llvm-capstone/clang/lib/Format/MacroCallReconstructor.cpp
2023-08-02 11:50:14 +02:00

570 lines
23 KiB
C++

//===--- MacroCallReconstructor.cpp - Format C++ code -----------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
///
/// \file
/// This file contains the implementation of MacroCallReconstructor, which fits
/// an reconstructed macro call to a parsed set of UnwrappedLines.
///
//===----------------------------------------------------------------------===//
#include "Macros.h"
#include "UnwrappedLineParser.h"
#include "clang/Basic/TokenKinds.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/Support/Debug.h"
#include <cassert>
#define DEBUG_TYPE "format-reconstruct"
namespace clang {
namespace format {
// Call \p Call for each token in the unwrapped line given, passing
// the token, its parent and whether it is the first token in the line.
template <typename T>
void forEachToken(const UnwrappedLine &Line, const T &Call,
FormatToken *Parent = nullptr) {
bool First = true;
for (const auto &N : Line.Tokens) {
Call(N.Tok, Parent, First);
First = false;
for (const auto &Child : N.Children)
forEachToken(Child, Call, N.Tok);
}
}
MacroCallReconstructor::MacroCallReconstructor(
unsigned Level,
const llvm::DenseMap<FormatToken *, std::unique_ptr<UnwrappedLine>>
&ActiveExpansions)
: Level(Level), IdToReconstructed(ActiveExpansions) {
Result.Tokens.push_back(std::make_unique<LineNode>());
ActiveReconstructedLines.push_back(&Result);
}
void MacroCallReconstructor::addLine(const UnwrappedLine &Line) {
assert(State != Finalized);
LLVM_DEBUG(llvm::dbgs() << "MCR: new line...\n");
forEachToken(Line, [&](FormatToken *Token, FormatToken *Parent, bool First) {
add(Token, Parent, First);
});
assert(InProgress || finished());
}
UnwrappedLine MacroCallReconstructor::takeResult() && {
finalize();
assert(Result.Tokens.size() == 1 &&
Result.Tokens.front()->Children.size() == 1);
UnwrappedLine Final =
createUnwrappedLine(*Result.Tokens.front()->Children.front(), Level);
assert(!Final.Tokens.empty());
return Final;
}
// Reconstruct the position of the next \p Token, given its parent \p
// ExpandedParent in the incoming unwrapped line. \p First specifies whether it
// is the first token in a given unwrapped line.
void MacroCallReconstructor::add(FormatToken *Token,
FormatToken *ExpandedParent, bool First) {
LLVM_DEBUG(
llvm::dbgs() << "MCR: Token: " << Token->TokenText << ", Parent: "
<< (ExpandedParent ? ExpandedParent->TokenText : "<null>")
<< ", First: " << First << "\n");
// In order to be able to find the correct parent in the reconstructed token
// stream, we need to continue the last open reconstruction until we find the
// given token if it is part of the reconstructed token stream.
//
// Note that hidden tokens can be part of the reconstructed stream in nested
// macro calls.
// For example, given
// #define C(x, y) x y
// #define B(x) {x}
// And the call:
// C(a, B(b))
// The outer macro call will be C(a, {b}), and the hidden token '}' can be
// found in the reconstructed token stream of that expansion level.
// In the expanded token stream
// a {b}
// 'b' is a child of '{'. We need to continue the open expansion of the ','
// in the call of 'C' in order to correctly set the ',' as the parent of '{',
// so we later set the spelled token 'b' as a child of the ','.
if (!ActiveExpansions.empty() && Token->MacroCtx &&
(Token->MacroCtx->Role != MR_Hidden ||
ActiveExpansions.size() != Token->MacroCtx->ExpandedFrom.size())) {
if (/*PassedMacroComma = */ reconstructActiveCallUntil(Token))
First = true;
}
prepareParent(ExpandedParent, First);
if (Token->MacroCtx) {
// If this token was generated by a macro call, add the reconstructed
// equivalent of the token.
reconstruct(Token);
} else {
// Otherwise, we add it to the current line.
appendToken(Token);
}
}
// Adjusts the stack of active reconstructed lines so we're ready to push
// tokens. The tokens to be pushed are children of ExpandedParent in the
// expanded code.
//
// This may entail:
// - creating a new line, if the parent is on the active line
// - popping active lines, if the parent is further up the stack
//
// Postcondition:
// ActiveReconstructedLines.back() is the line that has \p ExpandedParent or its
// reconstructed replacement token as a parent (when possible) - that is, the
// last token in \c ActiveReconstructedLines[ActiveReconstructedLines.size()-2]
// is the parent of ActiveReconstructedLines.back() in the reconstructed
// unwrapped line.
void MacroCallReconstructor::prepareParent(FormatToken *ExpandedParent,
bool NewLine) {
LLVM_DEBUG({
llvm::dbgs() << "ParentMap:\n";
debugParentMap();
});
// We want to find the parent in the new unwrapped line, where the expanded
// parent might have been replaced during reconstruction.
FormatToken *Parent = getParentInResult(ExpandedParent);
LLVM_DEBUG(llvm::dbgs() << "MCR: New parent: "
<< (Parent ? Parent->TokenText : "<null>") << "\n");
FormatToken *OpenMacroParent = nullptr;
if (!MacroCallStructure.empty()) {
// Inside a macro expansion, it is possible to lose track of the correct
// parent - either because it is already popped, for example because it was
// in a different macro argument (e.g. M({, })), or when we work on invalid
// code.
// Thus, we use the innermost macro call's parent as the parent at which
// we stop; this allows us to stay within the macro expansion and keeps
// any problems confined to the extent of the macro call.
OpenMacroParent =
getParentInResult(MacroCallStructure.back().MacroCallLParen);
LLVM_DEBUG(llvm::dbgs()
<< "MacroCallLParen: "
<< MacroCallStructure.back().MacroCallLParen->TokenText
<< ", OpenMacroParent: "
<< (OpenMacroParent ? OpenMacroParent->TokenText : "<null>")
<< "\n");
}
if (NewLine ||
(!ActiveReconstructedLines.back()->Tokens.empty() &&
Parent == ActiveReconstructedLines.back()->Tokens.back()->Tok)) {
// If we are at the first token in a new line, we want to also
// create a new line in the resulting reconstructed unwrapped line.
while (ActiveReconstructedLines.back()->Tokens.empty() ||
(Parent != ActiveReconstructedLines.back()->Tokens.back()->Tok &&
ActiveReconstructedLines.back()->Tokens.back()->Tok !=
OpenMacroParent)) {
ActiveReconstructedLines.pop_back();
assert(!ActiveReconstructedLines.empty());
}
assert(!ActiveReconstructedLines.empty());
ActiveReconstructedLines.back()->Tokens.back()->Children.push_back(
std::make_unique<ReconstructedLine>());
ActiveReconstructedLines.push_back(
&*ActiveReconstructedLines.back()->Tokens.back()->Children.back());
} else if (parentLine().Tokens.back()->Tok != Parent) {
// If we're not the first token in a new line, pop lines until we find
// the child of \c Parent in the stack.
while (Parent != parentLine().Tokens.back()->Tok &&
parentLine().Tokens.back()->Tok &&
parentLine().Tokens.back()->Tok != OpenMacroParent) {
ActiveReconstructedLines.pop_back();
assert(!ActiveReconstructedLines.empty());
}
}
assert(!ActiveReconstructedLines.empty());
}
// For a given \p Parent in the incoming expanded token stream, find the
// corresponding parent in the output.
FormatToken *MacroCallReconstructor::getParentInResult(FormatToken *Parent) {
FormatToken *Mapped = SpelledParentToReconstructedParent.lookup(Parent);
if (!Mapped)
return Parent;
for (; Mapped; Mapped = SpelledParentToReconstructedParent.lookup(Parent))
Parent = Mapped;
// If we use a different token than the parent in the expanded token stream
// as parent, mark it as a special parent, so the formatting code knows it
// needs to have its children formatted.
Parent->MacroParent = true;
return Parent;
}
// Reconstruct a \p Token that was expanded from a macro call.
void MacroCallReconstructor::reconstruct(FormatToken *Token) {
assert(Token->MacroCtx);
// A single token can be the only result of a macro call:
// Given: #define ID(x, y) ;
// And the call: ID(<some>, <tokens>)
// ';' in the expanded stream will reconstruct all of ID(<some>, <tokens>).
if (Token->MacroCtx->StartOfExpansion) {
startReconstruction(Token);
// If the order of tokens in the expanded token stream is not the
// same as the order of tokens in the reconstructed stream, we need
// to reconstruct tokens that arrive later in the stream.
if (Token->MacroCtx->Role != MR_Hidden)
reconstructActiveCallUntil(Token);
}
assert(!ActiveExpansions.empty());
if (ActiveExpansions.back().SpelledI != ActiveExpansions.back().SpelledE) {
assert(ActiveExpansions.size() == Token->MacroCtx->ExpandedFrom.size());
if (Token->MacroCtx->Role != MR_Hidden) {
// The current token in the reconstructed token stream must be the token
// we're looking for - we either arrive here after startReconstruction,
// which initiates the stream to the first token, or after
// continueReconstructionUntil skipped until the expected token in the
// reconstructed stream at the start of add(...).
assert(ActiveExpansions.back().SpelledI->Tok == Token);
processNextReconstructed();
} else if (!currentLine()->Tokens.empty()) {
// Map all hidden tokens to the last visible token in the output.
// If the hidden token is a parent, we'll use the last visible
// token as the parent of the hidden token's children.
SpelledParentToReconstructedParent[Token] =
currentLine()->Tokens.back()->Tok;
} else {
for (auto I = ActiveReconstructedLines.rbegin(),
E = ActiveReconstructedLines.rend();
I != E; ++I) {
if (!(*I)->Tokens.empty()) {
SpelledParentToReconstructedParent[Token] = (*I)->Tokens.back()->Tok;
break;
}
}
}
}
if (Token->MacroCtx->EndOfExpansion)
endReconstruction(Token);
}
// Given a \p Token that starts an expansion, reconstruct the beginning of the
// macro call.
// For example, given: #define ID(x) x
// And the call: ID(int a)
// Reconstructs: ID(
void MacroCallReconstructor::startReconstruction(FormatToken *Token) {
assert(Token->MacroCtx);
assert(!Token->MacroCtx->ExpandedFrom.empty());
assert(ActiveExpansions.size() <= Token->MacroCtx->ExpandedFrom.size());
#ifndef NDEBUG
// Check that the token's reconstruction stack matches our current
// reconstruction stack.
for (size_t I = 0; I < ActiveExpansions.size(); ++I) {
assert(ActiveExpansions[I].ID ==
Token->MacroCtx
->ExpandedFrom[Token->MacroCtx->ExpandedFrom.size() - 1 - I]);
}
#endif
// Start reconstruction for all calls for which this token is the first token
// generated by the call.
// Note that the token's expanded from stack is inside-to-outside, and the
// expansions for which this token is not the first are the outermost ones.
ArrayRef<FormatToken *> StartedMacros =
ArrayRef(Token->MacroCtx->ExpandedFrom)
.drop_back(ActiveExpansions.size());
assert(StartedMacros.size() == Token->MacroCtx->StartOfExpansion);
// We reconstruct macro calls outside-to-inside.
for (FormatToken *ID : llvm::reverse(StartedMacros)) {
// We found a macro call to be reconstructed; the next time our
// reconstruction stack is empty we know we finished an reconstruction.
#ifndef NDEBUG
State = InProgress;
#endif
// Put the reconstructed macro call's token into our reconstruction stack.
auto IU = IdToReconstructed.find(ID);
assert(IU != IdToReconstructed.end());
ActiveExpansions.push_back(
{ID, IU->second->Tokens.begin(), IU->second->Tokens.end()});
// Process the macro call's identifier.
processNextReconstructed();
if (ActiveExpansions.back().SpelledI == ActiveExpansions.back().SpelledE)
continue;
if (ActiveExpansions.back().SpelledI->Tok->is(tok::l_paren)) {
// Process the optional opening parenthesis.
processNextReconstructed();
}
}
}
// Add all tokens in the reconstruction stream to the output until we find the
// given \p Token.
bool MacroCallReconstructor::reconstructActiveCallUntil(FormatToken *Token) {
assert(!ActiveExpansions.empty());
bool PassedMacroComma = false;
// FIXME: If Token was already expanded earlier, due to
// a change in order, we will not find it, but need to
// skip it.
while (ActiveExpansions.back().SpelledI != ActiveExpansions.back().SpelledE &&
ActiveExpansions.back().SpelledI->Tok != Token) {
PassedMacroComma = processNextReconstructed() || PassedMacroComma;
}
return PassedMacroComma;
}
// End all reconstructions for which \p Token is the final token.
void MacroCallReconstructor::endReconstruction(FormatToken *Token) {
assert(Token->MacroCtx &&
(ActiveExpansions.size() >= Token->MacroCtx->EndOfExpansion));
for (size_t I = 0; I < Token->MacroCtx->EndOfExpansion; ++I) {
LLVM_DEBUG([&] {
// Check all remaining tokens but the final closing parenthesis and
// optional trailing comment were already reconstructed at an inner
// expansion level.
for (auto T = ActiveExpansions.back().SpelledI;
T != ActiveExpansions.back().SpelledE; ++T) {
FormatToken *Token = T->Tok;
bool ClosingParen = (std::next(T) == ActiveExpansions.back().SpelledE ||
std::next(T)->Tok->isTrailingComment()) &&
!Token->MacroCtx && Token->is(tok::r_paren);
bool TrailingComment = Token->isTrailingComment();
bool PreviousLevel =
Token->MacroCtx &&
(ActiveExpansions.size() < Token->MacroCtx->ExpandedFrom.size());
if (!ClosingParen && !TrailingComment && !PreviousLevel)
llvm::dbgs() << "At token: " << Token->TokenText << "\n";
// In addition to the following cases, we can also run into this
// when a macro call had more arguments than expected; in that case,
// the comma and the remaining tokens in the macro call will
// potentially end up in the line when we finish the expansion.
// FIXME: Add the information which arguments are unused, and assert
// one of the cases below plus reconstructed macro argument tokens.
// assert(ClosingParen || TrailingComment || PreviousLevel);
}
}());
// Handle the remaining open tokens:
// - expand the closing parenthesis, if it exists, including an optional
// trailing comment
// - handle tokens that were already reconstructed at an inner expansion
// level
// - handle tokens when a macro call had more than the expected number of
// arguments, i.e. when #define M(x) is called as M(a, b, c) we'll end
// up with the sequence ", b, c)" being open at the end of the
// reconstruction; we want to gracefully handle that case
//
// FIXME: See the above debug-check for what we will need to do to be
// able to assert this.
for (auto T = ActiveExpansions.back().SpelledI;
T != ActiveExpansions.back().SpelledE; ++T) {
processNextReconstructed();
}
ActiveExpansions.pop_back();
}
}
void MacroCallReconstructor::debugParentMap() const {
llvm::DenseSet<FormatToken *> Values;
for (const auto &P : SpelledParentToReconstructedParent)
Values.insert(P.second);
for (const auto &P : SpelledParentToReconstructedParent) {
if (Values.contains(P.first))
continue;
llvm::dbgs() << (P.first ? P.first->TokenText : "<null>");
for (auto I = SpelledParentToReconstructedParent.find(P.first),
E = SpelledParentToReconstructedParent.end();
I != E; I = SpelledParentToReconstructedParent.find(I->second)) {
llvm::dbgs() << " -> " << (I->second ? I->second->TokenText : "<null>");
}
llvm::dbgs() << "\n";
}
}
// If visible, add the next token of the reconstructed token sequence to the
// output. Returns whether reconstruction passed a comma that is part of a
// macro call.
bool MacroCallReconstructor::processNextReconstructed() {
FormatToken *Token = ActiveExpansions.back().SpelledI->Tok;
++ActiveExpansions.back().SpelledI;
if (Token->MacroCtx) {
// Skip tokens that are not part of the macro call.
if (Token->MacroCtx->Role == MR_Hidden)
return false;
// Skip tokens we already expanded during an inner reconstruction.
// For example, given: #define ID(x) {x}
// And the call: ID(ID(f))
// We get two reconstructions:
// ID(f) -> {f}
// ID({f}) -> {{f}}
// We reconstruct f during the first reconstruction, and skip it during the
// second reconstruction.
if (ActiveExpansions.size() < Token->MacroCtx->ExpandedFrom.size())
return false;
}
// Tokens that do not have a macro context are tokens in that are part of the
// macro call that have not taken part in expansion.
if (!Token->MacroCtx) {
// Put the parentheses and commas of a macro call into the same line;
// if the arguments produce new unwrapped lines, they will become children
// of the corresponding opening parenthesis or comma tokens in the
// reconstructed call.
if (Token->is(tok::l_paren)) {
MacroCallStructure.push_back(MacroCallState(
currentLine(), parentLine().Tokens.back()->Tok, Token));
// All tokens that are children of the previous line's last token in the
// reconstructed token stream will now be children of the l_paren token.
// For example, for the line containing the macro calls:
// auto x = ID({ID(2)});
// We will build up a map <null> -> ( -> ( with the first and second
// l_paren of the macro call respectively. New lines that come in with a
// <null> parent will then become children of the l_paren token of the
// currently innermost macro call.
SpelledParentToReconstructedParent[MacroCallStructure.back()
.ParentLastToken] = Token;
appendToken(Token);
prepareParent(Token, /*NewLine=*/true);
Token->MacroParent = true;
return false;
}
if (!MacroCallStructure.empty()) {
if (Token->is(tok::comma)) {
// Make new lines inside the next argument children of the comma token.
SpelledParentToReconstructedParent
[MacroCallStructure.back().Line->Tokens.back()->Tok] = Token;
Token->MacroParent = true;
appendToken(Token, MacroCallStructure.back().Line);
prepareParent(Token, /*NewLine=*/true);
return true;
}
if (Token->is(tok::r_paren)) {
appendToken(Token, MacroCallStructure.back().Line);
SpelledParentToReconstructedParent.erase(
MacroCallStructure.back().ParentLastToken);
MacroCallStructure.pop_back();
return false;
}
}
}
// Note that any tokens that are tagged with MR_None have been passed as
// arguments to the macro that have not been expanded, for example:
// Given: #define ID(X) x
// When calling: ID(a, b)
// 'b' will be part of the reconstructed token stream, but tagged MR_None.
// Given that erroring out in this case would be disruptive, we continue
// pushing the (unformatted) token.
// FIXME: This can lead to unfortunate formatting decisions - give the user
// a hint that their macro definition is broken.
appendToken(Token);
return false;
}
void MacroCallReconstructor::finalize() {
#ifndef NDEBUG
assert(State != Finalized && finished());
State = Finalized;
#endif
// We created corresponding unwrapped lines for each incoming line as children
// the the toplevel null token.
assert(Result.Tokens.size() == 1 && !Result.Tokens.front()->Children.empty());
LLVM_DEBUG({
llvm::dbgs() << "Finalizing reconstructed lines:\n";
debug(Result, 0);
});
// The first line becomes the top level line in the resulting unwrapped line.
LineNode &Top = *Result.Tokens.front();
auto *I = Top.Children.begin();
// Every subsequent line will become a child of the last token in the previous
// line, which is the token prior to the first token in the line.
LineNode *Last = (*I)->Tokens.back().get();
++I;
for (auto *E = Top.Children.end(); I != E; ++I) {
assert(Last->Children.empty());
Last->Children.push_back(std::move(*I));
// Mark the previous line's last token as generated by a macro expansion
// so the formatting algorithm can take that into account.
Last->Tok->MacroParent = true;
Last = Last->Children.back()->Tokens.back().get();
}
Top.Children.resize(1);
}
void MacroCallReconstructor::appendToken(FormatToken *Token,
ReconstructedLine *L) {
L = L ? L : currentLine();
LLVM_DEBUG(llvm::dbgs() << "-> " << Token->TokenText << "\n");
L->Tokens.push_back(std::make_unique<LineNode>(Token));
}
UnwrappedLine
MacroCallReconstructor::createUnwrappedLine(const ReconstructedLine &Line,
int Level) {
UnwrappedLine Result;
Result.Level = Level;
for (const auto &N : Line.Tokens) {
Result.Tokens.push_back(N->Tok);
UnwrappedLineNode &Current = Result.Tokens.back();
for (const auto &Child : N->Children) {
if (Child->Tokens.empty())
continue;
Current.Children.push_back(createUnwrappedLine(*Child, Level + 1));
}
if (Current.Children.size() == 1 &&
Current.Tok->isOneOf(tok::l_paren, tok::comma)) {
Result.Tokens.splice(Result.Tokens.end(),
Current.Children.front().Tokens);
Current.Children.clear();
}
}
return Result;
}
void MacroCallReconstructor::debug(const ReconstructedLine &Line, int Level) {
for (int i = 0; i < Level; ++i)
llvm::dbgs() << " ";
for (const auto &N : Line.Tokens) {
if (!N)
continue;
if (N->Tok)
llvm::dbgs() << N->Tok->TokenText << " ";
for (const auto &Child : N->Children) {
llvm::dbgs() << "\n";
debug(*Child, Level + 1);
for (int i = 0; i < Level; ++i)
llvm::dbgs() << " ";
}
}
llvm::dbgs() << "\n";
}
MacroCallReconstructor::ReconstructedLine &
MacroCallReconstructor::parentLine() {
return **std::prev(std::prev(ActiveReconstructedLines.end()));
}
MacroCallReconstructor::ReconstructedLine *
MacroCallReconstructor::currentLine() {
return ActiveReconstructedLines.back();
}
MacroCallReconstructor::MacroCallState::MacroCallState(
MacroCallReconstructor::ReconstructedLine *Line,
FormatToken *ParentLastToken, FormatToken *MacroCallLParen)
: Line(Line), ParentLastToken(ParentLastToken),
MacroCallLParen(MacroCallLParen) {
LLVM_DEBUG(
llvm::dbgs() << "ParentLastToken: "
<< (ParentLastToken ? ParentLastToken->TokenText : "<null>")
<< "\n");
assert(MacroCallLParen->is(tok::l_paren));
}
} // namespace format
} // namespace clang