llvm with tablegen backend for capstone disassembler
Go to file
Alex Zinenko 2996a8d675 [mlir] avoid exposing mutable DialectRegistry from MLIRContext
MLIRContext allows its users to access directly to the DialectRegistry it
contains. While sometimes useful for registering additional dialects on an
already existing context, this breaks the encapsulation by essentially giving
raw accesses to a part of the context's internal state. Remove this mutable
access and instead provide a method to append a given DialectRegistry to the
one already contained in the context. Also provide a shortcut mechanism to
construct a context from an already existing registry, which seems to be a
common use case in the wild. Keep read-only access to the registry contained in
the context in case it needs to be copied or used for constructing another
context.

With this change, DialectRegistry is no longer concerned with loading the
dialects and deciding whether to invoke delayed interface registration. Loading
is concentrated in the MLIRContext, and the functionality of the registry
better reflects its name.

Depends On D96137

Reviewed By: mehdi_amini

Differential Revision: https://reviews.llvm.org/D96331
2021-02-10 12:07:34 +01:00
.github Removing the main to master sync GitHub workflow. 2021-01-28 12:18:25 -08:00
clang [clang][cli] Generate and round-trip Target options 2021-02-10 11:45:32 +01:00
clang-tools-extra [clangd] Expose more dependent-name detail via semanticTokens 2021-02-09 20:40:59 +01:00
compiler-rt Fix xray fdr mode to allow multiple flushes 2021-02-10 12:57:24 +11:00
debuginfo-tests Revert "Revert "Reorder MLIRContext location in BuiltinAttributes.h"" 2021-02-08 10:39:58 +01:00
flang [mlir] avoid exposing mutable DialectRegistry from MLIRContext 2021-02-10 12:07:34 +01:00
libc [libc][aarch64] Enable a bunch of math functions. 2021-02-05 15:11:17 -08:00
libclc
libcxx [libcxx] adds concept std::convertible_to 2021-02-10 03:27:41 +00:00
libcxxabi [libc++abi] Disable _Unwind_ForcedUnwind + exception tests for ARM EHABI 2021-02-05 14:12:27 -08:00
libunwind [Branch-Rename] Fix some links 2021-02-01 16:43:21 +05:30
lld [lld][WebAssembly] Fix segfault in map file support 2021-02-09 14:42:43 -08:00
lldb Use internal_dict everywhere we refer to the python session dict in docs. 2021-02-09 17:48:47 -08:00
llvm [RISCV] Add support for selecting vid.v from build_vector 2021-02-10 10:58:40 +00:00
mlir [mlir] avoid exposing mutable DialectRegistry from MLIRContext 2021-02-10 12:07:34 +01:00
openmp [libomptarget][amdgcn] Tolerate deadstripped device_state variable 2021-02-09 16:29:53 +00:00
parallel-libs
polly [Polly] Make the NewPM pass pipeline more similar to the legacy's. 2021-02-09 23:56:22 -06:00
pstl Bump the trunk major version to 13 2021-01-26 19:37:55 -08:00
runtimes [MSVC] Don't add -nostdinc++ -isystem to runtimes builds 2021-01-15 13:22:07 -08:00
utils/arcanist
.arcconfig
.arclint
.clang-format
.clang-tidy
.git-blame-ignore-revs
.gitignore [NFC] Add CMakeUserPresets.json filename to .gitignore 2021-01-22 12:45:29 +01:00
CONTRIBUTING.md
README.md

The LLVM Compiler Infrastructure

This directory and its sub-directories contain source code for LLVM, a toolkit for the construction of highly optimized compilers, optimizers, and run-time environments.

The README briefly describes how to get started with building LLVM. For more information on how to contribute to the LLVM project, please take a look at the Contributing to LLVM guide.

Getting Started with the LLVM System

Taken from https://llvm.org/docs/GettingStarted.html.

Overview

Welcome to the LLVM project!

The LLVM project has multiple components. The core of the project is itself called "LLVM". This contains all of the tools, libraries, and header files needed to process intermediate representations and converts it into object files. Tools include an assembler, disassembler, bitcode analyzer, and bitcode optimizer. It also contains basic regression tests.

C-like languages use the Clang front end. This component compiles C, C++, Objective-C, and Objective-C++ code into LLVM bitcode -- and from there into object files, using LLVM.

Other components include: the libc++ C++ standard library, the LLD linker, and more.

Getting the Source Code and Building LLVM

The LLVM Getting Started documentation may be out of date. The Clang Getting Started page might have more accurate information.

This is an example work-flow and configuration to get and build the LLVM source:

  1. Checkout LLVM (including related sub-projects like Clang):

    • git clone https://github.com/llvm/llvm-project.git

    • Or, on windows, git clone --config core.autocrlf=false https://github.com/llvm/llvm-project.git

  2. Configure and build LLVM and Clang:

    • cd llvm-project

    • mkdir build

    • cd build

    • cmake -G <generator> [options] ../llvm

      Some common build system generators are:

      • Ninja --- for generating Ninja build files. Most llvm developers use Ninja.
      • Unix Makefiles --- for generating make-compatible parallel makefiles.
      • Visual Studio --- for generating Visual Studio projects and solutions.
      • Xcode --- for generating Xcode projects.

      Some Common options:

      • -DLLVM_ENABLE_PROJECTS='...' --- semicolon-separated list of the LLVM sub-projects you'd like to additionally build. Can include any of: clang, clang-tools-extra, libcxx, libcxxabi, libunwind, lldb, compiler-rt, lld, polly, or debuginfo-tests.

        For example, to build LLVM, Clang, libcxx, and libcxxabi, use -DLLVM_ENABLE_PROJECTS="clang;libcxx;libcxxabi".

      • -DCMAKE_INSTALL_PREFIX=directory --- Specify for directory the full path name of where you want the LLVM tools and libraries to be installed (default /usr/local).

      • -DCMAKE_BUILD_TYPE=type --- Valid options for type are Debug, Release, RelWithDebInfo, and MinSizeRel. Default is Debug.

      • -DLLVM_ENABLE_ASSERTIONS=On --- Compile with assertion checks enabled (default is Yes for Debug builds, No for all other build types).

    • cmake --build . [-- [options] <target>] or your build system specified above directly.

      • The default target (i.e. ninja or make) will build all of LLVM.

      • The check-all target (i.e. ninja check-all) will run the regression tests to ensure everything is in working order.

      • CMake will generate targets for each tool and library, and most LLVM sub-projects generate their own check-<project> target.

      • Running a serial build will be slow. To improve speed, try running a parallel build. That's done by default in Ninja; for make, use the option -j NNN, where NNN is the number of parallel jobs, e.g. the number of CPUs you have.

    • For more information see CMake

Consult the Getting Started with LLVM page for detailed information on configuring and compiling LLVM. You can visit Directory Layout to learn about the layout of the source code tree.