getInterleavedAccessGroup(I)) {
// Scalarize an interleave group of address loads.
for (unsigned I = 0; I < Group->getFactor(); ++I) {
if (Instruction *Member = Group->getMember(I))
setWideningDecision(Member, VF, CM_Scalarize,
(VF * getMemoryInstructionCost(Member, 1)));
}
}
} else
// Make sure I gets scalarized and a cost estimate without
// scalarization overhead.
ForcedScalars[VF].insert(I);
}
}
unsigned LoopVectorizationCostModel::getInstructionCost(Instruction *I,
unsigned VF,
Type *&VectorTy) {
Type *RetTy = I->getType();
if (canTruncateToMinimalBitwidth(I, VF))
RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]);
VectorTy = isScalarAfterVectorization(I, VF) ? RetTy : ToVectorTy(RetTy, VF);
auto SE = PSE.getSE();
// TODO: We need to estimate the cost of intrinsic calls.
switch (I->getOpcode()) {
case Instruction::GetElementPtr:
// We mark this instruction as zero-cost because the cost of GEPs in
// vectorized code depends on whether the corresponding memory instruction
// is scalarized or not. Therefore, we handle GEPs with the memory
// instruction cost.
return 0;
case Instruction::Br: {
// In cases of scalarized and predicated instructions, there will be VF
// predicated blocks in the vectorized loop. Each branch around these
// blocks requires also an extract of its vector compare i1 element.
bool ScalarPredicatedBB = false;
BranchInst *BI = cast<BranchInst>(I);
if (VF > 1 && BI->isConditional() &&
(PredicatedBBsAfterVectorization.find(BI->getSuccessor(0)) !=
PredicatedBBsAfterVectorization.end() ||
PredicatedBBsAfterVectorization.find(BI->getSuccessor(1)) !=
PredicatedBBsAfterVectorization.end()))
ScalarPredicatedBB = true;
if (ScalarPredicatedBB) {
// Return cost for branches around scalarized and predicated blocks.
Type *Vec_i1Ty =
VectorType::get(IntegerType::getInt1Ty(RetTy->getContext()), VF);
return (TTI.getScalarizationOverhead(Vec_i1Ty, false, true) +
(TTI.getCFInstrCost(Instruction::Br) * VF));
} else if (I->getParent() == TheLoop->getLoopLatch() || VF == 1)
// The back-edge branch will remain, as will all scalar branches.
return TTI.getCFInstrCost(Instruction::Br);
else
// This branch will be eliminated by if-conversion.
return 0;
// Note: We currently assume zero cost for an unconditional branch inside
// a predicated block since it will become a fall-through, although we
// may decide in the future to call TTI for all branches.
}
case Instruction::PHI: {
auto *Phi = cast<PHINode>(I);
// First-order recurrences are replaced by vector shuffles inside the loop.
if (VF > 1 && Legal->isFirstOrderRecurrence(Phi))
return TTI.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector,
VectorTy, VF - 1, VectorTy);
// Phi nodes in non-header blocks (not inductions, reductions, etc.) are
// converted into select instructions. We require N - 1 selects per phi
// node, where N is the number of incoming values.
if (VF > 1 && Phi->getParent() != TheLoop->getHeader())
return (Phi->getNumIncomingValues() - 1) *
TTI.getCmpSelInstrCost(
Instruction::Select, ToVectorTy(Phi->getType(), VF),
ToVectorTy(Type::getInt1Ty(Phi->getContext()), VF));
return TTI.getCFInstrCost(Instruction::PHI);
}
case Instruction::UDiv:
case Instruction::SDiv:
case Instruction::URem:
case Instruction::SRem:
// If we have a predicated instruction, it may not be executed for each
// vector lane. Get the scalarization cost and scale this amount by the
// probability of executing the predicated block. If the instruction is not
// predicated, we fall through to the next case.
if (VF > 1 && isScalarWithPredication(I)) {
unsigned Cost = 0;
// These instructions have a non-void type, so account for the phi nodes
// that we will create. This cost is likely to be zero. The phi node
// cost, if any, should be scaled by the block probability because it
// models a copy at the end of each predicated block.
Cost += VF * TTI.getCFInstrCost(Instruction::PHI);
// The cost of the non-predicated instruction.
Cost += VF * TTI.getArithmeticInstrCost(I->getOpcode(), RetTy);
// The cost of insertelement and extractelement instructions needed for
// scalarization.
Cost += getScalarizationOverhead(I, VF, TTI);
// Scale the cost by the probability of executing the predicated blocks.
// This assumes the predicated block for each vector lane is equally
// likely.
return Cost / getReciprocalPredBlockProb();
}
LLVM_FALLTHROUGH;
case Instruction::Add:
case Instruction::FAdd:
case Instruction::Sub:
case Instruction::FSub:
case Instruction::Mul:
case Instruction::FMul:
case Instruction::FDiv:
case Instruction::FRem:
case Instruction::Shl:
case Instruction::LShr:
case Instruction::AShr:
case Instruction::And:
case Instruction::Or:
case Instruction::Xor: {
// Since we will replace the stride by 1 the multiplication should go away.
if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal))
return 0;
// Certain instructions can be cheaper to vectorize if they have a constant
// second vector operand. One example of this are shifts on x86.
TargetTransformInfo::OperandValueKind Op1VK =
TargetTransformInfo::OK_AnyValue;
TargetTransformInfo::OperandValueKind Op2VK =
TargetTransformInfo::OK_AnyValue;
TargetTransformInfo::OperandValueProperties Op1VP =
TargetTransformInfo::OP_None;
TargetTransformInfo::OperandValueProperties Op2VP =
TargetTransformInfo::OP_None;
Value *Op2 = I->getOperand(1);
// Check for a splat or for a non uniform vector of constants.
if (isa<ConstantInt>(Op2)) {
ConstantInt *CInt = cast<ConstantInt>(Op2);
if (CInt && CInt->getValue().isPowerOf2())
Op2VP = TargetTransformInfo::OP_PowerOf2;
Op2VK = TargetTransformInfo::OK_UniformConstantValue;
} else if (isa<ConstantVector>(Op2) || isa<ConstantDataVector>(Op2)) {
Op2VK = TargetTransformInfo::OK_NonUniformConstantValue;
Constant *SplatValue = cast<Constant>(Op2)->getSplatValue();
if (SplatValue) {
ConstantInt *CInt = dyn_cast<ConstantInt>(SplatValue);
if (CInt && CInt->getValue().isPowerOf2())
Op2VP = TargetTransformInfo::OP_PowerOf2;
Op2VK = TargetTransformInfo::OK_UniformConstantValue;
}
} else if (Legal->isUniform(Op2)) {
Op2VK = TargetTransformInfo::OK_UniformValue;
}
SmallVector<const Value *, 4> Operands(I->operand_values());
unsigned N = isScalarAfterVectorization(I, VF) ? VF : 1;
return N * TTI.getArithmeticInstrCost(I->getOpcode(), VectorTy, Op1VK,
Op2VK, Op1VP, Op2VP, Operands);
}
case Instruction::Select: {
SelectInst *SI = cast<SelectInst>(I);
const SCEV *CondSCEV = SE->getSCEV(SI->getCondition());
bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop));
Type *CondTy = SI->getCondition()->getType();
if (!ScalarCond)
CondTy = VectorType::get(CondTy, VF);
return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy, I);
}
case Instruction::ICmp:
case Instruction::FCmp: {
Type *ValTy = I->getOperand(0)->getType();
Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0));
if (canTruncateToMinimalBitwidth(Op0AsInstruction, VF))
ValTy = IntegerType::get(ValTy->getContext(), MinBWs[Op0AsInstruction]);
VectorTy = ToVectorTy(ValTy, VF);
return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, nullptr, I);
}
case Instruction::Store:
case Instruction::Load: {
unsigned Width = VF;
if (Width > 1) {
InstWidening Decision = getWideningDecision(I, Width);
assert(Decision != CM_Unknown &&
"CM decision should be taken at this point");
if (Decision == CM_Scalarize)
Width = 1;
}
VectorTy = ToVectorTy(getMemInstValueType(I), Width);
return getMemoryInstructionCost(I, VF);
}
case Instruction::ZExt:
case Instruction::SExt:
case Instruction::FPToUI:
case Instruction::FPToSI:
case Instruction::FPExt:
case Instruction::PtrToInt:
case Instruction::IntToPtr:
case Instruction::SIToFP:
case Instruction::UIToFP:
case Instruction::Trunc:
case Instruction::FPTrunc:
case Instruction::BitCast: {
// We optimize the truncation of induction variables having constant
// integer steps. The cost of these truncations is the same as the scalar
// operation.
if (isOptimizableIVTruncate(I, VF)) {
auto *Trunc = cast<TruncInst>(I);
return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(),
Trunc->getSrcTy(), Trunc);
}
Type *SrcScalarTy = I->getOperand(0)->getType();
Type *SrcVecTy =
VectorTy->isVectorTy() ? ToVectorTy(SrcScalarTy, VF) : SrcScalarTy;
if (canTruncateToMinimalBitwidth(I, VF)) {
// This cast is going to be shrunk. This may remove the cast or it might
// turn it into slightly different cast. For example, if MinBW == 16,
// "zext i8 %1 to i32" becomes "zext i8 %1 to i16".
//
// Calculate the modified src and dest types.
Type *MinVecTy = VectorTy;
if (I->getOpcode() == Instruction::Trunc) {
SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy);
VectorTy =
largestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy);
} else if (I->getOpcode() == Instruction::ZExt ||
I->getOpcode() == Instruction::SExt) {
SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy);
VectorTy =
smallestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy);
}
}
unsigned N = isScalarAfterVectorization(I, VF) ? VF : 1;
return N * TTI.getCastInstrCost(I->getOpcode(), VectorTy, SrcVecTy, I);
}
case Instruction::Call: {
bool NeedToScalarize;
CallInst *CI = cast<CallInst>(I);
unsigned CallCost = getVectorCallCost(CI, VF, TTI, TLI, NeedToScalarize);
if (getVectorIntrinsicIDForCall(CI, TLI))
return std::min(CallCost, getVectorIntrinsicCost(CI, VF, TTI, TLI));
return CallCost;
}
default:
// The cost of executing VF copies of the scalar instruction. This opcode
// is unknown. Assume that it is the same as 'mul'.
return VF * TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy) +
getScalarizationOverhead(I, VF, TTI);
} // end of switch.
}
char LoopVectorize::ID = 0;
static const char lv_name[] = "Loop Vectorization";
INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false)
INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass)
INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis)
INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass)
INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false)
namespace llvm {
Pass *createLoopVectorizePass(bool NoUnrolling, bool AlwaysVectorize) {
return new LoopVectorize(NoUnrolling, AlwaysVectorize);
}
} // end namespace llvm
bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) {
// Check if the pointer operand of a load or store instruction is
// consecutive.
if (auto *Ptr = getLoadStorePointerOperand(Inst))
return Legal->isConsecutivePtr(Ptr);
return false;
}
void LoopVectorizationCostModel::collectValuesToIgnore() {
// Ignore ephemeral values.
CodeMetrics::collectEphemeralValues(TheLoop, AC, ValuesToIgnore);
// Ignore type-promoting instructions we identified during reduction
// detection.
for (auto &Reduction : *Legal->getReductionVars()) {
RecurrenceDescriptor &RedDes = Reduction.second;
SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts();
VecValuesToIgnore.insert(Casts.begin(), Casts.end());
}
// Ignore type-casting instructions we identified during induction
// detection.
for (auto &Induction : *Legal->getInductionVars()) {
InductionDescriptor &IndDes = Induction.second;
const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts();
VecValuesToIgnore.insert(Casts.begin(), Casts.end());
}
}
VectorizationFactor
LoopVectorizationPlanner::planInVPlanNativePath(bool OptForSize,
unsigned UserVF) {
// Width 1 means no vectorization, cost 0 means uncomputed cost.
const VectorizationFactor NoVectorization = {1U, 0U};
// Outer loop handling: They may require CFG and instruction level
// transformations before even evaluating whether vectorization is profitable.
// Since we cannot modify the incoming IR, we need to build VPlan upfront in
// the vectorization pipeline.
if (!OrigLoop->empty()) {
// TODO: If UserVF is not provided, we set UserVF to 4 for stress testing.
// This won't be necessary when UserVF is not required in the VPlan-native
// path.
if (VPlanBuildStressTest && !UserVF)
UserVF = 4;
assert(EnableVPlanNativePath && "VPlan-native path is not enabled.");
assert(UserVF && "Expected UserVF for outer loop vectorization.");
assert(isPowerOf2_32(UserVF) && "VF needs to be a power of two");
LLVM_DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n");
buildVPlans(UserVF, UserVF);
// For VPlan build stress testing, we bail out after VPlan construction.
if (VPlanBuildStressTest)
return NoVectorization;
return {UserVF, 0};
}
LLVM_DEBUG(
dbgs() << "LV: Not vectorizing. Inner loops aren't supported in the "
"VPlan-native path.\n");
return NoVectorization;
}
VectorizationFactor
LoopVectorizationPlanner::plan(bool OptForSize, unsigned UserVF) {
assert(OrigLoop->empty() && "Inner loop expected.");
// Width 1 means no vectorization, cost 0 means uncomputed cost.
const VectorizationFactor NoVectorization = {1U, 0U};
Optional<unsigned> MaybeMaxVF = CM.computeMaxVF(OptForSize);
if (!MaybeMaxVF.hasValue()) // Cases considered too costly to vectorize.
return NoVectorization;
if (UserVF) {
LLVM_DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n");
assert(isPowerOf2_32(UserVF) && "VF needs to be a power of two");
// Collect the instructions (and their associated costs) that will be more
// profitable to scalarize.
CM.selectUserVectorizationFactor(UserVF);
buildVPlansWithVPRecipes(UserVF, UserVF);
LLVM_DEBUG(printPlans(dbgs()));
return {UserVF, 0};
}
unsigned MaxVF = MaybeMaxVF.getValue();
assert(MaxVF != 0 && "MaxVF is zero.");
for (unsigned VF = 1; VF <= MaxVF; VF *= 2) {
// Collect Uniform and Scalar instructions after vectorization with VF.
CM.collectUniformsAndScalars(VF);
// Collect the instructions (and their associated costs) that will be more
// profitable to scalarize.
if (VF > 1)
CM.collectInstsToScalarize(VF);
}
buildVPlansWithVPRecipes(1, MaxVF);
LLVM_DEBUG(printPlans(dbgs()));
if (MaxVF == 1)
return NoVectorization;
// Select the optimal vectorization factor.
return CM.selectVectorizationFactor(MaxVF);
}
void LoopVectorizationPlanner::setBestPlan(unsigned VF, unsigned UF) {
LLVM_DEBUG(dbgs() << "Setting best plan to VF=" << VF << ", UF=" << UF
<< '\n');
BestVF = VF;
BestUF = UF;
erase_if(VPlans, [VF](const VPlanPtr &Plan) {
return !Plan->hasVF(VF);
});
assert(VPlans.size() == 1 && "Best VF has not a single VPlan.");
}
void LoopVectorizationPlanner::executePlan(InnerLoopVectorizer &ILV,
DominatorTree *DT) {
// Perform the actual loop transformation.
// 1. Create a new empty loop. Unlink the old loop and connect the new one.
VPCallbackILV CallbackILV(ILV);
VPTransformState State{BestVF, BestUF, LI,
DT, ILV.Builder, ILV.VectorLoopValueMap,
&ILV, CallbackILV};
State.CFG.PrevBB = ILV.createVectorizedLoopSkeleton();
//===------------------------------------------------===//
//
// Notice: any optimization or new instruction that go
// into the code below should also be implemented in
// the cost-model.
//
//===------------------------------------------------===//
// 2. Copy and widen instructions from the old loop into the new loop.
assert(VPlans.size() == 1 && "Not a single VPlan to execute.");
VPlans.front()->execute(&State);
// 3. Fix the vectorized code: take care of header phi's, live-outs,
// predication, updating analyses.
ILV.fixVectorizedLoop();
}
void LoopVectorizationPlanner::collectTriviallyDeadInstructions(
SmallPtrSetImpl<Instruction *> &DeadInstructions) {
BasicBlock *Latch = OrigLoop->getLoopLatch();
// We create new control-flow for the vectorized loop, so the original
// condition will be dead after vectorization if it's only used by the
// branch.
auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0));
if (Cmp && Cmp->hasOneUse())
DeadInstructions.insert(Cmp);
// We create new "steps" for induction variable updates to which the original
// induction variables map. An original update instruction will be dead if
// all its users except the induction variable are dead.
for (auto &Induction : *Legal->getInductionVars()) {
PHINode *Ind = Induction.first;
auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
if (llvm::all_of(IndUpdate->users(), [&](User *U) -> bool {
return U == Ind || DeadInstructions.find(cast<Instruction>(U)) !=
DeadInstructions.end();
}))
DeadInstructions.insert(IndUpdate);
// We record as "Dead" also the type-casting instructions we had identified
// during induction analysis. We don't need any handling for them in the
// vectorized loop because we have proven that, under a proper runtime
// test guarding the vectorized loop, the value of the phi, and the casted
// value of the phi, are the same. The last instruction in this casting chain
// will get its scalar/vector/widened def from the scalar/vector/widened def
// of the respective phi node. Any other casts in the induction def-use chain
// have no other uses outside the phi update chain, and will be ignored.
InductionDescriptor &IndDes = Induction.second;
const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts();
DeadInstructions.insert(Casts.begin(), Casts.end());
}
}
Value *InnerLoopUnroller::reverseVector(Value *Vec) { return Vec; }
Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { return V; }
Value *InnerLoopUnroller::getStepVector(Value *Val, int StartIdx, Value *Step,
Instruction::BinaryOps BinOp) {
// When unrolling and the VF is 1, we only need to add a simple scalar.
Type *Ty = Val->getType();
assert(!Ty->isVectorTy() && "Val must be a scalar");
if (Ty->isFloatingPointTy()) {
Constant *C = ConstantFP::get(Ty, (double)StartIdx);
// Floating point operations had to be 'fast' to enable the unrolling.
Value *MulOp = addFastMathFlag(Builder.CreateFMul(C, Step));
return addFastMathFlag(Builder.CreateBinOp(BinOp, Val, MulOp));
}
Constant *C = ConstantInt::get(Ty, StartIdx);
return Builder.CreateAdd(Val, Builder.CreateMul(C, Step), "induction");
}
static void AddRuntimeUnrollDisableMetaData(Loop *L) {
SmallVector<Metadata *, 4> MDs;
// Reserve first location for self reference to the LoopID metadata node.
MDs.push_back(nullptr);
bool IsUnrollMetadata = false;
MDNode *LoopID = L->getLoopID();
if (LoopID) {
// First find existing loop unrolling disable metadata.
for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
auto *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
if (MD) {
const auto *S = dyn_cast<MDString>(MD->getOperand(0));
IsUnrollMetadata =
S && S->getString().startswith("llvm.loop.unroll.disable");
}
MDs.push_back(LoopID->getOperand(i));
}
}
if (!IsUnrollMetadata) {
// Add runtime unroll disable metadata.
LLVMContext &Context = L->getHeader()->getContext();
SmallVector<Metadata *, 1> DisableOperands;
DisableOperands.push_back(
MDString::get(Context, "llvm.loop.unroll.runtime.disable"));
MDNode *DisableNode = MDNode::get(Context, DisableOperands);
MDs.push_back(DisableNode);
MDNode *NewLoopID = MDNode::get(Context, MDs);
// Set operand 0 to refer to the loop id itself.
NewLoopID->replaceOperandWith(0, NewLoopID);
L->setLoopID(NewLoopID);
}
}
bool LoopVectorizationPlanner::getDecisionAndClampRange(
const std::function<bool(unsigned)> &Predicate, VFRange &Range) {
assert(Range.End > Range.Start && "Trying to test an empty VF range.");
bool PredicateAtRangeStart = Predicate(Range.Start);
for (unsigned TmpVF = Range.Start * 2; TmpVF < Range.End; TmpVF *= 2)
if (Predicate(TmpVF) != PredicateAtRangeStart) {
Range.End = TmpVF;
break;
}
return PredicateAtRangeStart;
}
/// Build VPlans for the full range of feasible VF's = {\p MinVF, 2 * \p MinVF,
/// 4 * \p MinVF, ..., \p MaxVF} by repeatedly building a VPlan for a sub-range
/// of VF's starting at a given VF and extending it as much as possible. Each
/// vectorization decision can potentially shorten this sub-range during
/// buildVPlan().
void LoopVectorizationPlanner::buildVPlans(unsigned MinVF, unsigned MaxVF) {
for (unsigned VF = MinVF; VF < MaxVF + 1;) {
VFRange SubRange = {VF, MaxVF + 1};
VPlans.push_back(buildVPlan(SubRange));
VF = SubRange.End;
}
}
VPValue *VPRecipeBuilder::createEdgeMask(BasicBlock *Src, BasicBlock *Dst,
VPlanPtr &Plan) {
assert(is_contained(predecessors(Dst), Src) && "Invalid edge");
// Look for cached value.
std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst);
EdgeMaskCacheTy::iterator ECEntryIt = EdgeMaskCache.find(Edge);
if (ECEntryIt != EdgeMaskCache.end())
return ECEntryIt->second;
VPValue *SrcMask = createBlockInMask(Src, Plan);
// The terminator has to be a branch inst!
BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator());
assert(BI && "Unexpected terminator found");
if (!BI->isConditional())
return EdgeMaskCache[Edge] = SrcMask;
VPValue *EdgeMask = Plan->getVPValue(BI->getCondition());
assert(EdgeMask && "No Edge Mask found for condition");
if (BI->getSuccessor(0) != Dst)
EdgeMask = Builder.createNot(EdgeMask);
if (SrcMask) // Otherwise block in-mask is all-one, no need to AND.
EdgeMask = Builder.createAnd(EdgeMask, SrcMask);
return EdgeMaskCache[Edge] = EdgeMask;
}
VPValue *VPRecipeBuilder::createBlockInMask(BasicBlock *BB, VPlanPtr &Plan) {
assert(OrigLoop->contains(BB) && "Block is not a part of a loop");
// Look for cached value.
BlockMaskCacheTy::iterator BCEntryIt = BlockMaskCache.find(BB);
if (BCEntryIt != BlockMaskCache.end())
return BCEntryIt->second;
// All-one mask is modelled as no-mask following the convention for masked
// load/store/gather/scatter. Initialize BlockMask to no-mask.
VPValue *BlockMask = nullptr;
// Loop incoming mask is all-one.
if (OrigLoop->getHeader() == BB)
return BlockMaskCache[BB] = BlockMask;
// This is the block mask. We OR all incoming edges.
for (auto *Predecessor : predecessors(BB)) {
VPValue *EdgeMask = createEdgeMask(Predecessor, BB, Plan);
if (!EdgeMask) // Mask of predecessor is all-one so mask of block is too.
return BlockMaskCache[BB] = EdgeMask;
if (!BlockMask) { // BlockMask has its initialized nullptr value.
BlockMask = EdgeMask;
continue;
}
BlockMask = Builder.createOr(BlockMask, EdgeMask);
}
return BlockMaskCache[BB] = BlockMask;
}
VPInterleaveRecipe *VPRecipeBuilder::tryToInterleaveMemory(Instruction *I,
VFRange &Range) {
const InterleaveGroup *IG = CM.getInterleavedAccessGroup(I);
if (!IG)
return nullptr;
// Now check if IG is relevant for VF's in the given range.
auto isIGMember = [&](Instruction *I) -> std::function<bool(unsigned)> {
return [=](unsigned VF) -> bool {
return (VF >= 2 && // Query is illegal for VF == 1
CM.getWideningDecision(I, VF) ==
LoopVectorizationCostModel::CM_Interleave);
};
};
if (!LoopVectorizationPlanner::getDecisionAndClampRange(isIGMember(I), Range))
return nullptr;
// I is a member of an InterleaveGroup for VF's in the (possibly trimmed)
// range. If it's the primary member of the IG construct a VPInterleaveRecipe.
// Otherwise, it's an adjunct member of the IG, do not construct any Recipe.
assert(I == IG->getInsertPos() &&
"Generating a recipe for an adjunct member of an interleave group");
return new VPInterleaveRecipe(IG);
}
VPWidenMemoryInstructionRecipe *
VPRecipeBuilder::tryToWidenMemory(Instruction *I, VFRange &Range,
VPlanPtr &Plan) {
if (!isa<LoadInst>(I) && !isa<StoreInst>(I))
return nullptr;
auto willWiden = [&](unsigned VF) -> bool {
if (VF == 1)
return false;
if (CM.isScalarAfterVectorization(I, VF) ||
CM.isProfitableToScalarize(I, VF))
return false;
LoopVectorizationCostModel::InstWidening Decision =
CM.getWideningDecision(I, VF);
assert(Decision != LoopVectorizationCostModel::CM_Unknown &&
"CM decision should be taken at this point.");
assert(Decision != LoopVectorizationCostModel::CM_Interleave &&
"Interleave memory opportunity should be caught earlier.");
return Decision != LoopVectorizationCostModel::CM_Scalarize;
};
if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range))
return nullptr;
VPValue *Mask = nullptr;
if (Legal->isMaskRequired(I))
Mask = createBlockInMask(I->getParent(), Plan);
return new VPWidenMemoryInstructionRecipe(*I, Mask);
}
VPWidenIntOrFpInductionRecipe *
VPRecipeBuilder::tryToOptimizeInduction(Instruction *I, VFRange &Range) {
if (PHINode *Phi = dyn_cast<PHINode>(I)) {
// Check if this is an integer or fp induction. If so, build the recipe that
// produces its scalar and vector values.
InductionDescriptor II = Legal->getInductionVars()->lookup(Phi);
if (II.getKind() == InductionDescriptor::IK_IntInduction ||
II.getKind() == InductionDescriptor::IK_FpInduction)
return new VPWidenIntOrFpInductionRecipe(Phi);
return nullptr;
}
// Optimize the special case where the source is a constant integer
// induction variable. Notice that we can only optimize the 'trunc' case
// because (a) FP conversions lose precision, (b) sext/zext may wrap, and
// (c) other casts depend on pointer size.
// Determine whether \p K is a truncation based on an induction variable that
// can be optimized.
auto isOptimizableIVTruncate =
[&](Instruction *K) -> std::function<bool(unsigned)> {
return
[=](unsigned VF) -> bool { return CM.isOptimizableIVTruncate(K, VF); };
};
if (isa<TruncInst>(I) && LoopVectorizationPlanner::getDecisionAndClampRange(
isOptimizableIVTruncate(I), Range))
return new VPWidenIntOrFpInductionRecipe(cast<PHINode>(I->getOperand(0)),
cast<TruncInst>(I));
return nullptr;
}
VPBlendRecipe *VPRecipeBuilder::tryToBlend(Instruction *I, VPlanPtr &Plan) {
PHINode *Phi = dyn_cast<PHINode>(I);
if (!Phi || Phi->getParent() == OrigLoop->getHeader())
return nullptr;
// We know that all PHIs in non-header blocks are converted into selects, so
// we don't have to worry about the insertion order and we can just use the
// builder. At this point we generate the predication tree. There may be
// duplications since this is a simple recursive scan, but future
// optimizations will clean it up.
SmallVector<VPValue *, 2> Masks;
unsigned NumIncoming = Phi->getNumIncomingValues();
for (unsigned In = 0; In < NumIncoming; In++) {
VPValue *EdgeMask =
createEdgeMask(Phi->getIncomingBlock(In), Phi->getParent(), Plan);
assert((EdgeMask || NumIncoming == 1) &&
"Multiple predecessors with one having a full mask");
if (EdgeMask)
Masks.push_back(EdgeMask);
}
return new VPBlendRecipe(Phi, Masks);
}
bool VPRecipeBuilder::tryToWiden(Instruction *I, VPBasicBlock *VPBB,
VFRange &Range) {
bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange(
[&](unsigned VF) { return CM.isScalarWithPredication(I, VF); }, Range);
if (IsPredicated)
return false;
auto IsVectorizableOpcode = [](unsigned Opcode) {
switch (Opcode) {
case Instruction::Add:
case Instruction::And:
case Instruction::AShr:
case Instruction::BitCast:
case Instruction::Br:
case Instruction::Call:
case Instruction::FAdd:
case Instruction::FCmp:
case Instruction::FDiv:
case Instruction::FMul:
case Instruction::FPExt:
case Instruction::FPToSI:
case Instruction::FPToUI:
case Instruction::FPTrunc:
case Instruction::FRem:
case Instruction::FSub:
case Instruction::GetElementPtr:
case Instruction::ICmp:
case Instruction::IntToPtr:
case Instruction::Load:
case Instruction::LShr:
case Instruction::Mul:
case Instruction::Or:
case Instruction::PHI:
case Instruction::PtrToInt:
case Instruction::SDiv:
case Instruction::Select:
case Instruction::SExt:
case Instruction::Shl:
case Instruction::SIToFP:
case Instruction::SRem:
case Instruction::Store:
case Instruction::Sub:
case Instruction::Trunc:
case Instruction::UDiv:
case Instruction::UIToFP:
case Instruction::URem:
case Instruction::Xor:
case Instruction::ZExt:
return true;
}
return false;
};
if (!IsVectorizableOpcode(I->getOpcode()))
return false;
if (CallInst *CI = dyn_cast<CallInst>(I)) {
Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end ||
ID == Intrinsic::lifetime_start || ID == Intrinsic::sideeffect))
return false;
}
auto willWiden = [&](unsigned VF) -> bool {
if (!isa<PHINode>(I) && (CM.isScalarAfterVectorization(I, VF) ||
CM.isProfitableToScalarize(I, VF)))
return false;
if (CallInst *CI = dyn_cast<CallInst>(I)) {
Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
// The following case may be scalarized depending on the VF.
// The flag shows whether we use Intrinsic or a usual Call for vectorized
// version of the instruction.
// Is it beneficial to perform intrinsic call compared to lib call?
bool NeedToScalarize;
unsigned CallCost = getVectorCallCost(CI, VF, *TTI, TLI, NeedToScalarize);
bool UseVectorIntrinsic =
ID && getVectorIntrinsicCost(CI, VF, *TTI, TLI) <= CallCost;
return UseVectorIntrinsic || !NeedToScalarize;
}
if (isa<LoadInst>(I) || isa<StoreInst>(I)) {
assert(CM.getWideningDecision(I, VF) ==
LoopVectorizationCostModel::CM_Scalarize &&
"Memory widening decisions should have been taken care by now");
return false;
}
return true;
};
if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range))
return false;
// Success: widen this instruction. We optimize the common case where
// consecutive instructions can be represented by a single recipe.
if (!VPBB->empty()) {
VPWidenRecipe *LastWidenRecipe = dyn_cast<VPWidenRecipe>(&VPBB->back());
if (LastWidenRecipe && LastWidenRecipe->appendInstruction(I))
return true;
}
VPBB->appendRecipe(new VPWidenRecipe(I));
return true;
}
VPBasicBlock *VPRecipeBuilder::handleReplication(
Instruction *I, VFRange &Range, VPBasicBlock *VPBB,
DenseMap<Instruction *, VPReplicateRecipe *> &PredInst2Recipe,
VPlanPtr &Plan) {
bool IsUniform = LoopVectorizationPlanner::getDecisionAndClampRange(
[&](unsigned VF) { return CM.isUniformAfterVectorization(I, VF); },
Range);
bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange(
[&](unsigned VF) { return CM.isScalarWithPredication(I, VF); }, Range);
auto *Recipe = new VPReplicateRecipe(I, IsUniform, IsPredicated);
// Find if I uses a predicated instruction. If so, it will use its scalar
// value. Avoid hoisting the insert-element which packs the scalar value into
// a vector value, as that happens iff all users use the vector value.
for (auto &Op : I->operands())
if (auto *PredInst = dyn_cast<Instruction>(Op))
if (PredInst2Recipe.find(PredInst) != PredInst2Recipe.end())
PredInst2Recipe[PredInst]->setAlsoPack(false);
// Finalize the recipe for Instr, first if it is not predicated.
if (!IsPredicated) {
LLVM_DEBUG(dbgs() << "LV: Scalarizing:" << *I << "\n");
VPBB->appendRecipe(Recipe);
return VPBB;
}
LLVM_DEBUG(dbgs() << "LV: Scalarizing and predicating:" << *I << "\n");
assert(VPBB->getSuccessors().empty() &&
"VPBB has successors when handling predicated replication.");
// Record predicated instructions for above packing optimizations.
PredInst2Recipe[I] = Recipe;
VPBlockBase *Region = createReplicateRegion(I, Recipe, Plan);
VPBlockUtils::insertBlockAfter(Region, VPBB);
auto *RegSucc = new VPBasicBlock();
VPBlockUtils::insertBlockAfter(RegSucc, Region);
return RegSucc;
}
VPRegionBlock *VPRecipeBuilder::createReplicateRegion(Instruction *Instr,
VPRecipeBase *PredRecipe,
VPlanPtr &Plan) {
// Instructions marked for predication are replicated and placed under an
// if-then construct to prevent side-effects.
// Generate recipes to compute the block mask for this region.
VPValue *BlockInMask = createBlockInMask(Instr->getParent(), Plan);
// Build the triangular if-then region.
std::string RegionName = (Twine("pred.") + Instr->getOpcodeName()).str();
assert(Instr->getParent() && "Predicated instruction not in any basic block");
auto *BOMRecipe = new VPBranchOnMaskRecipe(BlockInMask);
auto *Entry = new VPBasicBlock(Twine(RegionName) + ".entry", BOMRecipe);
auto *PHIRecipe =
Instr->getType()->isVoidTy() ? nullptr : new VPPredInstPHIRecipe(Instr);
auto *Exit = new VPBasicBlock(Twine(RegionName) + ".continue", PHIRecipe);
auto *Pred = new VPBasicBlock(Twine(RegionName) + ".if", PredRecipe);
VPRegionBlock *Region = new VPRegionBlock(Entry, Exit, RegionName, true);
// Note: first set Entry as region entry and then connect successors starting
// from it in order, to propagate the "parent" of each VPBasicBlock.
VPBlockUtils::insertTwoBlocksAfter(Pred, Exit, BlockInMask, Entry);
VPBlockUtils::connectBlocks(Pred, Exit);
return Region;
}
bool VPRecipeBuilder::tryToCreateRecipe(Instruction *Instr, VFRange &Range,
VPlanPtr &Plan, VPBasicBlock *VPBB) {
VPRecipeBase *Recipe = nullptr;
// Check if Instr should belong to an interleave memory recipe, or already
// does. In the latter case Instr is irrelevant.
if ((Recipe = tryToInterleaveMemory(Instr, Range))) {
VPBB->appendRecipe(Recipe);
return true;
}
// Check if Instr is a memory operation that should be widened.
if ((Recipe = tryToWidenMemory(Instr, Range, Plan))) {
VPBB->appendRecipe(Recipe);
return true;
}
// Check if Instr should form some PHI recipe.
if ((Recipe = tryToOptimizeInduction(Instr, Range))) {
VPBB->appendRecipe(Recipe);
return true;
}
if ((Recipe = tryToBlend(Instr, Plan))) {
VPBB->appendRecipe(Recipe);
return true;
}
if (PHINode *Phi = dyn_cast<PHINode>(Instr)) {
VPBB->appendRecipe(new VPWidenPHIRecipe(Phi));
return true;
}
// Check if Instr is to be widened by a general VPWidenRecipe, after
// having first checked for specific widening recipes that deal with
// Interleave Groups, Inductions and Phi nodes.
if (tryToWiden(Instr, VPBB, Range))
return true;
return false;
}
void LoopVectorizationPlanner::buildVPlansWithVPRecipes(unsigned MinVF,
unsigned MaxVF) {
assert(OrigLoop->empty() && "Inner loop expected.");
// Collect conditions feeding internal conditional branches; they need to be
// represented in VPlan for it to model masking.
SmallPtrSet<Value *, 1> NeedDef;
auto *Latch = OrigLoop->getLoopLatch();
for (BasicBlock *BB : OrigLoop->blocks()) {
if (BB == Latch)
continue;
BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator());
if (Branch && Branch->isConditional())
NeedDef.insert(Branch->getCondition());
}
// Collect instructions from the original loop that will become trivially dead
// in the vectorized loop. We don't need to vectorize these instructions. For
// example, original induction update instructions can become dead because we
// separately emit induction "steps" when generating code for the new loop.
// Similarly, we create a new latch condition when setting up the structure
// of the new loop, so the old one can become dead.
SmallPtrSet<Instruction *, 4> DeadInstructions;
collectTriviallyDeadInstructions(DeadInstructions);
for (unsigned VF = MinVF; VF < MaxVF + 1;) {
VFRange SubRange = {VF, MaxVF + 1};
VPlans.push_back(
buildVPlanWithVPRecipes(SubRange, NeedDef, DeadInstructions));
VF = SubRange.End;
}
}
LoopVectorizationPlanner::VPlanPtr
LoopVectorizationPlanner::buildVPlanWithVPRecipes(
VFRange &Range, SmallPtrSetImpl<Value *> &NeedDef,
SmallPtrSetImpl<Instruction *> &DeadInstructions) {
// Hold a mapping from predicated instructions to their recipes, in order to
// fix their AlsoPack behavior if a user is determined to replicate and use a
// scalar instead of vector value.
DenseMap<Instruction *, VPReplicateRecipe *> PredInst2Recipe;
DenseMap<Instruction *, Instruction *> &SinkAfter = Legal->getSinkAfter();
DenseMap<Instruction *, Instruction *> SinkAfterInverse;
// Create a dummy pre-entry VPBasicBlock to start building the VPlan.
VPBasicBlock *VPBB = new VPBasicBlock("Pre-Entry");
auto Plan = llvm::make_unique<VPlan>(VPBB);
VPRecipeBuilder RecipeBuilder(OrigLoop, TLI, TTI, Legal, CM, Builder);
// Represent values that will have defs inside VPlan.
for (Value *V : NeedDef)
Plan->addVPValue(V);
// Scan the body of the loop in a topological order to visit each basic block
// after having visited its predecessor basic blocks.
LoopBlocksDFS DFS(OrigLoop);
DFS.perform(LI);
for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) {
// Relevant instructions from basic block BB will be grouped into VPRecipe
// ingredients and fill a new VPBasicBlock.
unsigned VPBBsForBB = 0;
auto *FirstVPBBForBB = new VPBasicBlock(BB->getName());
VPBlockUtils::insertBlockAfter(FirstVPBBForBB, VPBB);
VPBB = FirstVPBBForBB;
Builder.setInsertPoint(VPBB);
std::vector<Instruction *> Ingredients;
// Organize the ingredients to vectorize from current basic block in the
// right order.
for (Instruction &I : BB->instructionsWithoutDebug()) {
Instruction *Instr = &I;
// First filter out irrelevant instructions, to ensure no recipes are
// built for them.
if (isa<BranchInst>(Instr) ||
DeadInstructions.find(Instr) != DeadInstructions.end())
continue;
// I is a member of an InterleaveGroup for Range.Start. If it's an adjunct
// member of the IG, do not construct any Recipe for it.
const InterleaveGroup *IG = CM.getInterleavedAccessGroup(Instr);
if (IG && Instr != IG->getInsertPos() &&
Range.Start >= 2 && // Query is illegal for VF == 1
CM.getWideningDecision(Instr, Range.Start) ==
LoopVectorizationCostModel::CM_Interleave) {
auto SinkCandidate = SinkAfterInverse.find(Instr);
if (SinkCandidate != SinkAfterInverse.end())
Ingredients.push_back(SinkCandidate->second);
continue;
}
// Move instructions to handle first-order recurrences, step 1: avoid
// handling this instruction until after we've handled the instruction it
// should follow.
auto SAIt = SinkAfter.find(Instr);
if (SAIt != SinkAfter.end()) {
LLVM_DEBUG(dbgs() << "Sinking" << *SAIt->first << " after"
<< *SAIt->second
<< " to vectorize a 1st order recurrence.\n");
SinkAfterInverse[SAIt->second] = Instr;
continue;
}
Ingredients.push_back(Instr);
// Move instructions to handle first-order recurrences, step 2: push the
// instruction to be sunk at its insertion point.
auto SAInvIt = SinkAfterInverse.find(Instr);
if (SAInvIt != SinkAfterInverse.end())
Ingredients.push_back(SAInvIt->second);
}
// Introduce each ingredient into VPlan.
for (Instruction *Instr : Ingredients) {
if (RecipeBuilder.tryToCreateRecipe(Instr, Range, Plan, VPBB))
continue;
// Otherwise, if all widening options failed, Instruction is to be
// replicated. This may create a successor for VPBB.
VPBasicBlock *NextVPBB = RecipeBuilder.handleReplication(
Instr, Range, VPBB, PredInst2Recipe, Plan);
if (NextVPBB != VPBB) {
VPBB = NextVPBB;
VPBB->setName(BB->hasName() ? BB->getName() + "." + Twine(VPBBsForBB++)
: "");
}
}
}
// Discard empty dummy pre-entry VPBasicBlock. Note that other VPBasicBlocks
// may also be empty, such as the last one VPBB, reflecting original
// basic-blocks with no recipes.
VPBasicBlock *PreEntry = cast<VPBasicBlock>(Plan->getEntry());
assert(PreEntry->empty() && "Expecting empty pre-entry block.");
VPBlockBase *Entry = Plan->setEntry(PreEntry->getSingleSuccessor());
VPBlockUtils::disconnectBlocks(PreEntry, Entry);
delete PreEntry;
std::string PlanName;
raw_string_ostream RSO(PlanName);
unsigned VF = Range.Start;
Plan->addVF(VF);
RSO << "Initial VPlan for VF={" << VF;
for (VF *= 2; VF < Range.End; VF *= 2) {
Plan->addVF(VF);
RSO << "," << VF;
}
RSO << "},UF>=1";
RSO.flush();
Plan->setName(PlanName);
return Plan;
}
LoopVectorizationPlanner::VPlanPtr
LoopVectorizationPlanner::buildVPlan(VFRange &Range) {
// Outer loop handling: They may require CFG and instruction level
// transformations before even evaluating whether vectorization is profitable.
// Since we cannot modify the incoming IR, we need to build VPlan upfront in
// the vectorization pipeline.
assert(!OrigLoop->empty());
assert(EnableVPlanNativePath && "VPlan-native path is not enabled.");
// Create new empty VPlan
auto Plan = llvm::make_unique<VPlan>();
// Build hierarchical CFG
VPlanHCFGBuilder HCFGBuilder(OrigLoop, LI, *Plan);
HCFGBuilder.buildHierarchicalCFG();
SmallPtrSet<Instruction *, 1> DeadInstructions;
VPlanHCFGTransforms::VPInstructionsToVPRecipes(
Plan, Legal->getInductionVars(), DeadInstructions);
for (unsigned VF = Range.Start; VF < Range.End; VF *= 2)
Plan->addVF(VF);
return Plan;
}
Value* LoopVectorizationPlanner::VPCallbackILV::
getOrCreateVectorValues(Value *V, unsigned Part) {
return ILV.getOrCreateVectorValue(V, Part);
}
void VPInterleaveRecipe::print(raw_ostream &O, const Twine &Indent) const {
O << " +\n"
<< Indent << "\"INTERLEAVE-GROUP with factor " << IG->getFactor() << " at ";
IG->getInsertPos()->printAsOperand(O, false);
O << "\\l\"";
for (unsigned i = 0; i < IG->getFactor(); ++i)
if (Instruction *I = IG->getMember(i))
O << " +\n"
<< Indent << "\" " << VPlanIngredient(I) << " " << i << "\\l\"";
}
void VPWidenRecipe::execute(VPTransformState &State) {
for (auto &Instr : make_range(Begin, End))
State.ILV->widenInstruction(Instr);
}
void VPWidenIntOrFpInductionRecipe::execute(VPTransformState &State) {
assert(!State.Instance && "Int or FP induction being replicated.");
State.ILV->widenIntOrFpInduction(IV, Trunc);
}
void VPWidenPHIRecipe::execute(VPTransformState &State) {
State.ILV->widenPHIInstruction(Phi, State.UF, State.VF);
}
void VPBlendRecipe::execute(VPTransformState &State) {
State.ILV->setDebugLocFromInst(State.Builder, Phi);
// We know that all PHIs in non-header blocks are converted into
// selects, so we don't have to worry about the insertion order and we
// can just use the builder.
// At this point we generate the predication tree. There may be
// duplications since this is a simple recursive scan, but future
// optimizations will clean it up.
unsigned NumIncoming = Phi->getNumIncomingValues();
assert((User || NumIncoming == 1) &&
"Multiple predecessors with predecessors having a full mask");
// Generate a sequence of selects of the form:
// SELECT(Mask3, In3,
// SELECT(Mask2, In2,
// ( ...)))
InnerLoopVectorizer::VectorParts Entry(State.UF);
for (unsigned In = 0; In < NumIncoming; ++In) {
for (unsigned Part = 0; Part < State.UF; ++Part) {
// We might have single edge PHIs (blocks) - use an identity
// 'select' for the first PHI operand.
Value *In0 =
State.ILV->getOrCreateVectorValue(Phi->getIncomingValue(In), Part);
if (In == 0)
Entry[Part] = In0; // Initialize with the first incoming value.
else {
// Select between the current value and the previous incoming edge
// based on the incoming mask.
Value *Cond = State.get(User->getOperand(In), Part);
Entry[Part] =
State.Builder.CreateSelect(Cond, In0, Entry[Part], "predphi");
}
}
}
for (unsigned Part = 0; Part < State.UF; ++Part)
State.ValueMap.setVectorValue(Phi, Part, Entry[Part]);
}
void VPInterleaveRecipe::execute(VPTransformState &State) {
assert(!State.Instance && "Interleave group being replicated.");
State.ILV->vectorizeInterleaveGroup(IG->getInsertPos());
}
void VPReplicateRecipe::execute(VPTransformState &State) {
if (State.Instance) { // Generate a single instance.
State.ILV->scalarizeInstruction(Ingredient, *State.Instance, IsPredicated);
// Insert scalar instance packing it into a vector.
if (AlsoPack && State.VF > 1) {
// If we're constructing lane 0, initialize to start from undef.
if (State.Instance->Lane == 0) {
Value *Undef =
UndefValue::get(VectorType::get(Ingredient->getType(), State.VF));
State.ValueMap.setVectorValue(Ingredient, State.Instance->Part, Undef);
}
State.ILV->packScalarIntoVectorValue(Ingredient, *State.Instance);
}
return;
}
// Generate scalar instances for all VF lanes of all UF parts, unless the
// instruction is uniform inwhich case generate only the first lane for each
// of the UF parts.
unsigned EndLane = IsUniform ? 1 : State.VF;
for (unsigned Part = 0; Part < State.UF; ++Part)
for (unsigned Lane = 0; Lane < EndLane; ++Lane)
State.ILV->scalarizeInstruction(Ingredient, {Part, Lane}, IsPredicated);
}
void VPBranchOnMaskRecipe::execute(VPTransformState &State) {
assert(State.Instance && "Branch on Mask works only on single instance.");
unsigned Part = State.Instance->Part;
unsigned Lane = State.Instance->Lane;
Value *ConditionBit = nullptr;
if (!User) // Block in mask is all-one.
ConditionBit = State.Builder.getTrue();
else {
VPValue *BlockInMask = User->getOperand(0);
ConditionBit = State.get(BlockInMask, Part);
if (ConditionBit->getType()->isVectorTy())
ConditionBit = State.Builder.CreateExtractElement(
ConditionBit, State.Builder.getInt32(Lane));
}
// Replace the temporary unreachable terminator with a new conditional branch,
// whose two destinations will be set later when they are created.
auto *CurrentTerminator = State.CFG.PrevBB->getTerminator();
assert(isa<UnreachableInst>(CurrentTerminator) &&
"Expected to replace unreachable terminator with conditional branch.");
auto *CondBr = BranchInst::Create(State.CFG.PrevBB, nullptr, ConditionBit);
CondBr->setSuccessor(0, nullptr);
ReplaceInstWithInst(CurrentTerminator, CondBr);
}
void VPPredInstPHIRecipe::execute(VPTransformState &State) {
assert(State.Instance && "Predicated instruction PHI works per instance.");
Instruction *ScalarPredInst = cast<Instruction>(
State.ValueMap.getScalarValue(PredInst, *State.Instance));
BasicBlock *PredicatedBB = ScalarPredInst->getParent();
BasicBlock *PredicatingBB = PredicatedBB->getSinglePredecessor();
assert(PredicatingBB && "Predicated block has no single predecessor.");
// By current pack/unpack logic we need to generate only a single phi node: if
// a vector value for the predicated instruction exists at this point it means
// the instruction has vector users only, and a phi for the vector value is
// needed. In this case the recipe of the predicated instruction is marked to
// also do that packing, thereby "hoisting" the insert-element sequence.
// Otherwise, a phi node for the scalar value is needed.
unsigned Part = State.Instance->Part;
if (State.ValueMap.hasVectorValue(PredInst, Part)) {
Value *VectorValue = State.ValueMap.getVectorValue(PredInst, Part);
InsertElementInst *IEI = cast<InsertElementInst>(VectorValue);
PHINode *VPhi = State.Builder.CreatePHI(IEI->getType(), 2);
VPhi->addIncoming(IEI->getOperand(0), PredicatingBB); // Unmodified vector.
VPhi->addIncoming(IEI, PredicatedBB); // New vector with inserted element.
State.ValueMap.resetVectorValue(PredInst, Part, VPhi); // Update cache.
} else {
Type *PredInstType = PredInst->getType();
PHINode *Phi = State.Builder.CreatePHI(PredInstType, 2);
Phi->addIncoming(UndefValue::get(ScalarPredInst->getType()), PredicatingBB);
Phi->addIncoming(ScalarPredInst, PredicatedBB);
State.ValueMap.resetScalarValue(PredInst, *State.Instance, Phi);
}
}
void VPWidenMemoryInstructionRecipe::execute(VPTransformState &State) {
if (!User)
return State.ILV->vectorizeMemoryInstruction(&Instr);
// Last (and currently only) operand is a mask.
InnerLoopVectorizer::VectorParts MaskValues(State.UF);
VPValue *Mask = User->getOperand(User->getNumOperands() - 1);
for (unsigned Part = 0; Part < State.UF; ++Part)
MaskValues[Part] = State.get(Mask, Part);
State.ILV->vectorizeMemoryInstruction(&Instr, &MaskValues);
}
// Process the loop in the VPlan-native vectorization path. This path builds
// VPlan upfront in the vectorization pipeline, which allows to apply
// VPlan-to-VPlan transformations from the very beginning without modifying the
// input LLVM IR.
static bool processLoopInVPlanNativePath(
Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT,
LoopVectorizationLegality *LVL, TargetTransformInfo *TTI,
TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC,
OptimizationRemarkEmitter *ORE, LoopVectorizeHints &Hints) {
assert(EnableVPlanNativePath && "VPlan-native path is disabled.");
Function *F = L->getHeader()->getParent();
InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL->getLAI());
LoopVectorizationCostModel CM(L, PSE, LI, LVL, *TTI, TLI, DB, AC, ORE, F,
&Hints, IAI);
// Use the planner for outer loop vectorization.
// TODO: CM is not used at this point inside the planner. Turn CM into an
// optional argument if we don't need it in the future.
LoopVectorizationPlanner LVP(L, LI, TLI, TTI, LVL, CM);
// Get user vectorization factor.
unsigned UserVF = Hints.getWidth();
// Check the function attributes to find out if this function should be
// optimized for size.
bool OptForSize =
Hints.getForce() != LoopVectorizeHints::FK_Enabled && F->optForSize();
// Plan how to best vectorize, return the best VF and its cost.
VectorizationFactor VF = LVP.planInVPlanNativePath(OptForSize, UserVF);
// If we are stress testing VPlan builds, do not attempt to generate vector
// code.
if (VPlanBuildStressTest)
return false;
LVP.setBestPlan(VF.Width, 1);
InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, UserVF, 1, LVL,
&CM);
LLVM_DEBUG(dbgs() << "Vectorizing outer loop in \""
<< L->getHeader()->getParent()->getName() << "\"\n");
LVP.executePlan(LB, DT);
// Mark the loop as already vectorized to avoid vectorizing again.
Hints.setAlreadyVectorized();
LLVM_DEBUG(verifyFunction(*L->getHeader()->getParent()));
return true;
}
bool LoopVectorizePass::processLoop(Loop *L) {
assert((EnableVPlanNativePath || L->empty()) &&
"VPlan-native path is not enabled. Only process inner loops.");
#ifndef NDEBUG
const std::string DebugLocStr = getDebugLocString(L);
#endif /* NDEBUG */
LLVM_DEBUG(dbgs() << "\nLV: Checking a loop in \""
<< L->getHeader()->getParent()->getName() << "\" from "
<< DebugLocStr << "\n");
LoopVectorizeHints Hints(L, DisableUnrolling, *ORE);
LLVM_DEBUG(
dbgs() << "LV: Loop hints:"
<< " force="
<< (Hints.getForce() == LoopVectorizeHints::FK_Disabled
? "disabled"
: (Hints.getForce() == LoopVectorizeHints::FK_Enabled
? "enabled"
: "?"))
<< " width=" << Hints.getWidth()
<< " unroll=" << Hints.getInterleave() << "\n");
// Function containing loop
Function *F = L->getHeader()->getParent();
// Looking at the diagnostic output is the only way to determine if a loop
// was vectorized (other than looking at the IR or machine code), so it
// is important to generate an optimization remark for each loop. Most of
// these messages are generated as OptimizationRemarkAnalysis. Remarks
// generated as OptimizationRemark and OptimizationRemarkMissed are
// less verbose reporting vectorized loops and unvectorized loops that may
// benefit from vectorization, respectively.
if (!Hints.allowVectorization(F, L, AlwaysVectorize)) {
LLVM_DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n");
return false;
}
PredicatedScalarEvolution PSE(*SE, *L);
// Check if it is legal to vectorize the loop.
LoopVectorizationRequirements Requirements(*ORE);
LoopVectorizationLegality LVL(L, PSE, DT, TLI, AA, F, GetLAA, LI, ORE,
&Requirements, &Hints, DB, AC);
if (!LVL.canVectorize(EnableVPlanNativePath)) {
LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n");
emitMissedWarning(F, L, Hints, ORE);
return false;
}
// Check the function attributes to find out if this function should be
// optimized for size.
bool OptForSize =
Hints.getForce() != LoopVectorizeHints::FK_Enabled && F->optForSize();
// Entrance to the VPlan-native vectorization path. Outer loops are processed
// here. They may require CFG and instruction level transformations before
// even evaluating whether vectorization is profitable. Since we cannot modify
// the incoming IR, we need to build VPlan upfront in the vectorization
// pipeline.
if (!L->empty())
return processLoopInVPlanNativePath(L, PSE, LI, DT, &LVL, TTI, TLI, DB, AC,
ORE, Hints);
assert(L->empty() && "Inner loop expected.");
// Check the loop for a trip count threshold: vectorize loops with a tiny trip
// count by optimizing for size, to minimize overheads.
// Prefer constant trip counts over profile data, over upper bound estimate.
unsigned ExpectedTC = 0;
bool HasExpectedTC = false;
if (const SCEVConstant *ConstExits =
dyn_cast<SCEVConstant>(SE->getBackedgeTakenCount(L))) {
const APInt &ExitsCount = ConstExits->getAPInt();
// We are interested in small values for ExpectedTC. Skip over those that
// can't fit an unsigned.
if (ExitsCount.ult(std::numeric_limits<unsigned>::max())) {
ExpectedTC = static_cast<unsigned>(ExitsCount.getZExtValue()) + 1;
HasExpectedTC = true;
}
}
// ExpectedTC may be large because it's bound by a variable. Check
// profiling information to validate we should vectorize.
if (!HasExpectedTC && LoopVectorizeWithBlockFrequency) {
auto EstimatedTC = getLoopEstimatedTripCount(L);
if (EstimatedTC) {
ExpectedTC = *EstimatedTC;
HasExpectedTC = true;
}
}
if (!HasExpectedTC) {
ExpectedTC = SE->getSmallConstantMaxTripCount(L);
HasExpectedTC = (ExpectedTC > 0);
}
if (HasExpectedTC && ExpectedTC < TinyTripCountVectorThreshold) {
LLVM_DEBUG(dbgs() << "LV: Found a loop with a very small trip count. "
<< "This loop is worth vectorizing only if no scalar "
<< "iteration overheads are incurred.");
if (Hints.getForce() == LoopVectorizeHints::FK_Enabled)
LLVM_DEBUG(dbgs() << " But vectorizing was explicitly forced.\n");
else {
LLVM_DEBUG(dbgs() << "\n");
// Loops with a very small trip count are considered for vectorization
// under OptForSize, thereby making sure the cost of their loop body is
// dominant, free of runtime guards and scalar iteration overheads.
OptForSize = true;
}
}
// Check the function attributes to see if implicit floats are allowed.
// FIXME: This check doesn't seem possibly correct -- what if the loop is
// an integer loop and the vector instructions selected are purely integer
// vector instructions?
if (F->hasFnAttribute(Attribute::NoImplicitFloat)) {
LLVM_DEBUG(dbgs() << "LV: Can't vectorize when the NoImplicitFloat"
"attribute is used.\n");
ORE->emit(createLVMissedAnalysis(Hints.vectorizeAnalysisPassName(),
"NoImplicitFloat", L)
<< "loop not vectorized due to NoImplicitFloat attribute");
emitMissedWarning(F, L, Hints, ORE);
return false;
}
// Check if the target supports potentially unsafe FP vectorization.
// FIXME: Add a check for the type of safety issue (denormal, signaling)
// for the target we're vectorizing for, to make sure none of the
// additional fp-math flags can help.
if (Hints.isPotentiallyUnsafe() &&
TTI->isFPVectorizationPotentiallyUnsafe()) {
LLVM_DEBUG(
dbgs() << "LV: Potentially unsafe FP op prevents vectorization.\n");
ORE->emit(
createLVMissedAnalysis(Hints.vectorizeAnalysisPassName(), "UnsafeFP", L)
<< "loop not vectorized due to unsafe FP support.");
emitMissedWarning(F, L, Hints, ORE);
return false;
}
bool UseInterleaved = TTI->enableInterleavedAccessVectorization();
InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL.getLAI());
// If an override option has been passed in for interleaved accesses, use it.
if (EnableInterleavedMemAccesses.getNumOccurrences() > 0)
UseInterleaved = EnableInterleavedMemAccesses;
// Analyze interleaved memory accesses.
if (UseInterleaved) {
IAI.analyzeInterleaving();
}
// Use the cost model.
LoopVectorizationCostModel CM(L, PSE, LI, &LVL, *TTI, TLI, DB, AC, ORE, F,
&Hints, IAI);
CM.collectValuesToIgnore();
// Use the planner for vectorization.
LoopVectorizationPlanner LVP(L, LI, TLI, TTI, &LVL, CM);
// Get user vectorization factor.
unsigned UserVF = Hints.getWidth();
// Plan how to best vectorize, return the best VF and its cost.
VectorizationFactor VF = LVP.plan(OptForSize, UserVF);
// Select the interleave count.
unsigned IC = CM.selectInterleaveCount(OptForSize, VF.Width, VF.Cost);
// Get user interleave count.
unsigned UserIC = Hints.getInterleave();
// Identify the diagnostic messages that should be produced.
std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg;
bool VectorizeLoop = true, InterleaveLoop = true;
if (Requirements.doesNotMeet(F, L, Hints)) {
LLVM_DEBUG(dbgs() << "LV: Not vectorizing: loop did not meet vectorization "
"requirements.\n");
emitMissedWarning(F, L, Hints, ORE);
return false;
}
if (VF.Width == 1) {
LLVM_DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n");
VecDiagMsg = std::make_pair(
"VectorizationNotBeneficial",
"the cost-model indicates that vectorization is not beneficial");
VectorizeLoop = false;
}
if (IC == 1 && UserIC <= 1) {
// Tell the user interleaving is not beneficial.
LLVM_DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n");
IntDiagMsg = std::make_pair(
"InterleavingNotBeneficial",
"the cost-model indicates that interleaving is not beneficial");
InterleaveLoop = false;
if (UserIC == 1) {
IntDiagMsg.first = "InterleavingNotBeneficialAndDisabled";
IntDiagMsg.second +=
" and is explicitly disabled or interleave count is set to 1";
}
} else if (IC > 1 && UserIC == 1) {
// Tell the user interleaving is beneficial, but it explicitly disabled.
LLVM_DEBUG(
dbgs() << "LV: Interleaving is beneficial but is explicitly disabled.");
IntDiagMsg = std::make_pair(
"InterleavingBeneficialButDisabled",
"the cost-model indicates that interleaving is beneficial "
"but is explicitly disabled or interleave count is set to 1");
InterleaveLoop = false;
}
// Override IC if user provided an interleave count.
IC = UserIC > 0 ? UserIC : IC;
// Emit diagnostic messages, if any.
const char *VAPassName = Hints.vectorizeAnalysisPassName();
if (!VectorizeLoop && !InterleaveLoop) {
// Do not vectorize or interleaving the loop.
ORE->emit([&]() {
return OptimizationRemarkMissed(VAPassName, VecDiagMsg.first,
L->getStartLoc(), L->getHeader())
<< VecDiagMsg.second;
});
ORE->emit([&]() {
return OptimizationRemarkMissed(LV_NAME, IntDiagMsg.first,
L->getStartLoc(), L->getHeader())
<< IntDiagMsg.second;
});
return false;
} else if (!VectorizeLoop && InterleaveLoop) {
LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n');
ORE->emit([&]() {
return OptimizationRemarkAnalysis(VAPassName, VecDiagMsg.first,
L->getStartLoc(), L->getHeader())
<< VecDiagMsg.second;
});
} else if (VectorizeLoop && !InterleaveLoop) {
LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width
<< ") in " << DebugLocStr << '\n');
ORE->emit([&]() {
return OptimizationRemarkAnalysis(LV_NAME, IntDiagMsg.first,
L->getStartLoc(), L->getHeader())
<< IntDiagMsg.second;
});
} else if (VectorizeLoop && InterleaveLoop) {
LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width
<< ") in " << DebugLocStr << '\n');
LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n');
}
LVP.setBestPlan(VF.Width, IC);
using namespace ore;
if (!VectorizeLoop) {
assert(IC > 1 && "interleave count should not be 1 or 0");
// If we decided that it is not legal to vectorize the loop, then
// interleave it.
InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, AC, ORE, IC, &LVL,
&CM);
LVP.executePlan(Unroller, DT);
ORE->emit([&]() {
return OptimizationRemark(LV_NAME, "Interleaved", L->getStartLoc(),
L->getHeader())
<< "interleaved loop (interleaved count: "
<< NV("InterleaveCount", IC) << ")";
});
} else {
// If we decided that it is *legal* to vectorize the loop, then do it.
InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, IC,
&LVL, &CM);
LVP.executePlan(LB, DT);
++LoopsVectorized;
// Add metadata to disable runtime unrolling a scalar loop when there are
// no runtime checks about strides and memory. A scalar loop that is
// rarely used is not worth unrolling.
if (!LB.areSafetyChecksAdded())
AddRuntimeUnrollDisableMetaData(L);
// Report the vectorization decision.
ORE->emit([&]() {
return OptimizationRemark(LV_NAME, "Vectorized", L->getStartLoc(),
L->getHeader())
<< "vectorized loop (vectorization width: "
<< NV("VectorizationFactor", VF.Width)
<< ", interleaved count: " << NV("InterleaveCount", IC) << ")";
});
}
// Mark the loop as already vectorized to avoid vectorizing again.
Hints.setAlreadyVectorized();
LLVM_DEBUG(verifyFunction(*L->getHeader()->getParent()));
return true;
}
bool LoopVectorizePass::runImpl(
Function &F, ScalarEvolution &SE_, LoopInfo &LI_, TargetTransformInfo &TTI_,
DominatorTree &DT_, BlockFrequencyInfo &BFI_, TargetLibraryInfo *TLI_,
DemandedBits &DB_, AliasAnalysis &AA_, AssumptionCache &AC_,
std::function<const LoopAccessInfo &(Loop &)> &GetLAA_,
OptimizationRemarkEmitter &ORE_) {
SE = &SE_;
LI = &LI_;
TTI = &TTI_;
DT = &DT_;
BFI = &BFI_;
TLI = TLI_;
AA = &AA_;
AC = &AC_;
GetLAA = &GetLAA_;
DB = &DB_;
ORE = &ORE_;
// Don't attempt if
// 1. the target claims to have no vector registers, and
// 2. interleaving won't help ILP.
//
// The second condition is necessary because, even if the target has no
// vector registers, loop vectorization may still enable scalar
// interleaving.
if (!TTI->getNumberOfRegisters(true) && TTI->getMaxInterleaveFactor(1) < 2)
return false;
bool Changed = false;
// The vectorizer requires loops to be in simplified form.
// Since simplification may add new inner loops, it has to run before the
// legality and profitability checks. This means running the loop vectorizer
// will simplify all loops, regardless of whether anything end up being
// vectorized.
for (auto &L : *LI)
Changed |= simplifyLoop(L, DT, LI, SE, AC, false /* PreserveLCSSA */);
// Build up a worklist of inner-loops to vectorize. This is necessary as
// the act of vectorizing or partially unrolling a loop creates new loops
// and can invalidate iterators across the loops.
SmallVector<Loop *, 8> Worklist;
for (Loop *L : *LI)
collectSupportedLoops(*L, LI, ORE, Worklist);
LoopsAnalyzed += Worklist.size();
// Now walk the identified inner loops.
while (!Worklist.empty()) {
Loop *L = Worklist.pop_back_val();
// For the inner loops we actually process, form LCSSA to simplify the
// transform.
Changed |= formLCSSARecursively(*L, *DT, LI, SE);
Changed |= processLoop(L);
}
// Process each loop nest in the function.
return Changed;
}
PreservedAnalyses LoopVectorizePass::run(Function &F,
FunctionAnalysisManager &AM) {
auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
auto &LI = AM.getResult<LoopAnalysis>(F);
auto &TTI = AM.getResult<TargetIRAnalysis>(F);
auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
auto &BFI = AM.getResult<BlockFrequencyAnalysis>(F);
auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
auto &AA = AM.getResult<AAManager>(F);
auto &AC = AM.getResult<AssumptionAnalysis>(F);
auto &DB = AM.getResult<DemandedBitsAnalysis>(F);
auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager();
std::function<const LoopAccessInfo &(Loop &)> GetLAA =
[&](Loop &L) -> const LoopAccessInfo & {
LoopStandardAnalysisResults AR = {AA, AC, DT, LI, SE, TLI, TTI, nullptr};
return LAM.getResult<LoopAccessAnalysis>(L, AR);
};
bool Changed =
runImpl(F, SE, LI, TTI, DT, BFI, &TLI, DB, AA, AC, GetLAA, ORE);
if (!Changed)
return PreservedAnalyses::all();
PreservedAnalyses PA;
// We currently do not preserve loopinfo/dominator analyses with outer loop
// vectorization. Until this is addressed, mark these analyses as preserved
// only for non-VPlan-native path.
// TODO: Preserve Loop and Dominator analyses for VPlan-native path.
if (!EnableVPlanNativePath) {
PA.preserve<LoopAnalysis>();
PA.preserve<DominatorTreeAnalysis>();
}
PA.preserve<BasicAA>();
PA.preserve<GlobalsAA>();
return PA;
}