llvm-capstone/clang/lib/CodeGen/CoverageMappingGen.cpp
Chandler Carruth 2946cd7010 Update the file headers across all of the LLVM projects in the monorepo
to reflect the new license.

We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.

Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.

llvm-svn: 351636
2019-01-19 08:50:56 +00:00

1476 lines
53 KiB
C++

//===--- CoverageMappingGen.cpp - Coverage mapping generation ---*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Instrumentation-based code coverage mapping generator
//
//===----------------------------------------------------------------------===//
#include "CoverageMappingGen.h"
#include "CodeGenFunction.h"
#include "clang/AST/StmtVisitor.h"
#include "clang/Lex/Lexer.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ProfileData/Coverage/CoverageMapping.h"
#include "llvm/ProfileData/Coverage/CoverageMappingReader.h"
#include "llvm/ProfileData/Coverage/CoverageMappingWriter.h"
#include "llvm/ProfileData/InstrProfReader.h"
#include "llvm/Support/FileSystem.h"
#include "llvm/Support/Path.h"
using namespace clang;
using namespace CodeGen;
using namespace llvm::coverage;
void CoverageSourceInfo::SourceRangeSkipped(SourceRange Range, SourceLocation) {
SkippedRanges.push_back(Range);
}
namespace {
/// A region of source code that can be mapped to a counter.
class SourceMappingRegion {
Counter Count;
/// The region's starting location.
Optional<SourceLocation> LocStart;
/// The region's ending location.
Optional<SourceLocation> LocEnd;
/// Whether this region should be emitted after its parent is emitted.
bool DeferRegion;
/// Whether this region is a gap region. The count from a gap region is set
/// as the line execution count if there are no other regions on the line.
bool GapRegion;
public:
SourceMappingRegion(Counter Count, Optional<SourceLocation> LocStart,
Optional<SourceLocation> LocEnd, bool DeferRegion = false,
bool GapRegion = false)
: Count(Count), LocStart(LocStart), LocEnd(LocEnd),
DeferRegion(DeferRegion), GapRegion(GapRegion) {}
const Counter &getCounter() const { return Count; }
void setCounter(Counter C) { Count = C; }
bool hasStartLoc() const { return LocStart.hasValue(); }
void setStartLoc(SourceLocation Loc) { LocStart = Loc; }
SourceLocation getBeginLoc() const {
assert(LocStart && "Region has no start location");
return *LocStart;
}
bool hasEndLoc() const { return LocEnd.hasValue(); }
void setEndLoc(SourceLocation Loc) {
assert(Loc.isValid() && "Setting an invalid end location");
LocEnd = Loc;
}
SourceLocation getEndLoc() const {
assert(LocEnd && "Region has no end location");
return *LocEnd;
}
bool isDeferred() const { return DeferRegion; }
void setDeferred(bool Deferred) { DeferRegion = Deferred; }
bool isGap() const { return GapRegion; }
void setGap(bool Gap) { GapRegion = Gap; }
};
/// Spelling locations for the start and end of a source region.
struct SpellingRegion {
/// The line where the region starts.
unsigned LineStart;
/// The column where the region starts.
unsigned ColumnStart;
/// The line where the region ends.
unsigned LineEnd;
/// The column where the region ends.
unsigned ColumnEnd;
SpellingRegion(SourceManager &SM, SourceLocation LocStart,
SourceLocation LocEnd) {
LineStart = SM.getSpellingLineNumber(LocStart);
ColumnStart = SM.getSpellingColumnNumber(LocStart);
LineEnd = SM.getSpellingLineNumber(LocEnd);
ColumnEnd = SM.getSpellingColumnNumber(LocEnd);
}
SpellingRegion(SourceManager &SM, SourceMappingRegion &R)
: SpellingRegion(SM, R.getBeginLoc(), R.getEndLoc()) {}
/// Check if the start and end locations appear in source order, i.e
/// top->bottom, left->right.
bool isInSourceOrder() const {
return (LineStart < LineEnd) ||
(LineStart == LineEnd && ColumnStart <= ColumnEnd);
}
};
/// Provides the common functionality for the different
/// coverage mapping region builders.
class CoverageMappingBuilder {
public:
CoverageMappingModuleGen &CVM;
SourceManager &SM;
const LangOptions &LangOpts;
private:
/// Map of clang's FileIDs to IDs used for coverage mapping.
llvm::SmallDenseMap<FileID, std::pair<unsigned, SourceLocation>, 8>
FileIDMapping;
public:
/// The coverage mapping regions for this function
llvm::SmallVector<CounterMappingRegion, 32> MappingRegions;
/// The source mapping regions for this function.
std::vector<SourceMappingRegion> SourceRegions;
/// A set of regions which can be used as a filter.
///
/// It is produced by emitExpansionRegions() and is used in
/// emitSourceRegions() to suppress producing code regions if
/// the same area is covered by expansion regions.
typedef llvm::SmallSet<std::pair<SourceLocation, SourceLocation>, 8>
SourceRegionFilter;
CoverageMappingBuilder(CoverageMappingModuleGen &CVM, SourceManager &SM,
const LangOptions &LangOpts)
: CVM(CVM), SM(SM), LangOpts(LangOpts) {}
/// Return the precise end location for the given token.
SourceLocation getPreciseTokenLocEnd(SourceLocation Loc) {
// We avoid getLocForEndOfToken here, because it doesn't do what we want for
// macro locations, which we just treat as expanded files.
unsigned TokLen =
Lexer::MeasureTokenLength(SM.getSpellingLoc(Loc), SM, LangOpts);
return Loc.getLocWithOffset(TokLen);
}
/// Return the start location of an included file or expanded macro.
SourceLocation getStartOfFileOrMacro(SourceLocation Loc) {
if (Loc.isMacroID())
return Loc.getLocWithOffset(-SM.getFileOffset(Loc));
return SM.getLocForStartOfFile(SM.getFileID(Loc));
}
/// Return the end location of an included file or expanded macro.
SourceLocation getEndOfFileOrMacro(SourceLocation Loc) {
if (Loc.isMacroID())
return Loc.getLocWithOffset(SM.getFileIDSize(SM.getFileID(Loc)) -
SM.getFileOffset(Loc));
return SM.getLocForEndOfFile(SM.getFileID(Loc));
}
/// Find out where the current file is included or macro is expanded.
SourceLocation getIncludeOrExpansionLoc(SourceLocation Loc) {
return Loc.isMacroID() ? SM.getImmediateExpansionRange(Loc).getBegin()
: SM.getIncludeLoc(SM.getFileID(Loc));
}
/// Return true if \c Loc is a location in a built-in macro.
bool isInBuiltin(SourceLocation Loc) {
return SM.getBufferName(SM.getSpellingLoc(Loc)) == "<built-in>";
}
/// Check whether \c Loc is included or expanded from \c Parent.
bool isNestedIn(SourceLocation Loc, FileID Parent) {
do {
Loc = getIncludeOrExpansionLoc(Loc);
if (Loc.isInvalid())
return false;
} while (!SM.isInFileID(Loc, Parent));
return true;
}
/// Get the start of \c S ignoring macro arguments and builtin macros.
SourceLocation getStart(const Stmt *S) {
SourceLocation Loc = S->getBeginLoc();
while (SM.isMacroArgExpansion(Loc) || isInBuiltin(Loc))
Loc = SM.getImmediateExpansionRange(Loc).getBegin();
return Loc;
}
/// Get the end of \c S ignoring macro arguments and builtin macros.
SourceLocation getEnd(const Stmt *S) {
SourceLocation Loc = S->getEndLoc();
while (SM.isMacroArgExpansion(Loc) || isInBuiltin(Loc))
Loc = SM.getImmediateExpansionRange(Loc).getBegin();
return getPreciseTokenLocEnd(Loc);
}
/// Find the set of files we have regions for and assign IDs
///
/// Fills \c Mapping with the virtual file mapping needed to write out
/// coverage and collects the necessary file information to emit source and
/// expansion regions.
void gatherFileIDs(SmallVectorImpl<unsigned> &Mapping) {
FileIDMapping.clear();
llvm::SmallSet<FileID, 8> Visited;
SmallVector<std::pair<SourceLocation, unsigned>, 8> FileLocs;
for (const auto &Region : SourceRegions) {
SourceLocation Loc = Region.getBeginLoc();
FileID File = SM.getFileID(Loc);
if (!Visited.insert(File).second)
continue;
// Do not map FileID's associated with system headers.
if (SM.isInSystemHeader(SM.getSpellingLoc(Loc)))
continue;
unsigned Depth = 0;
for (SourceLocation Parent = getIncludeOrExpansionLoc(Loc);
Parent.isValid(); Parent = getIncludeOrExpansionLoc(Parent))
++Depth;
FileLocs.push_back(std::make_pair(Loc, Depth));
}
std::stable_sort(FileLocs.begin(), FileLocs.end(), llvm::less_second());
for (const auto &FL : FileLocs) {
SourceLocation Loc = FL.first;
FileID SpellingFile = SM.getDecomposedSpellingLoc(Loc).first;
auto Entry = SM.getFileEntryForID(SpellingFile);
if (!Entry)
continue;
FileIDMapping[SM.getFileID(Loc)] = std::make_pair(Mapping.size(), Loc);
Mapping.push_back(CVM.getFileID(Entry));
}
}
/// Get the coverage mapping file ID for \c Loc.
///
/// If such file id doesn't exist, return None.
Optional<unsigned> getCoverageFileID(SourceLocation Loc) {
auto Mapping = FileIDMapping.find(SM.getFileID(Loc));
if (Mapping != FileIDMapping.end())
return Mapping->second.first;
return None;
}
/// Gather all the regions that were skipped by the preprocessor
/// using the constructs like #if.
void gatherSkippedRegions() {
/// An array of the minimum lineStarts and the maximum lineEnds
/// for mapping regions from the appropriate source files.
llvm::SmallVector<std::pair<unsigned, unsigned>, 8> FileLineRanges;
FileLineRanges.resize(
FileIDMapping.size(),
std::make_pair(std::numeric_limits<unsigned>::max(), 0));
for (const auto &R : MappingRegions) {
FileLineRanges[R.FileID].first =
std::min(FileLineRanges[R.FileID].first, R.LineStart);
FileLineRanges[R.FileID].second =
std::max(FileLineRanges[R.FileID].second, R.LineEnd);
}
auto SkippedRanges = CVM.getSourceInfo().getSkippedRanges();
for (const auto &I : SkippedRanges) {
auto LocStart = I.getBegin();
auto LocEnd = I.getEnd();
assert(SM.isWrittenInSameFile(LocStart, LocEnd) &&
"region spans multiple files");
auto CovFileID = getCoverageFileID(LocStart);
if (!CovFileID)
continue;
SpellingRegion SR{SM, LocStart, LocEnd};
auto Region = CounterMappingRegion::makeSkipped(
*CovFileID, SR.LineStart, SR.ColumnStart, SR.LineEnd, SR.ColumnEnd);
// Make sure that we only collect the regions that are inside
// the source code of this function.
if (Region.LineStart >= FileLineRanges[*CovFileID].first &&
Region.LineEnd <= FileLineRanges[*CovFileID].second)
MappingRegions.push_back(Region);
}
}
/// Generate the coverage counter mapping regions from collected
/// source regions.
void emitSourceRegions(const SourceRegionFilter &Filter) {
for (const auto &Region : SourceRegions) {
assert(Region.hasEndLoc() && "incomplete region");
SourceLocation LocStart = Region.getBeginLoc();
assert(SM.getFileID(LocStart).isValid() && "region in invalid file");
// Ignore regions from system headers.
if (SM.isInSystemHeader(SM.getSpellingLoc(LocStart)))
continue;
auto CovFileID = getCoverageFileID(LocStart);
// Ignore regions that don't have a file, such as builtin macros.
if (!CovFileID)
continue;
SourceLocation LocEnd = Region.getEndLoc();
assert(SM.isWrittenInSameFile(LocStart, LocEnd) &&
"region spans multiple files");
// Don't add code regions for the area covered by expansion regions.
// This not only suppresses redundant regions, but sometimes prevents
// creating regions with wrong counters if, for example, a statement's
// body ends at the end of a nested macro.
if (Filter.count(std::make_pair(LocStart, LocEnd)))
continue;
// Find the spelling locations for the mapping region.
SpellingRegion SR{SM, LocStart, LocEnd};
assert(SR.isInSourceOrder() && "region start and end out of order");
if (Region.isGap()) {
MappingRegions.push_back(CounterMappingRegion::makeGapRegion(
Region.getCounter(), *CovFileID, SR.LineStart, SR.ColumnStart,
SR.LineEnd, SR.ColumnEnd));
} else {
MappingRegions.push_back(CounterMappingRegion::makeRegion(
Region.getCounter(), *CovFileID, SR.LineStart, SR.ColumnStart,
SR.LineEnd, SR.ColumnEnd));
}
}
}
/// Generate expansion regions for each virtual file we've seen.
SourceRegionFilter emitExpansionRegions() {
SourceRegionFilter Filter;
for (const auto &FM : FileIDMapping) {
SourceLocation ExpandedLoc = FM.second.second;
SourceLocation ParentLoc = getIncludeOrExpansionLoc(ExpandedLoc);
if (ParentLoc.isInvalid())
continue;
auto ParentFileID = getCoverageFileID(ParentLoc);
if (!ParentFileID)
continue;
auto ExpandedFileID = getCoverageFileID(ExpandedLoc);
assert(ExpandedFileID && "expansion in uncovered file");
SourceLocation LocEnd = getPreciseTokenLocEnd(ParentLoc);
assert(SM.isWrittenInSameFile(ParentLoc, LocEnd) &&
"region spans multiple files");
Filter.insert(std::make_pair(ParentLoc, LocEnd));
SpellingRegion SR{SM, ParentLoc, LocEnd};
assert(SR.isInSourceOrder() && "region start and end out of order");
MappingRegions.push_back(CounterMappingRegion::makeExpansion(
*ParentFileID, *ExpandedFileID, SR.LineStart, SR.ColumnStart,
SR.LineEnd, SR.ColumnEnd));
}
return Filter;
}
};
/// Creates unreachable coverage regions for the functions that
/// are not emitted.
struct EmptyCoverageMappingBuilder : public CoverageMappingBuilder {
EmptyCoverageMappingBuilder(CoverageMappingModuleGen &CVM, SourceManager &SM,
const LangOptions &LangOpts)
: CoverageMappingBuilder(CVM, SM, LangOpts) {}
void VisitDecl(const Decl *D) {
if (!D->hasBody())
return;
auto Body = D->getBody();
SourceLocation Start = getStart(Body);
SourceLocation End = getEnd(Body);
if (!SM.isWrittenInSameFile(Start, End)) {
// Walk up to find the common ancestor.
// Correct the locations accordingly.
FileID StartFileID = SM.getFileID(Start);
FileID EndFileID = SM.getFileID(End);
while (StartFileID != EndFileID && !isNestedIn(End, StartFileID)) {
Start = getIncludeOrExpansionLoc(Start);
assert(Start.isValid() &&
"Declaration start location not nested within a known region");
StartFileID = SM.getFileID(Start);
}
while (StartFileID != EndFileID) {
End = getPreciseTokenLocEnd(getIncludeOrExpansionLoc(End));
assert(End.isValid() &&
"Declaration end location not nested within a known region");
EndFileID = SM.getFileID(End);
}
}
SourceRegions.emplace_back(Counter(), Start, End);
}
/// Write the mapping data to the output stream
void write(llvm::raw_ostream &OS) {
SmallVector<unsigned, 16> FileIDMapping;
gatherFileIDs(FileIDMapping);
emitSourceRegions(SourceRegionFilter());
if (MappingRegions.empty())
return;
CoverageMappingWriter Writer(FileIDMapping, None, MappingRegions);
Writer.write(OS);
}
};
/// A StmtVisitor that creates coverage mapping regions which map
/// from the source code locations to the PGO counters.
struct CounterCoverageMappingBuilder
: public CoverageMappingBuilder,
public ConstStmtVisitor<CounterCoverageMappingBuilder> {
/// The map of statements to count values.
llvm::DenseMap<const Stmt *, unsigned> &CounterMap;
/// A stack of currently live regions.
std::vector<SourceMappingRegion> RegionStack;
/// The currently deferred region: its end location and count can be set once
/// its parent has been popped from the region stack.
Optional<SourceMappingRegion> DeferredRegion;
CounterExpressionBuilder Builder;
/// A location in the most recently visited file or macro.
///
/// This is used to adjust the active source regions appropriately when
/// expressions cross file or macro boundaries.
SourceLocation MostRecentLocation;
/// Location of the last terminated region.
Optional<std::pair<SourceLocation, size_t>> LastTerminatedRegion;
/// Return a counter for the subtraction of \c RHS from \c LHS
Counter subtractCounters(Counter LHS, Counter RHS) {
return Builder.subtract(LHS, RHS);
}
/// Return a counter for the sum of \c LHS and \c RHS.
Counter addCounters(Counter LHS, Counter RHS) {
return Builder.add(LHS, RHS);
}
Counter addCounters(Counter C1, Counter C2, Counter C3) {
return addCounters(addCounters(C1, C2), C3);
}
/// Return the region counter for the given statement.
///
/// This should only be called on statements that have a dedicated counter.
Counter getRegionCounter(const Stmt *S) {
return Counter::getCounter(CounterMap[S]);
}
/// Push a region onto the stack.
///
/// Returns the index on the stack where the region was pushed. This can be
/// used with popRegions to exit a "scope", ending the region that was pushed.
size_t pushRegion(Counter Count, Optional<SourceLocation> StartLoc = None,
Optional<SourceLocation> EndLoc = None) {
if (StartLoc) {
MostRecentLocation = *StartLoc;
completeDeferred(Count, MostRecentLocation);
}
RegionStack.emplace_back(Count, StartLoc, EndLoc);
return RegionStack.size() - 1;
}
/// Complete any pending deferred region by setting its end location and
/// count, and then pushing it onto the region stack.
size_t completeDeferred(Counter Count, SourceLocation DeferredEndLoc) {
size_t Index = RegionStack.size();
if (!DeferredRegion)
return Index;
// Consume the pending region.
SourceMappingRegion DR = DeferredRegion.getValue();
DeferredRegion = None;
// If the region ends in an expansion, find the expansion site.
FileID StartFile = SM.getFileID(DR.getBeginLoc());
if (SM.getFileID(DeferredEndLoc) != StartFile) {
if (isNestedIn(DeferredEndLoc, StartFile)) {
do {
DeferredEndLoc = getIncludeOrExpansionLoc(DeferredEndLoc);
} while (StartFile != SM.getFileID(DeferredEndLoc));
} else {
return Index;
}
}
// The parent of this deferred region ends where the containing decl ends,
// so the region isn't useful.
if (DR.getBeginLoc() == DeferredEndLoc)
return Index;
// If we're visiting statements in non-source order (e.g switch cases or
// a loop condition) we can't construct a sensible deferred region.
if (!SpellingRegion(SM, DR.getBeginLoc(), DeferredEndLoc).isInSourceOrder())
return Index;
DR.setGap(true);
DR.setCounter(Count);
DR.setEndLoc(DeferredEndLoc);
handleFileExit(DeferredEndLoc);
RegionStack.push_back(DR);
return Index;
}
/// Complete a deferred region created after a terminated region at the
/// top-level.
void completeTopLevelDeferredRegion(Counter Count,
SourceLocation DeferredEndLoc) {
if (DeferredRegion || !LastTerminatedRegion)
return;
if (LastTerminatedRegion->second != RegionStack.size())
return;
SourceLocation Start = LastTerminatedRegion->first;
if (SM.getFileID(Start) != SM.getMainFileID())
return;
SourceMappingRegion DR = RegionStack.back();
DR.setStartLoc(Start);
DR.setDeferred(false);
DeferredRegion = DR;
completeDeferred(Count, DeferredEndLoc);
}
size_t locationDepth(SourceLocation Loc) {
size_t Depth = 0;
while (Loc.isValid()) {
Loc = getIncludeOrExpansionLoc(Loc);
Depth++;
}
return Depth;
}
/// Pop regions from the stack into the function's list of regions.
///
/// Adds all regions from \c ParentIndex to the top of the stack to the
/// function's \c SourceRegions.
void popRegions(size_t ParentIndex) {
assert(RegionStack.size() >= ParentIndex && "parent not in stack");
bool ParentOfDeferredRegion = false;
while (RegionStack.size() > ParentIndex) {
SourceMappingRegion &Region = RegionStack.back();
if (Region.hasStartLoc()) {
SourceLocation StartLoc = Region.getBeginLoc();
SourceLocation EndLoc = Region.hasEndLoc()
? Region.getEndLoc()
: RegionStack[ParentIndex].getEndLoc();
size_t StartDepth = locationDepth(StartLoc);
size_t EndDepth = locationDepth(EndLoc);
while (!SM.isWrittenInSameFile(StartLoc, EndLoc)) {
bool UnnestStart = StartDepth >= EndDepth;
bool UnnestEnd = EndDepth >= StartDepth;
if (UnnestEnd) {
// The region ends in a nested file or macro expansion. Create a
// separate region for each expansion.
SourceLocation NestedLoc = getStartOfFileOrMacro(EndLoc);
assert(SM.isWrittenInSameFile(NestedLoc, EndLoc));
if (!isRegionAlreadyAdded(NestedLoc, EndLoc))
SourceRegions.emplace_back(Region.getCounter(), NestedLoc, EndLoc);
EndLoc = getPreciseTokenLocEnd(getIncludeOrExpansionLoc(EndLoc));
if (EndLoc.isInvalid())
llvm::report_fatal_error("File exit not handled before popRegions");
EndDepth--;
}
if (UnnestStart) {
// The region begins in a nested file or macro expansion. Create a
// separate region for each expansion.
SourceLocation NestedLoc = getEndOfFileOrMacro(StartLoc);
assert(SM.isWrittenInSameFile(StartLoc, NestedLoc));
if (!isRegionAlreadyAdded(StartLoc, NestedLoc))
SourceRegions.emplace_back(Region.getCounter(), StartLoc, NestedLoc);
StartLoc = getIncludeOrExpansionLoc(StartLoc);
if (StartLoc.isInvalid())
llvm::report_fatal_error("File exit not handled before popRegions");
StartDepth--;
}
}
Region.setStartLoc(StartLoc);
Region.setEndLoc(EndLoc);
MostRecentLocation = EndLoc;
// If this region happens to span an entire expansion, we need to make
// sure we don't overlap the parent region with it.
if (StartLoc == getStartOfFileOrMacro(StartLoc) &&
EndLoc == getEndOfFileOrMacro(EndLoc))
MostRecentLocation = getIncludeOrExpansionLoc(EndLoc);
assert(SM.isWrittenInSameFile(Region.getBeginLoc(), EndLoc));
assert(SpellingRegion(SM, Region).isInSourceOrder());
SourceRegions.push_back(Region);
if (ParentOfDeferredRegion) {
ParentOfDeferredRegion = false;
// If there's an existing deferred region, keep the old one, because
// it means there are two consecutive returns (or a similar pattern).
if (!DeferredRegion.hasValue() &&
// File IDs aren't gathered within macro expansions, so it isn't
// useful to try and create a deferred region inside of one.
!EndLoc.isMacroID())
DeferredRegion =
SourceMappingRegion(Counter::getZero(), EndLoc, None);
}
} else if (Region.isDeferred()) {
assert(!ParentOfDeferredRegion && "Consecutive deferred regions");
ParentOfDeferredRegion = true;
}
RegionStack.pop_back();
// If the zero region pushed after the last terminated region no longer
// exists, clear its cached information.
if (LastTerminatedRegion &&
RegionStack.size() < LastTerminatedRegion->second)
LastTerminatedRegion = None;
}
assert(!ParentOfDeferredRegion && "Deferred region with no parent");
}
/// Return the currently active region.
SourceMappingRegion &getRegion() {
assert(!RegionStack.empty() && "statement has no region");
return RegionStack.back();
}
/// Propagate counts through the children of \p S if \p VisitChildren is true.
/// Otherwise, only emit a count for \p S itself.
Counter propagateCounts(Counter TopCount, const Stmt *S,
bool VisitChildren = true) {
SourceLocation StartLoc = getStart(S);
SourceLocation EndLoc = getEnd(S);
size_t Index = pushRegion(TopCount, StartLoc, EndLoc);
if (VisitChildren)
Visit(S);
Counter ExitCount = getRegion().getCounter();
popRegions(Index);
// The statement may be spanned by an expansion. Make sure we handle a file
// exit out of this expansion before moving to the next statement.
if (SM.isBeforeInTranslationUnit(StartLoc, S->getBeginLoc()))
MostRecentLocation = EndLoc;
return ExitCount;
}
/// Check whether a region with bounds \c StartLoc and \c EndLoc
/// is already added to \c SourceRegions.
bool isRegionAlreadyAdded(SourceLocation StartLoc, SourceLocation EndLoc) {
return SourceRegions.rend() !=
std::find_if(SourceRegions.rbegin(), SourceRegions.rend(),
[&](const SourceMappingRegion &Region) {
return Region.getBeginLoc() == StartLoc &&
Region.getEndLoc() == EndLoc;
});
}
/// Adjust the most recently visited location to \c EndLoc.
///
/// This should be used after visiting any statements in non-source order.
void adjustForOutOfOrderTraversal(SourceLocation EndLoc) {
MostRecentLocation = EndLoc;
// The code region for a whole macro is created in handleFileExit() when
// it detects exiting of the virtual file of that macro. If we visited
// statements in non-source order, we might already have such a region
// added, for example, if a body of a loop is divided among multiple
// macros. Avoid adding duplicate regions in such case.
if (getRegion().hasEndLoc() &&
MostRecentLocation == getEndOfFileOrMacro(MostRecentLocation) &&
isRegionAlreadyAdded(getStartOfFileOrMacro(MostRecentLocation),
MostRecentLocation))
MostRecentLocation = getIncludeOrExpansionLoc(MostRecentLocation);
}
/// Adjust regions and state when \c NewLoc exits a file.
///
/// If moving from our most recently tracked location to \c NewLoc exits any
/// files, this adjusts our current region stack and creates the file regions
/// for the exited file.
void handleFileExit(SourceLocation NewLoc) {
if (NewLoc.isInvalid() ||
SM.isWrittenInSameFile(MostRecentLocation, NewLoc))
return;
// If NewLoc is not in a file that contains MostRecentLocation, walk up to
// find the common ancestor.
SourceLocation LCA = NewLoc;
FileID ParentFile = SM.getFileID(LCA);
while (!isNestedIn(MostRecentLocation, ParentFile)) {
LCA = getIncludeOrExpansionLoc(LCA);
if (LCA.isInvalid() || SM.isWrittenInSameFile(LCA, MostRecentLocation)) {
// Since there isn't a common ancestor, no file was exited. We just need
// to adjust our location to the new file.
MostRecentLocation = NewLoc;
return;
}
ParentFile = SM.getFileID(LCA);
}
llvm::SmallSet<SourceLocation, 8> StartLocs;
Optional<Counter> ParentCounter;
for (SourceMappingRegion &I : llvm::reverse(RegionStack)) {
if (!I.hasStartLoc())
continue;
SourceLocation Loc = I.getBeginLoc();
if (!isNestedIn(Loc, ParentFile)) {
ParentCounter = I.getCounter();
break;
}
while (!SM.isInFileID(Loc, ParentFile)) {
// The most nested region for each start location is the one with the
// correct count. We avoid creating redundant regions by stopping once
// we've seen this region.
if (StartLocs.insert(Loc).second)
SourceRegions.emplace_back(I.getCounter(), Loc,
getEndOfFileOrMacro(Loc));
Loc = getIncludeOrExpansionLoc(Loc);
}
I.setStartLoc(getPreciseTokenLocEnd(Loc));
}
if (ParentCounter) {
// If the file is contained completely by another region and doesn't
// immediately start its own region, the whole file gets a region
// corresponding to the parent.
SourceLocation Loc = MostRecentLocation;
while (isNestedIn(Loc, ParentFile)) {
SourceLocation FileStart = getStartOfFileOrMacro(Loc);
if (StartLocs.insert(FileStart).second) {
SourceRegions.emplace_back(*ParentCounter, FileStart,
getEndOfFileOrMacro(Loc));
assert(SpellingRegion(SM, SourceRegions.back()).isInSourceOrder());
}
Loc = getIncludeOrExpansionLoc(Loc);
}
}
MostRecentLocation = NewLoc;
}
/// Ensure that \c S is included in the current region.
void extendRegion(const Stmt *S) {
SourceMappingRegion &Region = getRegion();
SourceLocation StartLoc = getStart(S);
handleFileExit(StartLoc);
if (!Region.hasStartLoc())
Region.setStartLoc(StartLoc);
completeDeferred(Region.getCounter(), StartLoc);
}
/// Mark \c S as a terminator, starting a zero region.
void terminateRegion(const Stmt *S) {
extendRegion(S);
SourceMappingRegion &Region = getRegion();
SourceLocation EndLoc = getEnd(S);
if (!Region.hasEndLoc())
Region.setEndLoc(EndLoc);
pushRegion(Counter::getZero());
auto &ZeroRegion = getRegion();
ZeroRegion.setDeferred(true);
LastTerminatedRegion = {EndLoc, RegionStack.size()};
}
/// Find a valid gap range between \p AfterLoc and \p BeforeLoc.
Optional<SourceRange> findGapAreaBetween(SourceLocation AfterLoc,
SourceLocation BeforeLoc) {
// If the start and end locations of the gap are both within the same macro
// file, the range may not be in source order.
if (AfterLoc.isMacroID() || BeforeLoc.isMacroID())
return None;
if (!SM.isWrittenInSameFile(AfterLoc, BeforeLoc))
return None;
return {{AfterLoc, BeforeLoc}};
}
/// Find the source range after \p AfterStmt and before \p BeforeStmt.
Optional<SourceRange> findGapAreaBetween(const Stmt *AfterStmt,
const Stmt *BeforeStmt) {
return findGapAreaBetween(getPreciseTokenLocEnd(getEnd(AfterStmt)),
getStart(BeforeStmt));
}
/// Emit a gap region between \p StartLoc and \p EndLoc with the given count.
void fillGapAreaWithCount(SourceLocation StartLoc, SourceLocation EndLoc,
Counter Count) {
if (StartLoc == EndLoc)
return;
assert(SpellingRegion(SM, StartLoc, EndLoc).isInSourceOrder());
handleFileExit(StartLoc);
size_t Index = pushRegion(Count, StartLoc, EndLoc);
getRegion().setGap(true);
handleFileExit(EndLoc);
popRegions(Index);
}
/// Keep counts of breaks and continues inside loops.
struct BreakContinue {
Counter BreakCount;
Counter ContinueCount;
};
SmallVector<BreakContinue, 8> BreakContinueStack;
CounterCoverageMappingBuilder(
CoverageMappingModuleGen &CVM,
llvm::DenseMap<const Stmt *, unsigned> &CounterMap, SourceManager &SM,
const LangOptions &LangOpts)
: CoverageMappingBuilder(CVM, SM, LangOpts), CounterMap(CounterMap),
DeferredRegion(None) {}
/// Write the mapping data to the output stream
void write(llvm::raw_ostream &OS) {
llvm::SmallVector<unsigned, 8> VirtualFileMapping;
gatherFileIDs(VirtualFileMapping);
SourceRegionFilter Filter = emitExpansionRegions();
assert(!DeferredRegion && "Deferred region never completed");
emitSourceRegions(Filter);
gatherSkippedRegions();
if (MappingRegions.empty())
return;
CoverageMappingWriter Writer(VirtualFileMapping, Builder.getExpressions(),
MappingRegions);
Writer.write(OS);
}
void VisitStmt(const Stmt *S) {
if (S->getBeginLoc().isValid())
extendRegion(S);
for (const Stmt *Child : S->children())
if (Child)
this->Visit(Child);
handleFileExit(getEnd(S));
}
void VisitDecl(const Decl *D) {
assert(!DeferredRegion && "Deferred region never completed");
Stmt *Body = D->getBody();
// Do not propagate region counts into system headers.
if (Body && SM.isInSystemHeader(SM.getSpellingLoc(getStart(Body))))
return;
// Do not visit the artificial children nodes of defaulted methods. The
// lexer may not be able to report back precise token end locations for
// these children nodes (llvm.org/PR39822), and moreover users will not be
// able to see coverage for them.
bool Defaulted = false;
if (auto *Method = dyn_cast<CXXMethodDecl>(D))
Defaulted = Method->isDefaulted();
propagateCounts(getRegionCounter(Body), Body,
/*VisitChildren=*/!Defaulted);
assert(RegionStack.empty() && "Regions entered but never exited");
// Discard the last uncompleted deferred region in a decl, if one exists.
// This prevents lines at the end of a function containing only whitespace
// or closing braces from being marked as uncovered.
DeferredRegion = None;
}
void VisitReturnStmt(const ReturnStmt *S) {
extendRegion(S);
if (S->getRetValue())
Visit(S->getRetValue());
terminateRegion(S);
}
void VisitCXXThrowExpr(const CXXThrowExpr *E) {
extendRegion(E);
if (E->getSubExpr())
Visit(E->getSubExpr());
terminateRegion(E);
}
void VisitGotoStmt(const GotoStmt *S) { terminateRegion(S); }
void VisitLabelStmt(const LabelStmt *S) {
Counter LabelCount = getRegionCounter(S);
SourceLocation Start = getStart(S);
completeTopLevelDeferredRegion(LabelCount, Start);
completeDeferred(LabelCount, Start);
// We can't extendRegion here or we risk overlapping with our new region.
handleFileExit(Start);
pushRegion(LabelCount, Start);
Visit(S->getSubStmt());
}
void VisitBreakStmt(const BreakStmt *S) {
assert(!BreakContinueStack.empty() && "break not in a loop or switch!");
BreakContinueStack.back().BreakCount = addCounters(
BreakContinueStack.back().BreakCount, getRegion().getCounter());
// FIXME: a break in a switch should terminate regions for all preceding
// case statements, not just the most recent one.
terminateRegion(S);
}
void VisitContinueStmt(const ContinueStmt *S) {
assert(!BreakContinueStack.empty() && "continue stmt not in a loop!");
BreakContinueStack.back().ContinueCount = addCounters(
BreakContinueStack.back().ContinueCount, getRegion().getCounter());
terminateRegion(S);
}
void VisitCallExpr(const CallExpr *E) {
VisitStmt(E);
// Terminate the region when we hit a noreturn function.
// (This is helpful dealing with switch statements.)
QualType CalleeType = E->getCallee()->getType();
if (getFunctionExtInfo(*CalleeType).getNoReturn())
terminateRegion(E);
}
void VisitWhileStmt(const WhileStmt *S) {
extendRegion(S);
Counter ParentCount = getRegion().getCounter();
Counter BodyCount = getRegionCounter(S);
// Handle the body first so that we can get the backedge count.
BreakContinueStack.push_back(BreakContinue());
extendRegion(S->getBody());
Counter BackedgeCount = propagateCounts(BodyCount, S->getBody());
BreakContinue BC = BreakContinueStack.pop_back_val();
// Go back to handle the condition.
Counter CondCount =
addCounters(ParentCount, BackedgeCount, BC.ContinueCount);
propagateCounts(CondCount, S->getCond());
adjustForOutOfOrderTraversal(getEnd(S));
// The body count applies to the area immediately after the increment.
auto Gap = findGapAreaBetween(S->getCond(), S->getBody());
if (Gap)
fillGapAreaWithCount(Gap->getBegin(), Gap->getEnd(), BodyCount);
Counter OutCount =
addCounters(BC.BreakCount, subtractCounters(CondCount, BodyCount));
if (OutCount != ParentCount)
pushRegion(OutCount);
}
void VisitDoStmt(const DoStmt *S) {
extendRegion(S);
Counter ParentCount = getRegion().getCounter();
Counter BodyCount = getRegionCounter(S);
BreakContinueStack.push_back(BreakContinue());
extendRegion(S->getBody());
Counter BackedgeCount =
propagateCounts(addCounters(ParentCount, BodyCount), S->getBody());
BreakContinue BC = BreakContinueStack.pop_back_val();
Counter CondCount = addCounters(BackedgeCount, BC.ContinueCount);
propagateCounts(CondCount, S->getCond());
Counter OutCount =
addCounters(BC.BreakCount, subtractCounters(CondCount, BodyCount));
if (OutCount != ParentCount)
pushRegion(OutCount);
}
void VisitForStmt(const ForStmt *S) {
extendRegion(S);
if (S->getInit())
Visit(S->getInit());
Counter ParentCount = getRegion().getCounter();
Counter BodyCount = getRegionCounter(S);
// The loop increment may contain a break or continue.
if (S->getInc())
BreakContinueStack.emplace_back();
// Handle the body first so that we can get the backedge count.
BreakContinueStack.emplace_back();
extendRegion(S->getBody());
Counter BackedgeCount = propagateCounts(BodyCount, S->getBody());
BreakContinue BodyBC = BreakContinueStack.pop_back_val();
// The increment is essentially part of the body but it needs to include
// the count for all the continue statements.
BreakContinue IncrementBC;
if (const Stmt *Inc = S->getInc()) {
propagateCounts(addCounters(BackedgeCount, BodyBC.ContinueCount), Inc);
IncrementBC = BreakContinueStack.pop_back_val();
}
// Go back to handle the condition.
Counter CondCount = addCounters(
addCounters(ParentCount, BackedgeCount, BodyBC.ContinueCount),
IncrementBC.ContinueCount);
if (const Expr *Cond = S->getCond()) {
propagateCounts(CondCount, Cond);
adjustForOutOfOrderTraversal(getEnd(S));
}
// The body count applies to the area immediately after the increment.
auto Gap = findGapAreaBetween(getPreciseTokenLocEnd(S->getRParenLoc()),
getStart(S->getBody()));
if (Gap)
fillGapAreaWithCount(Gap->getBegin(), Gap->getEnd(), BodyCount);
Counter OutCount = addCounters(BodyBC.BreakCount, IncrementBC.BreakCount,
subtractCounters(CondCount, BodyCount));
if (OutCount != ParentCount)
pushRegion(OutCount);
}
void VisitCXXForRangeStmt(const CXXForRangeStmt *S) {
extendRegion(S);
if (S->getInit())
Visit(S->getInit());
Visit(S->getLoopVarStmt());
Visit(S->getRangeStmt());
Counter ParentCount = getRegion().getCounter();
Counter BodyCount = getRegionCounter(S);
BreakContinueStack.push_back(BreakContinue());
extendRegion(S->getBody());
Counter BackedgeCount = propagateCounts(BodyCount, S->getBody());
BreakContinue BC = BreakContinueStack.pop_back_val();
// The body count applies to the area immediately after the range.
auto Gap = findGapAreaBetween(getPreciseTokenLocEnd(S->getRParenLoc()),
getStart(S->getBody()));
if (Gap)
fillGapAreaWithCount(Gap->getBegin(), Gap->getEnd(), BodyCount);
Counter LoopCount =
addCounters(ParentCount, BackedgeCount, BC.ContinueCount);
Counter OutCount =
addCounters(BC.BreakCount, subtractCounters(LoopCount, BodyCount));
if (OutCount != ParentCount)
pushRegion(OutCount);
}
void VisitObjCForCollectionStmt(const ObjCForCollectionStmt *S) {
extendRegion(S);
Visit(S->getElement());
Counter ParentCount = getRegion().getCounter();
Counter BodyCount = getRegionCounter(S);
BreakContinueStack.push_back(BreakContinue());
extendRegion(S->getBody());
Counter BackedgeCount = propagateCounts(BodyCount, S->getBody());
BreakContinue BC = BreakContinueStack.pop_back_val();
// The body count applies to the area immediately after the collection.
auto Gap = findGapAreaBetween(getPreciseTokenLocEnd(S->getRParenLoc()),
getStart(S->getBody()));
if (Gap)
fillGapAreaWithCount(Gap->getBegin(), Gap->getEnd(), BodyCount);
Counter LoopCount =
addCounters(ParentCount, BackedgeCount, BC.ContinueCount);
Counter OutCount =
addCounters(BC.BreakCount, subtractCounters(LoopCount, BodyCount));
if (OutCount != ParentCount)
pushRegion(OutCount);
}
void VisitSwitchStmt(const SwitchStmt *S) {
extendRegion(S);
if (S->getInit())
Visit(S->getInit());
Visit(S->getCond());
BreakContinueStack.push_back(BreakContinue());
const Stmt *Body = S->getBody();
extendRegion(Body);
if (const auto *CS = dyn_cast<CompoundStmt>(Body)) {
if (!CS->body_empty()) {
// Make a region for the body of the switch. If the body starts with
// a case, that case will reuse this region; otherwise, this covers
// the unreachable code at the beginning of the switch body.
size_t Index =
pushRegion(Counter::getZero(), getStart(CS->body_front()));
for (const auto *Child : CS->children())
Visit(Child);
// Set the end for the body of the switch, if it isn't already set.
for (size_t i = RegionStack.size(); i != Index; --i) {
if (!RegionStack[i - 1].hasEndLoc())
RegionStack[i - 1].setEndLoc(getEnd(CS->body_back()));
}
popRegions(Index);
}
} else
propagateCounts(Counter::getZero(), Body);
BreakContinue BC = BreakContinueStack.pop_back_val();
if (!BreakContinueStack.empty())
BreakContinueStack.back().ContinueCount = addCounters(
BreakContinueStack.back().ContinueCount, BC.ContinueCount);
Counter ExitCount = getRegionCounter(S);
SourceLocation ExitLoc = getEnd(S);
pushRegion(ExitCount);
// Ensure that handleFileExit recognizes when the end location is located
// in a different file.
MostRecentLocation = getStart(S);
handleFileExit(ExitLoc);
}
void VisitSwitchCase(const SwitchCase *S) {
extendRegion(S);
SourceMappingRegion &Parent = getRegion();
Counter Count = addCounters(Parent.getCounter(), getRegionCounter(S));
// Reuse the existing region if it starts at our label. This is typical of
// the first case in a switch.
if (Parent.hasStartLoc() && Parent.getBeginLoc() == getStart(S))
Parent.setCounter(Count);
else
pushRegion(Count, getStart(S));
if (const auto *CS = dyn_cast<CaseStmt>(S)) {
Visit(CS->getLHS());
if (const Expr *RHS = CS->getRHS())
Visit(RHS);
}
Visit(S->getSubStmt());
}
void VisitIfStmt(const IfStmt *S) {
extendRegion(S);
if (S->getInit())
Visit(S->getInit());
// Extend into the condition before we propagate through it below - this is
// needed to handle macros that generate the "if" but not the condition.
extendRegion(S->getCond());
Counter ParentCount = getRegion().getCounter();
Counter ThenCount = getRegionCounter(S);
// Emitting a counter for the condition makes it easier to interpret the
// counter for the body when looking at the coverage.
propagateCounts(ParentCount, S->getCond());
// The 'then' count applies to the area immediately after the condition.
auto Gap = findGapAreaBetween(S->getCond(), S->getThen());
if (Gap)
fillGapAreaWithCount(Gap->getBegin(), Gap->getEnd(), ThenCount);
extendRegion(S->getThen());
Counter OutCount = propagateCounts(ThenCount, S->getThen());
Counter ElseCount = subtractCounters(ParentCount, ThenCount);
if (const Stmt *Else = S->getElse()) {
// The 'else' count applies to the area immediately after the 'then'.
Gap = findGapAreaBetween(S->getThen(), Else);
if (Gap)
fillGapAreaWithCount(Gap->getBegin(), Gap->getEnd(), ElseCount);
extendRegion(Else);
OutCount = addCounters(OutCount, propagateCounts(ElseCount, Else));
} else
OutCount = addCounters(OutCount, ElseCount);
if (OutCount != ParentCount)
pushRegion(OutCount);
}
void VisitCXXTryStmt(const CXXTryStmt *S) {
extendRegion(S);
// Handle macros that generate the "try" but not the rest.
extendRegion(S->getTryBlock());
Counter ParentCount = getRegion().getCounter();
propagateCounts(ParentCount, S->getTryBlock());
for (unsigned I = 0, E = S->getNumHandlers(); I < E; ++I)
Visit(S->getHandler(I));
Counter ExitCount = getRegionCounter(S);
pushRegion(ExitCount);
}
void VisitCXXCatchStmt(const CXXCatchStmt *S) {
propagateCounts(getRegionCounter(S), S->getHandlerBlock());
}
void VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
extendRegion(E);
Counter ParentCount = getRegion().getCounter();
Counter TrueCount = getRegionCounter(E);
Visit(E->getCond());
if (!isa<BinaryConditionalOperator>(E)) {
// The 'then' count applies to the area immediately after the condition.
auto Gap =
findGapAreaBetween(E->getQuestionLoc(), getStart(E->getTrueExpr()));
if (Gap)
fillGapAreaWithCount(Gap->getBegin(), Gap->getEnd(), TrueCount);
extendRegion(E->getTrueExpr());
propagateCounts(TrueCount, E->getTrueExpr());
}
extendRegion(E->getFalseExpr());
propagateCounts(subtractCounters(ParentCount, TrueCount),
E->getFalseExpr());
}
void VisitBinLAnd(const BinaryOperator *E) {
extendRegion(E->getLHS());
propagateCounts(getRegion().getCounter(), E->getLHS());
handleFileExit(getEnd(E->getLHS()));
extendRegion(E->getRHS());
propagateCounts(getRegionCounter(E), E->getRHS());
}
void VisitBinLOr(const BinaryOperator *E) {
extendRegion(E->getLHS());
propagateCounts(getRegion().getCounter(), E->getLHS());
handleFileExit(getEnd(E->getLHS()));
extendRegion(E->getRHS());
propagateCounts(getRegionCounter(E), E->getRHS());
}
void VisitLambdaExpr(const LambdaExpr *LE) {
// Lambdas are treated as their own functions for now, so we shouldn't
// propagate counts into them.
}
};
std::string getCoverageSection(const CodeGenModule &CGM) {
return llvm::getInstrProfSectionName(
llvm::IPSK_covmap,
CGM.getContext().getTargetInfo().getTriple().getObjectFormat());
}
std::string normalizeFilename(StringRef Filename) {
llvm::SmallString<256> Path(Filename);
llvm::sys::fs::make_absolute(Path);
llvm::sys::path::remove_dots(Path, /*remove_dot_dots=*/true);
return Path.str().str();
}
} // end anonymous namespace
static void dump(llvm::raw_ostream &OS, StringRef FunctionName,
ArrayRef<CounterExpression> Expressions,
ArrayRef<CounterMappingRegion> Regions) {
OS << FunctionName << ":\n";
CounterMappingContext Ctx(Expressions);
for (const auto &R : Regions) {
OS.indent(2);
switch (R.Kind) {
case CounterMappingRegion::CodeRegion:
break;
case CounterMappingRegion::ExpansionRegion:
OS << "Expansion,";
break;
case CounterMappingRegion::SkippedRegion:
OS << "Skipped,";
break;
case CounterMappingRegion::GapRegion:
OS << "Gap,";
break;
}
OS << "File " << R.FileID << ", " << R.LineStart << ":" << R.ColumnStart
<< " -> " << R.LineEnd << ":" << R.ColumnEnd << " = ";
Ctx.dump(R.Count, OS);
if (R.Kind == CounterMappingRegion::ExpansionRegion)
OS << " (Expanded file = " << R.ExpandedFileID << ")";
OS << "\n";
}
}
void CoverageMappingModuleGen::addFunctionMappingRecord(
llvm::GlobalVariable *NamePtr, StringRef NameValue, uint64_t FuncHash,
const std::string &CoverageMapping, bool IsUsed) {
llvm::LLVMContext &Ctx = CGM.getLLVMContext();
if (!FunctionRecordTy) {
#define COVMAP_FUNC_RECORD(Type, LLVMType, Name, Init) LLVMType,
llvm::Type *FunctionRecordTypes[] = {
#include "llvm/ProfileData/InstrProfData.inc"
};
FunctionRecordTy =
llvm::StructType::get(Ctx, makeArrayRef(FunctionRecordTypes),
/*isPacked=*/true);
}
#define COVMAP_FUNC_RECORD(Type, LLVMType, Name, Init) Init,
llvm::Constant *FunctionRecordVals[] = {
#include "llvm/ProfileData/InstrProfData.inc"
};
FunctionRecords.push_back(llvm::ConstantStruct::get(
FunctionRecordTy, makeArrayRef(FunctionRecordVals)));
if (!IsUsed)
FunctionNames.push_back(
llvm::ConstantExpr::getBitCast(NamePtr, llvm::Type::getInt8PtrTy(Ctx)));
CoverageMappings.push_back(CoverageMapping);
if (CGM.getCodeGenOpts().DumpCoverageMapping) {
// Dump the coverage mapping data for this function by decoding the
// encoded data. This allows us to dump the mapping regions which were
// also processed by the CoverageMappingWriter which performs
// additional minimization operations such as reducing the number of
// expressions.
std::vector<StringRef> Filenames;
std::vector<CounterExpression> Expressions;
std::vector<CounterMappingRegion> Regions;
llvm::SmallVector<std::string, 16> FilenameStrs;
llvm::SmallVector<StringRef, 16> FilenameRefs;
FilenameStrs.resize(FileEntries.size());
FilenameRefs.resize(FileEntries.size());
for (const auto &Entry : FileEntries) {
auto I = Entry.second;
FilenameStrs[I] = normalizeFilename(Entry.first->getName());
FilenameRefs[I] = FilenameStrs[I];
}
RawCoverageMappingReader Reader(CoverageMapping, FilenameRefs, Filenames,
Expressions, Regions);
if (Reader.read())
return;
dump(llvm::outs(), NameValue, Expressions, Regions);
}
}
void CoverageMappingModuleGen::emit() {
if (FunctionRecords.empty())
return;
llvm::LLVMContext &Ctx = CGM.getLLVMContext();
auto *Int32Ty = llvm::Type::getInt32Ty(Ctx);
// Create the filenames and merge them with coverage mappings
llvm::SmallVector<std::string, 16> FilenameStrs;
llvm::SmallVector<StringRef, 16> FilenameRefs;
FilenameStrs.resize(FileEntries.size());
FilenameRefs.resize(FileEntries.size());
for (const auto &Entry : FileEntries) {
auto I = Entry.second;
FilenameStrs[I] = normalizeFilename(Entry.first->getName());
FilenameRefs[I] = FilenameStrs[I];
}
std::string FilenamesAndCoverageMappings;
llvm::raw_string_ostream OS(FilenamesAndCoverageMappings);
CoverageFilenamesSectionWriter(FilenameRefs).write(OS);
std::string RawCoverageMappings =
llvm::join(CoverageMappings.begin(), CoverageMappings.end(), "");
OS << RawCoverageMappings;
size_t CoverageMappingSize = RawCoverageMappings.size();
size_t FilenamesSize = OS.str().size() - CoverageMappingSize;
// Append extra zeroes if necessary to ensure that the size of the filenames
// and coverage mappings is a multiple of 8.
if (size_t Rem = OS.str().size() % 8) {
CoverageMappingSize += 8 - Rem;
OS.write_zeros(8 - Rem);
}
auto *FilenamesAndMappingsVal =
llvm::ConstantDataArray::getString(Ctx, OS.str(), false);
// Create the deferred function records array
auto RecordsTy =
llvm::ArrayType::get(FunctionRecordTy, FunctionRecords.size());
auto RecordsVal = llvm::ConstantArray::get(RecordsTy, FunctionRecords);
llvm::Type *CovDataHeaderTypes[] = {
#define COVMAP_HEADER(Type, LLVMType, Name, Init) LLVMType,
#include "llvm/ProfileData/InstrProfData.inc"
};
auto CovDataHeaderTy =
llvm::StructType::get(Ctx, makeArrayRef(CovDataHeaderTypes));
llvm::Constant *CovDataHeaderVals[] = {
#define COVMAP_HEADER(Type, LLVMType, Name, Init) Init,
#include "llvm/ProfileData/InstrProfData.inc"
};
auto CovDataHeaderVal = llvm::ConstantStruct::get(
CovDataHeaderTy, makeArrayRef(CovDataHeaderVals));
// Create the coverage data record
llvm::Type *CovDataTypes[] = {CovDataHeaderTy, RecordsTy,
FilenamesAndMappingsVal->getType()};
auto CovDataTy = llvm::StructType::get(Ctx, makeArrayRef(CovDataTypes));
llvm::Constant *TUDataVals[] = {CovDataHeaderVal, RecordsVal,
FilenamesAndMappingsVal};
auto CovDataVal =
llvm::ConstantStruct::get(CovDataTy, makeArrayRef(TUDataVals));
auto CovData = new llvm::GlobalVariable(
CGM.getModule(), CovDataTy, true, llvm::GlobalValue::InternalLinkage,
CovDataVal, llvm::getCoverageMappingVarName());
CovData->setSection(getCoverageSection(CGM));
CovData->setAlignment(8);
// Make sure the data doesn't get deleted.
CGM.addUsedGlobal(CovData);
// Create the deferred function records array
if (!FunctionNames.empty()) {
auto NamesArrTy = llvm::ArrayType::get(llvm::Type::getInt8PtrTy(Ctx),
FunctionNames.size());
auto NamesArrVal = llvm::ConstantArray::get(NamesArrTy, FunctionNames);
// This variable will *NOT* be emitted to the object file. It is used
// to pass the list of names referenced to codegen.
new llvm::GlobalVariable(CGM.getModule(), NamesArrTy, true,
llvm::GlobalValue::InternalLinkage, NamesArrVal,
llvm::getCoverageUnusedNamesVarName());
}
}
unsigned CoverageMappingModuleGen::getFileID(const FileEntry *File) {
auto It = FileEntries.find(File);
if (It != FileEntries.end())
return It->second;
unsigned FileID = FileEntries.size();
FileEntries.insert(std::make_pair(File, FileID));
return FileID;
}
void CoverageMappingGen::emitCounterMapping(const Decl *D,
llvm::raw_ostream &OS) {
assert(CounterMap);
CounterCoverageMappingBuilder Walker(CVM, *CounterMap, SM, LangOpts);
Walker.VisitDecl(D);
Walker.write(OS);
}
void CoverageMappingGen::emitEmptyMapping(const Decl *D,
llvm::raw_ostream &OS) {
EmptyCoverageMappingBuilder Walker(CVM, SM, LangOpts);
Walker.VisitDecl(D);
Walker.write(OS);
}