mirror of
https://github.com/capstone-engine/llvm-capstone.git
synced 2025-04-17 13:51:21 +00:00

to reflect the new license. We understand that people may be surprised that we're moving the header entirely to discuss the new license. We checked this carefully with the Foundation's lawyer and we believe this is the correct approach. Essentially, all code in the project is now made available by the LLVM project under our new license, so you will see that the license headers include that license only. Some of our contributors have contributed code under our old license, and accordingly, we have retained a copy of our old license notice in the top-level files in each project and repository. llvm-svn: 351636
1312 lines
49 KiB
C++
1312 lines
49 KiB
C++
//===--- SemaExceptionSpec.cpp - C++ Exception Specifications ---*- C++ -*-===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file provides Sema routines for C++ exception specification testing.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "clang/Sema/SemaInternal.h"
|
|
#include "clang/AST/ASTMutationListener.h"
|
|
#include "clang/AST/CXXInheritance.h"
|
|
#include "clang/AST/Expr.h"
|
|
#include "clang/AST/ExprCXX.h"
|
|
#include "clang/AST/TypeLoc.h"
|
|
#include "clang/Basic/Diagnostic.h"
|
|
#include "clang/Basic/SourceManager.h"
|
|
#include "llvm/ADT/SmallPtrSet.h"
|
|
#include "llvm/ADT/SmallString.h"
|
|
|
|
namespace clang {
|
|
|
|
static const FunctionProtoType *GetUnderlyingFunction(QualType T)
|
|
{
|
|
if (const PointerType *PtrTy = T->getAs<PointerType>())
|
|
T = PtrTy->getPointeeType();
|
|
else if (const ReferenceType *RefTy = T->getAs<ReferenceType>())
|
|
T = RefTy->getPointeeType();
|
|
else if (const MemberPointerType *MPTy = T->getAs<MemberPointerType>())
|
|
T = MPTy->getPointeeType();
|
|
return T->getAs<FunctionProtoType>();
|
|
}
|
|
|
|
/// HACK: libstdc++ has a bug where it shadows std::swap with a member
|
|
/// swap function then tries to call std::swap unqualified from the exception
|
|
/// specification of that function. This function detects whether we're in
|
|
/// such a case and turns off delay-parsing of exception specifications.
|
|
bool Sema::isLibstdcxxEagerExceptionSpecHack(const Declarator &D) {
|
|
auto *RD = dyn_cast<CXXRecordDecl>(CurContext);
|
|
|
|
// All the problem cases are member functions named "swap" within class
|
|
// templates declared directly within namespace std or std::__debug or
|
|
// std::__profile.
|
|
if (!RD || !RD->getIdentifier() || !RD->getDescribedClassTemplate() ||
|
|
!D.getIdentifier() || !D.getIdentifier()->isStr("swap"))
|
|
return false;
|
|
|
|
auto *ND = dyn_cast<NamespaceDecl>(RD->getDeclContext());
|
|
if (!ND)
|
|
return false;
|
|
|
|
bool IsInStd = ND->isStdNamespace();
|
|
if (!IsInStd) {
|
|
// This isn't a direct member of namespace std, but it might still be
|
|
// libstdc++'s std::__debug::array or std::__profile::array.
|
|
IdentifierInfo *II = ND->getIdentifier();
|
|
if (!II || !(II->isStr("__debug") || II->isStr("__profile")) ||
|
|
!ND->isInStdNamespace())
|
|
return false;
|
|
}
|
|
|
|
// Only apply this hack within a system header.
|
|
if (!Context.getSourceManager().isInSystemHeader(D.getBeginLoc()))
|
|
return false;
|
|
|
|
return llvm::StringSwitch<bool>(RD->getIdentifier()->getName())
|
|
.Case("array", true)
|
|
.Case("pair", IsInStd)
|
|
.Case("priority_queue", IsInStd)
|
|
.Case("stack", IsInStd)
|
|
.Case("queue", IsInStd)
|
|
.Default(false);
|
|
}
|
|
|
|
ExprResult Sema::ActOnNoexceptSpec(SourceLocation NoexceptLoc,
|
|
Expr *NoexceptExpr,
|
|
ExceptionSpecificationType &EST) {
|
|
// FIXME: This is bogus, a noexcept expression is not a condition.
|
|
ExprResult Converted = CheckBooleanCondition(NoexceptLoc, NoexceptExpr);
|
|
if (Converted.isInvalid())
|
|
return Converted;
|
|
|
|
if (Converted.get()->isValueDependent()) {
|
|
EST = EST_DependentNoexcept;
|
|
return Converted;
|
|
}
|
|
|
|
llvm::APSInt Result;
|
|
Converted = VerifyIntegerConstantExpression(
|
|
Converted.get(), &Result,
|
|
diag::err_noexcept_needs_constant_expression,
|
|
/*AllowFold*/ false);
|
|
if (!Converted.isInvalid())
|
|
EST = !Result ? EST_NoexceptFalse : EST_NoexceptTrue;
|
|
return Converted;
|
|
}
|
|
|
|
/// CheckSpecifiedExceptionType - Check if the given type is valid in an
|
|
/// exception specification. Incomplete types, or pointers to incomplete types
|
|
/// other than void are not allowed.
|
|
///
|
|
/// \param[in,out] T The exception type. This will be decayed to a pointer type
|
|
/// when the input is an array or a function type.
|
|
bool Sema::CheckSpecifiedExceptionType(QualType &T, SourceRange Range) {
|
|
// C++11 [except.spec]p2:
|
|
// A type cv T, "array of T", or "function returning T" denoted
|
|
// in an exception-specification is adjusted to type T, "pointer to T", or
|
|
// "pointer to function returning T", respectively.
|
|
//
|
|
// We also apply this rule in C++98.
|
|
if (T->isArrayType())
|
|
T = Context.getArrayDecayedType(T);
|
|
else if (T->isFunctionType())
|
|
T = Context.getPointerType(T);
|
|
|
|
int Kind = 0;
|
|
QualType PointeeT = T;
|
|
if (const PointerType *PT = T->getAs<PointerType>()) {
|
|
PointeeT = PT->getPointeeType();
|
|
Kind = 1;
|
|
|
|
// cv void* is explicitly permitted, despite being a pointer to an
|
|
// incomplete type.
|
|
if (PointeeT->isVoidType())
|
|
return false;
|
|
} else if (const ReferenceType *RT = T->getAs<ReferenceType>()) {
|
|
PointeeT = RT->getPointeeType();
|
|
Kind = 2;
|
|
|
|
if (RT->isRValueReferenceType()) {
|
|
// C++11 [except.spec]p2:
|
|
// A type denoted in an exception-specification shall not denote [...]
|
|
// an rvalue reference type.
|
|
Diag(Range.getBegin(), diag::err_rref_in_exception_spec)
|
|
<< T << Range;
|
|
return true;
|
|
}
|
|
}
|
|
|
|
// C++11 [except.spec]p2:
|
|
// A type denoted in an exception-specification shall not denote an
|
|
// incomplete type other than a class currently being defined [...].
|
|
// A type denoted in an exception-specification shall not denote a
|
|
// pointer or reference to an incomplete type, other than (cv) void* or a
|
|
// pointer or reference to a class currently being defined.
|
|
// In Microsoft mode, downgrade this to a warning.
|
|
unsigned DiagID = diag::err_incomplete_in_exception_spec;
|
|
bool ReturnValueOnError = true;
|
|
if (getLangOpts().MicrosoftExt) {
|
|
DiagID = diag::ext_incomplete_in_exception_spec;
|
|
ReturnValueOnError = false;
|
|
}
|
|
if (!(PointeeT->isRecordType() &&
|
|
PointeeT->getAs<RecordType>()->isBeingDefined()) &&
|
|
RequireCompleteType(Range.getBegin(), PointeeT, DiagID, Kind, Range))
|
|
return ReturnValueOnError;
|
|
|
|
return false;
|
|
}
|
|
|
|
/// CheckDistantExceptionSpec - Check if the given type is a pointer or pointer
|
|
/// to member to a function with an exception specification. This means that
|
|
/// it is invalid to add another level of indirection.
|
|
bool Sema::CheckDistantExceptionSpec(QualType T) {
|
|
// C++17 removes this rule in favor of putting exception specifications into
|
|
// the type system.
|
|
if (getLangOpts().CPlusPlus17)
|
|
return false;
|
|
|
|
if (const PointerType *PT = T->getAs<PointerType>())
|
|
T = PT->getPointeeType();
|
|
else if (const MemberPointerType *PT = T->getAs<MemberPointerType>())
|
|
T = PT->getPointeeType();
|
|
else
|
|
return false;
|
|
|
|
const FunctionProtoType *FnT = T->getAs<FunctionProtoType>();
|
|
if (!FnT)
|
|
return false;
|
|
|
|
return FnT->hasExceptionSpec();
|
|
}
|
|
|
|
const FunctionProtoType *
|
|
Sema::ResolveExceptionSpec(SourceLocation Loc, const FunctionProtoType *FPT) {
|
|
if (FPT->getExceptionSpecType() == EST_Unparsed) {
|
|
Diag(Loc, diag::err_exception_spec_not_parsed);
|
|
return nullptr;
|
|
}
|
|
|
|
if (!isUnresolvedExceptionSpec(FPT->getExceptionSpecType()))
|
|
return FPT;
|
|
|
|
FunctionDecl *SourceDecl = FPT->getExceptionSpecDecl();
|
|
const FunctionProtoType *SourceFPT =
|
|
SourceDecl->getType()->castAs<FunctionProtoType>();
|
|
|
|
// If the exception specification has already been resolved, just return it.
|
|
if (!isUnresolvedExceptionSpec(SourceFPT->getExceptionSpecType()))
|
|
return SourceFPT;
|
|
|
|
// Compute or instantiate the exception specification now.
|
|
if (SourceFPT->getExceptionSpecType() == EST_Unevaluated)
|
|
EvaluateImplicitExceptionSpec(Loc, cast<CXXMethodDecl>(SourceDecl));
|
|
else
|
|
InstantiateExceptionSpec(Loc, SourceDecl);
|
|
|
|
const FunctionProtoType *Proto =
|
|
SourceDecl->getType()->castAs<FunctionProtoType>();
|
|
if (Proto->getExceptionSpecType() == clang::EST_Unparsed) {
|
|
Diag(Loc, diag::err_exception_spec_not_parsed);
|
|
Proto = nullptr;
|
|
}
|
|
return Proto;
|
|
}
|
|
|
|
void
|
|
Sema::UpdateExceptionSpec(FunctionDecl *FD,
|
|
const FunctionProtoType::ExceptionSpecInfo &ESI) {
|
|
// If we've fully resolved the exception specification, notify listeners.
|
|
if (!isUnresolvedExceptionSpec(ESI.Type))
|
|
if (auto *Listener = getASTMutationListener())
|
|
Listener->ResolvedExceptionSpec(FD);
|
|
|
|
for (FunctionDecl *Redecl : FD->redecls())
|
|
Context.adjustExceptionSpec(Redecl, ESI);
|
|
}
|
|
|
|
static bool exceptionSpecNotKnownYet(const FunctionDecl *FD) {
|
|
auto *MD = dyn_cast<CXXMethodDecl>(FD);
|
|
if (!MD)
|
|
return false;
|
|
|
|
auto EST = MD->getType()->castAs<FunctionProtoType>()->getExceptionSpecType();
|
|
return EST == EST_Unparsed ||
|
|
(EST == EST_Unevaluated && MD->getParent()->isBeingDefined());
|
|
}
|
|
|
|
static bool CheckEquivalentExceptionSpecImpl(
|
|
Sema &S, const PartialDiagnostic &DiagID, const PartialDiagnostic &NoteID,
|
|
const FunctionProtoType *Old, SourceLocation OldLoc,
|
|
const FunctionProtoType *New, SourceLocation NewLoc,
|
|
bool *MissingExceptionSpecification = nullptr,
|
|
bool *MissingEmptyExceptionSpecification = nullptr,
|
|
bool AllowNoexceptAllMatchWithNoSpec = false, bool IsOperatorNew = false);
|
|
|
|
/// Determine whether a function has an implicitly-generated exception
|
|
/// specification.
|
|
static bool hasImplicitExceptionSpec(FunctionDecl *Decl) {
|
|
if (!isa<CXXDestructorDecl>(Decl) &&
|
|
Decl->getDeclName().getCXXOverloadedOperator() != OO_Delete &&
|
|
Decl->getDeclName().getCXXOverloadedOperator() != OO_Array_Delete)
|
|
return false;
|
|
|
|
// For a function that the user didn't declare:
|
|
// - if this is a destructor, its exception specification is implicit.
|
|
// - if this is 'operator delete' or 'operator delete[]', the exception
|
|
// specification is as-if an explicit exception specification was given
|
|
// (per [basic.stc.dynamic]p2).
|
|
if (!Decl->getTypeSourceInfo())
|
|
return isa<CXXDestructorDecl>(Decl);
|
|
|
|
const FunctionProtoType *Ty =
|
|
Decl->getTypeSourceInfo()->getType()->getAs<FunctionProtoType>();
|
|
return !Ty->hasExceptionSpec();
|
|
}
|
|
|
|
bool Sema::CheckEquivalentExceptionSpec(FunctionDecl *Old, FunctionDecl *New) {
|
|
// Just completely ignore this under -fno-exceptions prior to C++17.
|
|
// In C++17 onwards, the exception specification is part of the type and
|
|
// we will diagnose mismatches anyway, so it's better to check for them here.
|
|
if (!getLangOpts().CXXExceptions && !getLangOpts().CPlusPlus17)
|
|
return false;
|
|
|
|
OverloadedOperatorKind OO = New->getDeclName().getCXXOverloadedOperator();
|
|
bool IsOperatorNew = OO == OO_New || OO == OO_Array_New;
|
|
bool MissingExceptionSpecification = false;
|
|
bool MissingEmptyExceptionSpecification = false;
|
|
|
|
unsigned DiagID = diag::err_mismatched_exception_spec;
|
|
bool ReturnValueOnError = true;
|
|
if (getLangOpts().MicrosoftExt) {
|
|
DiagID = diag::ext_mismatched_exception_spec;
|
|
ReturnValueOnError = false;
|
|
}
|
|
|
|
// If we're befriending a member function of a class that's currently being
|
|
// defined, we might not be able to work out its exception specification yet.
|
|
// If not, defer the check until later.
|
|
if (exceptionSpecNotKnownYet(Old) || exceptionSpecNotKnownYet(New)) {
|
|
DelayedEquivalentExceptionSpecChecks.push_back({New, Old});
|
|
return false;
|
|
}
|
|
|
|
// Check the types as written: they must match before any exception
|
|
// specification adjustment is applied.
|
|
if (!CheckEquivalentExceptionSpecImpl(
|
|
*this, PDiag(DiagID), PDiag(diag::note_previous_declaration),
|
|
Old->getType()->getAs<FunctionProtoType>(), Old->getLocation(),
|
|
New->getType()->getAs<FunctionProtoType>(), New->getLocation(),
|
|
&MissingExceptionSpecification, &MissingEmptyExceptionSpecification,
|
|
/*AllowNoexceptAllMatchWithNoSpec=*/true, IsOperatorNew)) {
|
|
// C++11 [except.spec]p4 [DR1492]:
|
|
// If a declaration of a function has an implicit
|
|
// exception-specification, other declarations of the function shall
|
|
// not specify an exception-specification.
|
|
if (getLangOpts().CPlusPlus11 && getLangOpts().CXXExceptions &&
|
|
hasImplicitExceptionSpec(Old) != hasImplicitExceptionSpec(New)) {
|
|
Diag(New->getLocation(), diag::ext_implicit_exception_spec_mismatch)
|
|
<< hasImplicitExceptionSpec(Old);
|
|
if (Old->getLocation().isValid())
|
|
Diag(Old->getLocation(), diag::note_previous_declaration);
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// The failure was something other than an missing exception
|
|
// specification; return an error, except in MS mode where this is a warning.
|
|
if (!MissingExceptionSpecification)
|
|
return ReturnValueOnError;
|
|
|
|
const FunctionProtoType *NewProto =
|
|
New->getType()->castAs<FunctionProtoType>();
|
|
|
|
// The new function declaration is only missing an empty exception
|
|
// specification "throw()". If the throw() specification came from a
|
|
// function in a system header that has C linkage, just add an empty
|
|
// exception specification to the "new" declaration. Note that C library
|
|
// implementations are permitted to add these nothrow exception
|
|
// specifications.
|
|
//
|
|
// Likewise if the old function is a builtin.
|
|
if (MissingEmptyExceptionSpecification && NewProto &&
|
|
(Old->getLocation().isInvalid() ||
|
|
Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
|
|
Old->getBuiltinID()) &&
|
|
Old->isExternC()) {
|
|
New->setType(Context.getFunctionType(
|
|
NewProto->getReturnType(), NewProto->getParamTypes(),
|
|
NewProto->getExtProtoInfo().withExceptionSpec(EST_DynamicNone)));
|
|
return false;
|
|
}
|
|
|
|
const FunctionProtoType *OldProto =
|
|
Old->getType()->castAs<FunctionProtoType>();
|
|
|
|
FunctionProtoType::ExceptionSpecInfo ESI = OldProto->getExceptionSpecType();
|
|
if (ESI.Type == EST_Dynamic) {
|
|
// FIXME: What if the exceptions are described in terms of the old
|
|
// prototype's parameters?
|
|
ESI.Exceptions = OldProto->exceptions();
|
|
}
|
|
|
|
if (ESI.Type == EST_NoexceptFalse)
|
|
ESI.Type = EST_None;
|
|
if (ESI.Type == EST_NoexceptTrue)
|
|
ESI.Type = EST_BasicNoexcept;
|
|
|
|
// For dependent noexcept, we can't just take the expression from the old
|
|
// prototype. It likely contains references to the old prototype's parameters.
|
|
if (ESI.Type == EST_DependentNoexcept) {
|
|
New->setInvalidDecl();
|
|
} else {
|
|
// Update the type of the function with the appropriate exception
|
|
// specification.
|
|
New->setType(Context.getFunctionType(
|
|
NewProto->getReturnType(), NewProto->getParamTypes(),
|
|
NewProto->getExtProtoInfo().withExceptionSpec(ESI)));
|
|
}
|
|
|
|
if (getLangOpts().MicrosoftExt && ESI.Type != EST_DependentNoexcept) {
|
|
// Allow missing exception specifications in redeclarations as an extension.
|
|
DiagID = diag::ext_ms_missing_exception_specification;
|
|
ReturnValueOnError = false;
|
|
} else if (New->isReplaceableGlobalAllocationFunction() &&
|
|
ESI.Type != EST_DependentNoexcept) {
|
|
// Allow missing exception specifications in redeclarations as an extension,
|
|
// when declaring a replaceable global allocation function.
|
|
DiagID = diag::ext_missing_exception_specification;
|
|
ReturnValueOnError = false;
|
|
} else {
|
|
DiagID = diag::err_missing_exception_specification;
|
|
ReturnValueOnError = true;
|
|
}
|
|
|
|
// Warn about the lack of exception specification.
|
|
SmallString<128> ExceptionSpecString;
|
|
llvm::raw_svector_ostream OS(ExceptionSpecString);
|
|
switch (OldProto->getExceptionSpecType()) {
|
|
case EST_DynamicNone:
|
|
OS << "throw()";
|
|
break;
|
|
|
|
case EST_Dynamic: {
|
|
OS << "throw(";
|
|
bool OnFirstException = true;
|
|
for (const auto &E : OldProto->exceptions()) {
|
|
if (OnFirstException)
|
|
OnFirstException = false;
|
|
else
|
|
OS << ", ";
|
|
|
|
OS << E.getAsString(getPrintingPolicy());
|
|
}
|
|
OS << ")";
|
|
break;
|
|
}
|
|
|
|
case EST_BasicNoexcept:
|
|
OS << "noexcept";
|
|
break;
|
|
|
|
case EST_DependentNoexcept:
|
|
case EST_NoexceptFalse:
|
|
case EST_NoexceptTrue:
|
|
OS << "noexcept(";
|
|
assert(OldProto->getNoexceptExpr() != nullptr && "Expected non-null Expr");
|
|
OldProto->getNoexceptExpr()->printPretty(OS, nullptr, getPrintingPolicy());
|
|
OS << ")";
|
|
break;
|
|
|
|
default:
|
|
llvm_unreachable("This spec type is compatible with none.");
|
|
}
|
|
|
|
SourceLocation FixItLoc;
|
|
if (TypeSourceInfo *TSInfo = New->getTypeSourceInfo()) {
|
|
TypeLoc TL = TSInfo->getTypeLoc().IgnoreParens();
|
|
// FIXME: Preserve enough information so that we can produce a correct fixit
|
|
// location when there is a trailing return type.
|
|
if (auto FTLoc = TL.getAs<FunctionProtoTypeLoc>())
|
|
if (!FTLoc.getTypePtr()->hasTrailingReturn())
|
|
FixItLoc = getLocForEndOfToken(FTLoc.getLocalRangeEnd());
|
|
}
|
|
|
|
if (FixItLoc.isInvalid())
|
|
Diag(New->getLocation(), DiagID)
|
|
<< New << OS.str();
|
|
else {
|
|
Diag(New->getLocation(), DiagID)
|
|
<< New << OS.str()
|
|
<< FixItHint::CreateInsertion(FixItLoc, " " + OS.str().str());
|
|
}
|
|
|
|
if (Old->getLocation().isValid())
|
|
Diag(Old->getLocation(), diag::note_previous_declaration);
|
|
|
|
return ReturnValueOnError;
|
|
}
|
|
|
|
/// CheckEquivalentExceptionSpec - Check if the two types have equivalent
|
|
/// exception specifications. Exception specifications are equivalent if
|
|
/// they allow exactly the same set of exception types. It does not matter how
|
|
/// that is achieved. See C++ [except.spec]p2.
|
|
bool Sema::CheckEquivalentExceptionSpec(
|
|
const FunctionProtoType *Old, SourceLocation OldLoc,
|
|
const FunctionProtoType *New, SourceLocation NewLoc) {
|
|
if (!getLangOpts().CXXExceptions)
|
|
return false;
|
|
|
|
unsigned DiagID = diag::err_mismatched_exception_spec;
|
|
if (getLangOpts().MicrosoftExt)
|
|
DiagID = diag::ext_mismatched_exception_spec;
|
|
bool Result = CheckEquivalentExceptionSpecImpl(
|
|
*this, PDiag(DiagID), PDiag(diag::note_previous_declaration),
|
|
Old, OldLoc, New, NewLoc);
|
|
|
|
// In Microsoft mode, mismatching exception specifications just cause a warning.
|
|
if (getLangOpts().MicrosoftExt)
|
|
return false;
|
|
return Result;
|
|
}
|
|
|
|
/// CheckEquivalentExceptionSpec - Check if the two types have compatible
|
|
/// exception specifications. See C++ [except.spec]p3.
|
|
///
|
|
/// \return \c false if the exception specifications match, \c true if there is
|
|
/// a problem. If \c true is returned, either a diagnostic has already been
|
|
/// produced or \c *MissingExceptionSpecification is set to \c true.
|
|
static bool CheckEquivalentExceptionSpecImpl(
|
|
Sema &S, const PartialDiagnostic &DiagID, const PartialDiagnostic &NoteID,
|
|
const FunctionProtoType *Old, SourceLocation OldLoc,
|
|
const FunctionProtoType *New, SourceLocation NewLoc,
|
|
bool *MissingExceptionSpecification,
|
|
bool *MissingEmptyExceptionSpecification,
|
|
bool AllowNoexceptAllMatchWithNoSpec, bool IsOperatorNew) {
|
|
if (MissingExceptionSpecification)
|
|
*MissingExceptionSpecification = false;
|
|
|
|
if (MissingEmptyExceptionSpecification)
|
|
*MissingEmptyExceptionSpecification = false;
|
|
|
|
Old = S.ResolveExceptionSpec(NewLoc, Old);
|
|
if (!Old)
|
|
return false;
|
|
New = S.ResolveExceptionSpec(NewLoc, New);
|
|
if (!New)
|
|
return false;
|
|
|
|
// C++0x [except.spec]p3: Two exception-specifications are compatible if:
|
|
// - both are non-throwing, regardless of their form,
|
|
// - both have the form noexcept(constant-expression) and the constant-
|
|
// expressions are equivalent,
|
|
// - both are dynamic-exception-specifications that have the same set of
|
|
// adjusted types.
|
|
//
|
|
// C++0x [except.spec]p12: An exception-specification is non-throwing if it is
|
|
// of the form throw(), noexcept, or noexcept(constant-expression) where the
|
|
// constant-expression yields true.
|
|
//
|
|
// C++0x [except.spec]p4: If any declaration of a function has an exception-
|
|
// specifier that is not a noexcept-specification allowing all exceptions,
|
|
// all declarations [...] of that function shall have a compatible
|
|
// exception-specification.
|
|
//
|
|
// That last point basically means that noexcept(false) matches no spec.
|
|
// It's considered when AllowNoexceptAllMatchWithNoSpec is true.
|
|
|
|
ExceptionSpecificationType OldEST = Old->getExceptionSpecType();
|
|
ExceptionSpecificationType NewEST = New->getExceptionSpecType();
|
|
|
|
assert(!isUnresolvedExceptionSpec(OldEST) &&
|
|
!isUnresolvedExceptionSpec(NewEST) &&
|
|
"Shouldn't see unknown exception specifications here");
|
|
|
|
CanThrowResult OldCanThrow = Old->canThrow();
|
|
CanThrowResult NewCanThrow = New->canThrow();
|
|
|
|
// Any non-throwing specifications are compatible.
|
|
if (OldCanThrow == CT_Cannot && NewCanThrow == CT_Cannot)
|
|
return false;
|
|
|
|
// Any throws-anything specifications are usually compatible.
|
|
if (OldCanThrow == CT_Can && OldEST != EST_Dynamic &&
|
|
NewCanThrow == CT_Can && NewEST != EST_Dynamic) {
|
|
// The exception is that the absence of an exception specification only
|
|
// matches noexcept(false) for functions, as described above.
|
|
if (!AllowNoexceptAllMatchWithNoSpec &&
|
|
((OldEST == EST_None && NewEST == EST_NoexceptFalse) ||
|
|
(OldEST == EST_NoexceptFalse && NewEST == EST_None))) {
|
|
// This is the disallowed case.
|
|
} else {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// C++14 [except.spec]p3:
|
|
// Two exception-specifications are compatible if [...] both have the form
|
|
// noexcept(constant-expression) and the constant-expressions are equivalent
|
|
if (OldEST == EST_DependentNoexcept && NewEST == EST_DependentNoexcept) {
|
|
llvm::FoldingSetNodeID OldFSN, NewFSN;
|
|
Old->getNoexceptExpr()->Profile(OldFSN, S.Context, true);
|
|
New->getNoexceptExpr()->Profile(NewFSN, S.Context, true);
|
|
if (OldFSN == NewFSN)
|
|
return false;
|
|
}
|
|
|
|
// Dynamic exception specifications with the same set of adjusted types
|
|
// are compatible.
|
|
if (OldEST == EST_Dynamic && NewEST == EST_Dynamic) {
|
|
bool Success = true;
|
|
// Both have a dynamic exception spec. Collect the first set, then compare
|
|
// to the second.
|
|
llvm::SmallPtrSet<CanQualType, 8> OldTypes, NewTypes;
|
|
for (const auto &I : Old->exceptions())
|
|
OldTypes.insert(S.Context.getCanonicalType(I).getUnqualifiedType());
|
|
|
|
for (const auto &I : New->exceptions()) {
|
|
CanQualType TypePtr = S.Context.getCanonicalType(I).getUnqualifiedType();
|
|
if (OldTypes.count(TypePtr))
|
|
NewTypes.insert(TypePtr);
|
|
else {
|
|
Success = false;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (Success && OldTypes.size() == NewTypes.size())
|
|
return false;
|
|
}
|
|
|
|
// As a special compatibility feature, under C++0x we accept no spec and
|
|
// throw(std::bad_alloc) as equivalent for operator new and operator new[].
|
|
// This is because the implicit declaration changed, but old code would break.
|
|
if (S.getLangOpts().CPlusPlus11 && IsOperatorNew) {
|
|
const FunctionProtoType *WithExceptions = nullptr;
|
|
if (OldEST == EST_None && NewEST == EST_Dynamic)
|
|
WithExceptions = New;
|
|
else if (OldEST == EST_Dynamic && NewEST == EST_None)
|
|
WithExceptions = Old;
|
|
if (WithExceptions && WithExceptions->getNumExceptions() == 1) {
|
|
// One has no spec, the other throw(something). If that something is
|
|
// std::bad_alloc, all conditions are met.
|
|
QualType Exception = *WithExceptions->exception_begin();
|
|
if (CXXRecordDecl *ExRecord = Exception->getAsCXXRecordDecl()) {
|
|
IdentifierInfo* Name = ExRecord->getIdentifier();
|
|
if (Name && Name->getName() == "bad_alloc") {
|
|
// It's called bad_alloc, but is it in std?
|
|
if (ExRecord->isInStdNamespace()) {
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// If the caller wants to handle the case that the new function is
|
|
// incompatible due to a missing exception specification, let it.
|
|
if (MissingExceptionSpecification && OldEST != EST_None &&
|
|
NewEST == EST_None) {
|
|
// The old type has an exception specification of some sort, but
|
|
// the new type does not.
|
|
*MissingExceptionSpecification = true;
|
|
|
|
if (MissingEmptyExceptionSpecification && OldCanThrow == CT_Cannot) {
|
|
// The old type has a throw() or noexcept(true) exception specification
|
|
// and the new type has no exception specification, and the caller asked
|
|
// to handle this itself.
|
|
*MissingEmptyExceptionSpecification = true;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
S.Diag(NewLoc, DiagID);
|
|
if (NoteID.getDiagID() != 0 && OldLoc.isValid())
|
|
S.Diag(OldLoc, NoteID);
|
|
return true;
|
|
}
|
|
|
|
bool Sema::CheckEquivalentExceptionSpec(const PartialDiagnostic &DiagID,
|
|
const PartialDiagnostic &NoteID,
|
|
const FunctionProtoType *Old,
|
|
SourceLocation OldLoc,
|
|
const FunctionProtoType *New,
|
|
SourceLocation NewLoc) {
|
|
if (!getLangOpts().CXXExceptions)
|
|
return false;
|
|
return CheckEquivalentExceptionSpecImpl(*this, DiagID, NoteID, Old, OldLoc,
|
|
New, NewLoc);
|
|
}
|
|
|
|
bool Sema::handlerCanCatch(QualType HandlerType, QualType ExceptionType) {
|
|
// [except.handle]p3:
|
|
// A handler is a match for an exception object of type E if:
|
|
|
|
// HandlerType must be ExceptionType or derived from it, or pointer or
|
|
// reference to such types.
|
|
const ReferenceType *RefTy = HandlerType->getAs<ReferenceType>();
|
|
if (RefTy)
|
|
HandlerType = RefTy->getPointeeType();
|
|
|
|
// -- the handler is of type cv T or cv T& and E and T are the same type
|
|
if (Context.hasSameUnqualifiedType(ExceptionType, HandlerType))
|
|
return true;
|
|
|
|
// FIXME: ObjC pointer types?
|
|
if (HandlerType->isPointerType() || HandlerType->isMemberPointerType()) {
|
|
if (RefTy && (!HandlerType.isConstQualified() ||
|
|
HandlerType.isVolatileQualified()))
|
|
return false;
|
|
|
|
// -- the handler is of type cv T or const T& where T is a pointer or
|
|
// pointer to member type and E is std::nullptr_t
|
|
if (ExceptionType->isNullPtrType())
|
|
return true;
|
|
|
|
// -- the handler is of type cv T or const T& where T is a pointer or
|
|
// pointer to member type and E is a pointer or pointer to member type
|
|
// that can be converted to T by one or more of
|
|
// -- a qualification conversion
|
|
// -- a function pointer conversion
|
|
bool LifetimeConv;
|
|
QualType Result;
|
|
// FIXME: Should we treat the exception as catchable if a lifetime
|
|
// conversion is required?
|
|
if (IsQualificationConversion(ExceptionType, HandlerType, false,
|
|
LifetimeConv) ||
|
|
IsFunctionConversion(ExceptionType, HandlerType, Result))
|
|
return true;
|
|
|
|
// -- a standard pointer conversion [...]
|
|
if (!ExceptionType->isPointerType() || !HandlerType->isPointerType())
|
|
return false;
|
|
|
|
// Handle the "qualification conversion" portion.
|
|
Qualifiers EQuals, HQuals;
|
|
ExceptionType = Context.getUnqualifiedArrayType(
|
|
ExceptionType->getPointeeType(), EQuals);
|
|
HandlerType = Context.getUnqualifiedArrayType(
|
|
HandlerType->getPointeeType(), HQuals);
|
|
if (!HQuals.compatiblyIncludes(EQuals))
|
|
return false;
|
|
|
|
if (HandlerType->isVoidType() && ExceptionType->isObjectType())
|
|
return true;
|
|
|
|
// The only remaining case is a derived-to-base conversion.
|
|
}
|
|
|
|
// -- the handler is of type cg T or cv T& and T is an unambiguous public
|
|
// base class of E
|
|
if (!ExceptionType->isRecordType() || !HandlerType->isRecordType())
|
|
return false;
|
|
CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
|
|
/*DetectVirtual=*/false);
|
|
if (!IsDerivedFrom(SourceLocation(), ExceptionType, HandlerType, Paths) ||
|
|
Paths.isAmbiguous(Context.getCanonicalType(HandlerType)))
|
|
return false;
|
|
|
|
// Do this check from a context without privileges.
|
|
switch (CheckBaseClassAccess(SourceLocation(), HandlerType, ExceptionType,
|
|
Paths.front(),
|
|
/*Diagnostic*/ 0,
|
|
/*ForceCheck*/ true,
|
|
/*ForceUnprivileged*/ true)) {
|
|
case AR_accessible: return true;
|
|
case AR_inaccessible: return false;
|
|
case AR_dependent:
|
|
llvm_unreachable("access check dependent for unprivileged context");
|
|
case AR_delayed:
|
|
llvm_unreachable("access check delayed in non-declaration");
|
|
}
|
|
llvm_unreachable("unexpected access check result");
|
|
}
|
|
|
|
/// CheckExceptionSpecSubset - Check whether the second function type's
|
|
/// exception specification is a subset (or equivalent) of the first function
|
|
/// type. This is used by override and pointer assignment checks.
|
|
bool Sema::CheckExceptionSpecSubset(const PartialDiagnostic &DiagID,
|
|
const PartialDiagnostic &NestedDiagID,
|
|
const PartialDiagnostic &NoteID,
|
|
const FunctionProtoType *Superset,
|
|
SourceLocation SuperLoc,
|
|
const FunctionProtoType *Subset,
|
|
SourceLocation SubLoc) {
|
|
|
|
// Just auto-succeed under -fno-exceptions.
|
|
if (!getLangOpts().CXXExceptions)
|
|
return false;
|
|
|
|
// FIXME: As usual, we could be more specific in our error messages, but
|
|
// that better waits until we've got types with source locations.
|
|
|
|
if (!SubLoc.isValid())
|
|
SubLoc = SuperLoc;
|
|
|
|
// Resolve the exception specifications, if needed.
|
|
Superset = ResolveExceptionSpec(SuperLoc, Superset);
|
|
if (!Superset)
|
|
return false;
|
|
Subset = ResolveExceptionSpec(SubLoc, Subset);
|
|
if (!Subset)
|
|
return false;
|
|
|
|
ExceptionSpecificationType SuperEST = Superset->getExceptionSpecType();
|
|
ExceptionSpecificationType SubEST = Subset->getExceptionSpecType();
|
|
assert(!isUnresolvedExceptionSpec(SuperEST) &&
|
|
!isUnresolvedExceptionSpec(SubEST) &&
|
|
"Shouldn't see unknown exception specifications here");
|
|
|
|
// If there are dependent noexcept specs, assume everything is fine. Unlike
|
|
// with the equivalency check, this is safe in this case, because we don't
|
|
// want to merge declarations. Checks after instantiation will catch any
|
|
// omissions we make here.
|
|
if (SuperEST == EST_DependentNoexcept || SubEST == EST_DependentNoexcept)
|
|
return false;
|
|
|
|
CanThrowResult SuperCanThrow = Superset->canThrow();
|
|
CanThrowResult SubCanThrow = Subset->canThrow();
|
|
|
|
// If the superset contains everything or the subset contains nothing, we're
|
|
// done.
|
|
if ((SuperCanThrow == CT_Can && SuperEST != EST_Dynamic) ||
|
|
SubCanThrow == CT_Cannot)
|
|
return CheckParamExceptionSpec(NestedDiagID, NoteID, Superset, SuperLoc,
|
|
Subset, SubLoc);
|
|
|
|
// If the subset contains everything or the superset contains nothing, we've
|
|
// failed.
|
|
if ((SubCanThrow == CT_Can && SubEST != EST_Dynamic) ||
|
|
SuperCanThrow == CT_Cannot) {
|
|
Diag(SubLoc, DiagID);
|
|
if (NoteID.getDiagID() != 0)
|
|
Diag(SuperLoc, NoteID);
|
|
return true;
|
|
}
|
|
|
|
assert(SuperEST == EST_Dynamic && SubEST == EST_Dynamic &&
|
|
"Exception spec subset: non-dynamic case slipped through.");
|
|
|
|
// Neither contains everything or nothing. Do a proper comparison.
|
|
for (QualType SubI : Subset->exceptions()) {
|
|
if (const ReferenceType *RefTy = SubI->getAs<ReferenceType>())
|
|
SubI = RefTy->getPointeeType();
|
|
|
|
// Make sure it's in the superset.
|
|
bool Contained = false;
|
|
for (QualType SuperI : Superset->exceptions()) {
|
|
// [except.spec]p5:
|
|
// the target entity shall allow at least the exceptions allowed by the
|
|
// source
|
|
//
|
|
// We interpret this as meaning that a handler for some target type would
|
|
// catch an exception of each source type.
|
|
if (handlerCanCatch(SuperI, SubI)) {
|
|
Contained = true;
|
|
break;
|
|
}
|
|
}
|
|
if (!Contained) {
|
|
Diag(SubLoc, DiagID);
|
|
if (NoteID.getDiagID() != 0)
|
|
Diag(SuperLoc, NoteID);
|
|
return true;
|
|
}
|
|
}
|
|
// We've run half the gauntlet.
|
|
return CheckParamExceptionSpec(NestedDiagID, NoteID, Superset, SuperLoc,
|
|
Subset, SubLoc);
|
|
}
|
|
|
|
static bool
|
|
CheckSpecForTypesEquivalent(Sema &S, const PartialDiagnostic &DiagID,
|
|
const PartialDiagnostic &NoteID, QualType Target,
|
|
SourceLocation TargetLoc, QualType Source,
|
|
SourceLocation SourceLoc) {
|
|
const FunctionProtoType *TFunc = GetUnderlyingFunction(Target);
|
|
if (!TFunc)
|
|
return false;
|
|
const FunctionProtoType *SFunc = GetUnderlyingFunction(Source);
|
|
if (!SFunc)
|
|
return false;
|
|
|
|
return S.CheckEquivalentExceptionSpec(DiagID, NoteID, TFunc, TargetLoc,
|
|
SFunc, SourceLoc);
|
|
}
|
|
|
|
/// CheckParamExceptionSpec - Check if the parameter and return types of the
|
|
/// two functions have equivalent exception specs. This is part of the
|
|
/// assignment and override compatibility check. We do not check the parameters
|
|
/// of parameter function pointers recursively, as no sane programmer would
|
|
/// even be able to write such a function type.
|
|
bool Sema::CheckParamExceptionSpec(const PartialDiagnostic &DiagID,
|
|
const PartialDiagnostic &NoteID,
|
|
const FunctionProtoType *Target,
|
|
SourceLocation TargetLoc,
|
|
const FunctionProtoType *Source,
|
|
SourceLocation SourceLoc) {
|
|
auto RetDiag = DiagID;
|
|
RetDiag << 0;
|
|
if (CheckSpecForTypesEquivalent(
|
|
*this, RetDiag, PDiag(),
|
|
Target->getReturnType(), TargetLoc, Source->getReturnType(),
|
|
SourceLoc))
|
|
return true;
|
|
|
|
// We shouldn't even be testing this unless the arguments are otherwise
|
|
// compatible.
|
|
assert(Target->getNumParams() == Source->getNumParams() &&
|
|
"Functions have different argument counts.");
|
|
for (unsigned i = 0, E = Target->getNumParams(); i != E; ++i) {
|
|
auto ParamDiag = DiagID;
|
|
ParamDiag << 1;
|
|
if (CheckSpecForTypesEquivalent(
|
|
*this, ParamDiag, PDiag(),
|
|
Target->getParamType(i), TargetLoc, Source->getParamType(i),
|
|
SourceLoc))
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool Sema::CheckExceptionSpecCompatibility(Expr *From, QualType ToType) {
|
|
// First we check for applicability.
|
|
// Target type must be a function, function pointer or function reference.
|
|
const FunctionProtoType *ToFunc = GetUnderlyingFunction(ToType);
|
|
if (!ToFunc || ToFunc->hasDependentExceptionSpec())
|
|
return false;
|
|
|
|
// SourceType must be a function or function pointer.
|
|
const FunctionProtoType *FromFunc = GetUnderlyingFunction(From->getType());
|
|
if (!FromFunc || FromFunc->hasDependentExceptionSpec())
|
|
return false;
|
|
|
|
unsigned DiagID = diag::err_incompatible_exception_specs;
|
|
unsigned NestedDiagID = diag::err_deep_exception_specs_differ;
|
|
// This is not an error in C++17 onwards, unless the noexceptness doesn't
|
|
// match, but in that case we have a full-on type mismatch, not just a
|
|
// type sugar mismatch.
|
|
if (getLangOpts().CPlusPlus17) {
|
|
DiagID = diag::warn_incompatible_exception_specs;
|
|
NestedDiagID = diag::warn_deep_exception_specs_differ;
|
|
}
|
|
|
|
// Now we've got the correct types on both sides, check their compatibility.
|
|
// This means that the source of the conversion can only throw a subset of
|
|
// the exceptions of the target, and any exception specs on arguments or
|
|
// return types must be equivalent.
|
|
//
|
|
// FIXME: If there is a nested dependent exception specification, we should
|
|
// not be checking it here. This is fine:
|
|
// template<typename T> void f() {
|
|
// void (*p)(void (*) throw(T));
|
|
// void (*q)(void (*) throw(int)) = p;
|
|
// }
|
|
// ... because it might be instantiated with T=int.
|
|
return CheckExceptionSpecSubset(PDiag(DiagID), PDiag(NestedDiagID), PDiag(),
|
|
ToFunc, From->getSourceRange().getBegin(),
|
|
FromFunc, SourceLocation()) &&
|
|
!getLangOpts().CPlusPlus17;
|
|
}
|
|
|
|
bool Sema::CheckOverridingFunctionExceptionSpec(const CXXMethodDecl *New,
|
|
const CXXMethodDecl *Old) {
|
|
// If the new exception specification hasn't been parsed yet, skip the check.
|
|
// We'll get called again once it's been parsed.
|
|
if (New->getType()->castAs<FunctionProtoType>()->getExceptionSpecType() ==
|
|
EST_Unparsed)
|
|
return false;
|
|
|
|
// Don't check uninstantiated template destructors at all. We can only
|
|
// synthesize correct specs after the template is instantiated.
|
|
if (isa<CXXDestructorDecl>(New) && New->getParent()->isDependentType())
|
|
return false;
|
|
|
|
// If the old exception specification hasn't been parsed yet, or the new
|
|
// exception specification can't be computed yet, remember that we need to
|
|
// perform this check when we get to the end of the outermost
|
|
// lexically-surrounding class.
|
|
if (exceptionSpecNotKnownYet(Old) || exceptionSpecNotKnownYet(New)) {
|
|
DelayedOverridingExceptionSpecChecks.push_back({New, Old});
|
|
return false;
|
|
}
|
|
|
|
unsigned DiagID = diag::err_override_exception_spec;
|
|
if (getLangOpts().MicrosoftExt)
|
|
DiagID = diag::ext_override_exception_spec;
|
|
return CheckExceptionSpecSubset(PDiag(DiagID),
|
|
PDiag(diag::err_deep_exception_specs_differ),
|
|
PDiag(diag::note_overridden_virtual_function),
|
|
Old->getType()->getAs<FunctionProtoType>(),
|
|
Old->getLocation(),
|
|
New->getType()->getAs<FunctionProtoType>(),
|
|
New->getLocation());
|
|
}
|
|
|
|
static CanThrowResult canSubExprsThrow(Sema &S, const Expr *E) {
|
|
CanThrowResult R = CT_Cannot;
|
|
for (const Stmt *SubStmt : E->children()) {
|
|
R = mergeCanThrow(R, S.canThrow(cast<Expr>(SubStmt)));
|
|
if (R == CT_Can)
|
|
break;
|
|
}
|
|
return R;
|
|
}
|
|
|
|
static CanThrowResult canCalleeThrow(Sema &S, const Expr *E, const Decl *D) {
|
|
// As an extension, we assume that __attribute__((nothrow)) functions don't
|
|
// throw.
|
|
if (D && isa<FunctionDecl>(D) && D->hasAttr<NoThrowAttr>())
|
|
return CT_Cannot;
|
|
|
|
QualType T;
|
|
|
|
// In C++1z, just look at the function type of the callee.
|
|
if (S.getLangOpts().CPlusPlus17 && isa<CallExpr>(E)) {
|
|
E = cast<CallExpr>(E)->getCallee();
|
|
T = E->getType();
|
|
if (T->isSpecificPlaceholderType(BuiltinType::BoundMember)) {
|
|
// Sadly we don't preserve the actual type as part of the "bound member"
|
|
// placeholder, so we need to reconstruct it.
|
|
E = E->IgnoreParenImpCasts();
|
|
|
|
// Could be a call to a pointer-to-member or a plain member access.
|
|
if (auto *Op = dyn_cast<BinaryOperator>(E)) {
|
|
assert(Op->getOpcode() == BO_PtrMemD || Op->getOpcode() == BO_PtrMemI);
|
|
T = Op->getRHS()->getType()
|
|
->castAs<MemberPointerType>()->getPointeeType();
|
|
} else {
|
|
T = cast<MemberExpr>(E)->getMemberDecl()->getType();
|
|
}
|
|
}
|
|
} else if (const ValueDecl *VD = dyn_cast_or_null<ValueDecl>(D))
|
|
T = VD->getType();
|
|
else
|
|
// If we have no clue what we're calling, assume the worst.
|
|
return CT_Can;
|
|
|
|
const FunctionProtoType *FT;
|
|
if ((FT = T->getAs<FunctionProtoType>())) {
|
|
} else if (const PointerType *PT = T->getAs<PointerType>())
|
|
FT = PT->getPointeeType()->getAs<FunctionProtoType>();
|
|
else if (const ReferenceType *RT = T->getAs<ReferenceType>())
|
|
FT = RT->getPointeeType()->getAs<FunctionProtoType>();
|
|
else if (const MemberPointerType *MT = T->getAs<MemberPointerType>())
|
|
FT = MT->getPointeeType()->getAs<FunctionProtoType>();
|
|
else if (const BlockPointerType *BT = T->getAs<BlockPointerType>())
|
|
FT = BT->getPointeeType()->getAs<FunctionProtoType>();
|
|
|
|
if (!FT)
|
|
return CT_Can;
|
|
|
|
FT = S.ResolveExceptionSpec(E->getBeginLoc(), FT);
|
|
if (!FT)
|
|
return CT_Can;
|
|
|
|
return FT->canThrow();
|
|
}
|
|
|
|
static CanThrowResult canDynamicCastThrow(const CXXDynamicCastExpr *DC) {
|
|
if (DC->isTypeDependent())
|
|
return CT_Dependent;
|
|
|
|
if (!DC->getTypeAsWritten()->isReferenceType())
|
|
return CT_Cannot;
|
|
|
|
if (DC->getSubExpr()->isTypeDependent())
|
|
return CT_Dependent;
|
|
|
|
return DC->getCastKind() == clang::CK_Dynamic? CT_Can : CT_Cannot;
|
|
}
|
|
|
|
static CanThrowResult canTypeidThrow(Sema &S, const CXXTypeidExpr *DC) {
|
|
if (DC->isTypeOperand())
|
|
return CT_Cannot;
|
|
|
|
Expr *Op = DC->getExprOperand();
|
|
if (Op->isTypeDependent())
|
|
return CT_Dependent;
|
|
|
|
const RecordType *RT = Op->getType()->getAs<RecordType>();
|
|
if (!RT)
|
|
return CT_Cannot;
|
|
|
|
if (!cast<CXXRecordDecl>(RT->getDecl())->isPolymorphic())
|
|
return CT_Cannot;
|
|
|
|
if (Op->Classify(S.Context).isPRValue())
|
|
return CT_Cannot;
|
|
|
|
return CT_Can;
|
|
}
|
|
|
|
CanThrowResult Sema::canThrow(const Expr *E) {
|
|
// C++ [expr.unary.noexcept]p3:
|
|
// [Can throw] if in a potentially-evaluated context the expression would
|
|
// contain:
|
|
switch (E->getStmtClass()) {
|
|
case Expr::ConstantExprClass:
|
|
return canThrow(cast<ConstantExpr>(E)->getSubExpr());
|
|
|
|
case Expr::CXXThrowExprClass:
|
|
// - a potentially evaluated throw-expression
|
|
return CT_Can;
|
|
|
|
case Expr::CXXDynamicCastExprClass: {
|
|
// - a potentially evaluated dynamic_cast expression dynamic_cast<T>(v),
|
|
// where T is a reference type, that requires a run-time check
|
|
CanThrowResult CT = canDynamicCastThrow(cast<CXXDynamicCastExpr>(E));
|
|
if (CT == CT_Can)
|
|
return CT;
|
|
return mergeCanThrow(CT, canSubExprsThrow(*this, E));
|
|
}
|
|
|
|
case Expr::CXXTypeidExprClass:
|
|
// - a potentially evaluated typeid expression applied to a glvalue
|
|
// expression whose type is a polymorphic class type
|
|
return canTypeidThrow(*this, cast<CXXTypeidExpr>(E));
|
|
|
|
// - a potentially evaluated call to a function, member function, function
|
|
// pointer, or member function pointer that does not have a non-throwing
|
|
// exception-specification
|
|
case Expr::CallExprClass:
|
|
case Expr::CXXMemberCallExprClass:
|
|
case Expr::CXXOperatorCallExprClass:
|
|
case Expr::UserDefinedLiteralClass: {
|
|
const CallExpr *CE = cast<CallExpr>(E);
|
|
CanThrowResult CT;
|
|
if (E->isTypeDependent())
|
|
CT = CT_Dependent;
|
|
else if (isa<CXXPseudoDestructorExpr>(CE->getCallee()->IgnoreParens()))
|
|
CT = CT_Cannot;
|
|
else
|
|
CT = canCalleeThrow(*this, E, CE->getCalleeDecl());
|
|
if (CT == CT_Can)
|
|
return CT;
|
|
return mergeCanThrow(CT, canSubExprsThrow(*this, E));
|
|
}
|
|
|
|
case Expr::CXXConstructExprClass:
|
|
case Expr::CXXTemporaryObjectExprClass: {
|
|
CanThrowResult CT = canCalleeThrow(*this, E,
|
|
cast<CXXConstructExpr>(E)->getConstructor());
|
|
if (CT == CT_Can)
|
|
return CT;
|
|
return mergeCanThrow(CT, canSubExprsThrow(*this, E));
|
|
}
|
|
|
|
case Expr::CXXInheritedCtorInitExprClass:
|
|
return canCalleeThrow(*this, E,
|
|
cast<CXXInheritedCtorInitExpr>(E)->getConstructor());
|
|
|
|
case Expr::LambdaExprClass: {
|
|
const LambdaExpr *Lambda = cast<LambdaExpr>(E);
|
|
CanThrowResult CT = CT_Cannot;
|
|
for (LambdaExpr::const_capture_init_iterator
|
|
Cap = Lambda->capture_init_begin(),
|
|
CapEnd = Lambda->capture_init_end();
|
|
Cap != CapEnd; ++Cap)
|
|
CT = mergeCanThrow(CT, canThrow(*Cap));
|
|
return CT;
|
|
}
|
|
|
|
case Expr::CXXNewExprClass: {
|
|
CanThrowResult CT;
|
|
if (E->isTypeDependent())
|
|
CT = CT_Dependent;
|
|
else
|
|
CT = canCalleeThrow(*this, E, cast<CXXNewExpr>(E)->getOperatorNew());
|
|
if (CT == CT_Can)
|
|
return CT;
|
|
return mergeCanThrow(CT, canSubExprsThrow(*this, E));
|
|
}
|
|
|
|
case Expr::CXXDeleteExprClass: {
|
|
CanThrowResult CT;
|
|
QualType DTy = cast<CXXDeleteExpr>(E)->getDestroyedType();
|
|
if (DTy.isNull() || DTy->isDependentType()) {
|
|
CT = CT_Dependent;
|
|
} else {
|
|
CT = canCalleeThrow(*this, E,
|
|
cast<CXXDeleteExpr>(E)->getOperatorDelete());
|
|
if (const RecordType *RT = DTy->getAs<RecordType>()) {
|
|
const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
|
|
const CXXDestructorDecl *DD = RD->getDestructor();
|
|
if (DD)
|
|
CT = mergeCanThrow(CT, canCalleeThrow(*this, E, DD));
|
|
}
|
|
if (CT == CT_Can)
|
|
return CT;
|
|
}
|
|
return mergeCanThrow(CT, canSubExprsThrow(*this, E));
|
|
}
|
|
|
|
case Expr::CXXBindTemporaryExprClass: {
|
|
// The bound temporary has to be destroyed again, which might throw.
|
|
CanThrowResult CT = canCalleeThrow(*this, E,
|
|
cast<CXXBindTemporaryExpr>(E)->getTemporary()->getDestructor());
|
|
if (CT == CT_Can)
|
|
return CT;
|
|
return mergeCanThrow(CT, canSubExprsThrow(*this, E));
|
|
}
|
|
|
|
// ObjC message sends are like function calls, but never have exception
|
|
// specs.
|
|
case Expr::ObjCMessageExprClass:
|
|
case Expr::ObjCPropertyRefExprClass:
|
|
case Expr::ObjCSubscriptRefExprClass:
|
|
return CT_Can;
|
|
|
|
// All the ObjC literals that are implemented as calls are
|
|
// potentially throwing unless we decide to close off that
|
|
// possibility.
|
|
case Expr::ObjCArrayLiteralClass:
|
|
case Expr::ObjCDictionaryLiteralClass:
|
|
case Expr::ObjCBoxedExprClass:
|
|
return CT_Can;
|
|
|
|
// Many other things have subexpressions, so we have to test those.
|
|
// Some are simple:
|
|
case Expr::CoawaitExprClass:
|
|
case Expr::ConditionalOperatorClass:
|
|
case Expr::CompoundLiteralExprClass:
|
|
case Expr::CoyieldExprClass:
|
|
case Expr::CXXConstCastExprClass:
|
|
case Expr::CXXReinterpretCastExprClass:
|
|
case Expr::CXXStdInitializerListExprClass:
|
|
case Expr::DesignatedInitExprClass:
|
|
case Expr::DesignatedInitUpdateExprClass:
|
|
case Expr::ExprWithCleanupsClass:
|
|
case Expr::ExtVectorElementExprClass:
|
|
case Expr::InitListExprClass:
|
|
case Expr::ArrayInitLoopExprClass:
|
|
case Expr::MemberExprClass:
|
|
case Expr::ObjCIsaExprClass:
|
|
case Expr::ObjCIvarRefExprClass:
|
|
case Expr::ParenExprClass:
|
|
case Expr::ParenListExprClass:
|
|
case Expr::ShuffleVectorExprClass:
|
|
case Expr::ConvertVectorExprClass:
|
|
case Expr::VAArgExprClass:
|
|
return canSubExprsThrow(*this, E);
|
|
|
|
// Some might be dependent for other reasons.
|
|
case Expr::ArraySubscriptExprClass:
|
|
case Expr::OMPArraySectionExprClass:
|
|
case Expr::BinaryOperatorClass:
|
|
case Expr::DependentCoawaitExprClass:
|
|
case Expr::CompoundAssignOperatorClass:
|
|
case Expr::CStyleCastExprClass:
|
|
case Expr::CXXStaticCastExprClass:
|
|
case Expr::CXXFunctionalCastExprClass:
|
|
case Expr::ImplicitCastExprClass:
|
|
case Expr::MaterializeTemporaryExprClass:
|
|
case Expr::UnaryOperatorClass: {
|
|
CanThrowResult CT = E->isTypeDependent() ? CT_Dependent : CT_Cannot;
|
|
return mergeCanThrow(CT, canSubExprsThrow(*this, E));
|
|
}
|
|
|
|
// FIXME: We should handle StmtExpr, but that opens a MASSIVE can of worms.
|
|
case Expr::StmtExprClass:
|
|
return CT_Can;
|
|
|
|
case Expr::CXXDefaultArgExprClass:
|
|
return canThrow(cast<CXXDefaultArgExpr>(E)->getExpr());
|
|
|
|
case Expr::CXXDefaultInitExprClass:
|
|
return canThrow(cast<CXXDefaultInitExpr>(E)->getExpr());
|
|
|
|
case Expr::ChooseExprClass:
|
|
if (E->isTypeDependent() || E->isValueDependent())
|
|
return CT_Dependent;
|
|
return canThrow(cast<ChooseExpr>(E)->getChosenSubExpr());
|
|
|
|
case Expr::GenericSelectionExprClass:
|
|
if (cast<GenericSelectionExpr>(E)->isResultDependent())
|
|
return CT_Dependent;
|
|
return canThrow(cast<GenericSelectionExpr>(E)->getResultExpr());
|
|
|
|
// Some expressions are always dependent.
|
|
case Expr::CXXDependentScopeMemberExprClass:
|
|
case Expr::CXXUnresolvedConstructExprClass:
|
|
case Expr::DependentScopeDeclRefExprClass:
|
|
case Expr::CXXFoldExprClass:
|
|
return CT_Dependent;
|
|
|
|
case Expr::AsTypeExprClass:
|
|
case Expr::BinaryConditionalOperatorClass:
|
|
case Expr::BlockExprClass:
|
|
case Expr::CUDAKernelCallExprClass:
|
|
case Expr::DeclRefExprClass:
|
|
case Expr::ObjCBridgedCastExprClass:
|
|
case Expr::ObjCIndirectCopyRestoreExprClass:
|
|
case Expr::ObjCProtocolExprClass:
|
|
case Expr::ObjCSelectorExprClass:
|
|
case Expr::ObjCAvailabilityCheckExprClass:
|
|
case Expr::OffsetOfExprClass:
|
|
case Expr::PackExpansionExprClass:
|
|
case Expr::PseudoObjectExprClass:
|
|
case Expr::SubstNonTypeTemplateParmExprClass:
|
|
case Expr::SubstNonTypeTemplateParmPackExprClass:
|
|
case Expr::FunctionParmPackExprClass:
|
|
case Expr::UnaryExprOrTypeTraitExprClass:
|
|
case Expr::UnresolvedLookupExprClass:
|
|
case Expr::UnresolvedMemberExprClass:
|
|
case Expr::TypoExprClass:
|
|
// FIXME: Can any of the above throw? If so, when?
|
|
return CT_Cannot;
|
|
|
|
case Expr::AddrLabelExprClass:
|
|
case Expr::ArrayTypeTraitExprClass:
|
|
case Expr::AtomicExprClass:
|
|
case Expr::TypeTraitExprClass:
|
|
case Expr::CXXBoolLiteralExprClass:
|
|
case Expr::CXXNoexceptExprClass:
|
|
case Expr::CXXNullPtrLiteralExprClass:
|
|
case Expr::CXXPseudoDestructorExprClass:
|
|
case Expr::CXXScalarValueInitExprClass:
|
|
case Expr::CXXThisExprClass:
|
|
case Expr::CXXUuidofExprClass:
|
|
case Expr::CharacterLiteralClass:
|
|
case Expr::ExpressionTraitExprClass:
|
|
case Expr::FloatingLiteralClass:
|
|
case Expr::GNUNullExprClass:
|
|
case Expr::ImaginaryLiteralClass:
|
|
case Expr::ImplicitValueInitExprClass:
|
|
case Expr::IntegerLiteralClass:
|
|
case Expr::FixedPointLiteralClass:
|
|
case Expr::ArrayInitIndexExprClass:
|
|
case Expr::NoInitExprClass:
|
|
case Expr::ObjCEncodeExprClass:
|
|
case Expr::ObjCStringLiteralClass:
|
|
case Expr::ObjCBoolLiteralExprClass:
|
|
case Expr::OpaqueValueExprClass:
|
|
case Expr::PredefinedExprClass:
|
|
case Expr::SizeOfPackExprClass:
|
|
case Expr::StringLiteralClass:
|
|
// These expressions can never throw.
|
|
return CT_Cannot;
|
|
|
|
case Expr::MSPropertyRefExprClass:
|
|
case Expr::MSPropertySubscriptExprClass:
|
|
llvm_unreachable("Invalid class for expression");
|
|
|
|
#define STMT(CLASS, PARENT) case Expr::CLASS##Class:
|
|
#define STMT_RANGE(Base, First, Last)
|
|
#define LAST_STMT_RANGE(BASE, FIRST, LAST)
|
|
#define EXPR(CLASS, PARENT)
|
|
#define ABSTRACT_STMT(STMT)
|
|
#include "clang/AST/StmtNodes.inc"
|
|
case Expr::NoStmtClass:
|
|
llvm_unreachable("Invalid class for expression");
|
|
}
|
|
llvm_unreachable("Bogus StmtClass");
|
|
}
|
|
|
|
} // end namespace clang
|