mirror of
https://github.com/capstone-engine/llvm-capstone.git
synced 2024-11-23 22:00:10 +00:00
77e204c7b0
This patch implements `-objc_stubs_small` targeting arm64, aiming to align with ld64's behavior. 1. `-objc_stubs_fast`: As previously implemented, this always uses the Global Offset Table (GOT) to invoke `objc_msgSend`. The alignment of the objc stub is 32 bytes. 2. `-objc_stubs_small`: This behavior depends on whether `objc_msgSend` is defined. If it is, it directly jumps to `objc_msgSend`. If not, it creates another stub to indirectly jump to `objc_msgSend`, minimizing the size. The alignment of the objc stub in this case is 4 bytes.
811 lines
29 KiB
C++
811 lines
29 KiB
C++
//===- SyntheticSections.h -------------------------------------*- C++ -*-===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef LLD_MACHO_SYNTHETIC_SECTIONS_H
|
|
#define LLD_MACHO_SYNTHETIC_SECTIONS_H
|
|
|
|
#include "Config.h"
|
|
#include "ExportTrie.h"
|
|
#include "InputSection.h"
|
|
#include "OutputSection.h"
|
|
#include "OutputSegment.h"
|
|
#include "Target.h"
|
|
#include "Writer.h"
|
|
|
|
#include "llvm/ADT/DenseMap.h"
|
|
#include "llvm/ADT/Hashing.h"
|
|
#include "llvm/ADT/SetVector.h"
|
|
#include "llvm/BinaryFormat/MachO.h"
|
|
#include "llvm/Support/MathExtras.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
|
|
#include <unordered_map>
|
|
|
|
namespace llvm {
|
|
class DWARFUnit;
|
|
} // namespace llvm
|
|
|
|
namespace lld::macho {
|
|
|
|
class Defined;
|
|
class DylibSymbol;
|
|
class LoadCommand;
|
|
class ObjFile;
|
|
class UnwindInfoSection;
|
|
|
|
class SyntheticSection : public OutputSection {
|
|
public:
|
|
SyntheticSection(const char *segname, const char *name);
|
|
virtual ~SyntheticSection() = default;
|
|
|
|
static bool classof(const OutputSection *sec) {
|
|
return sec->kind() == SyntheticKind;
|
|
}
|
|
|
|
StringRef segname;
|
|
// This fake InputSection makes it easier for us to write code that applies
|
|
// generically to both user inputs and synthetics.
|
|
InputSection *isec;
|
|
};
|
|
|
|
// All sections in __LINKEDIT should inherit from this.
|
|
class LinkEditSection : public SyntheticSection {
|
|
public:
|
|
LinkEditSection(const char *segname, const char *name)
|
|
: SyntheticSection(segname, name) {
|
|
align = target->wordSize;
|
|
}
|
|
|
|
// Implementations of this method can assume that the regular (non-__LINKEDIT)
|
|
// sections already have their addresses assigned.
|
|
virtual void finalizeContents() {}
|
|
|
|
// Sections in __LINKEDIT are special: their offsets are recorded in the
|
|
// load commands like LC_DYLD_INFO_ONLY and LC_SYMTAB, instead of in section
|
|
// headers.
|
|
bool isHidden() const final { return true; }
|
|
|
|
virtual uint64_t getRawSize() const = 0;
|
|
|
|
// codesign (or more specifically libstuff) checks that each section in
|
|
// __LINKEDIT ends where the next one starts -- no gaps are permitted. We
|
|
// therefore align every section's start and end points to WordSize.
|
|
//
|
|
// NOTE: This assumes that the extra bytes required for alignment can be
|
|
// zero-valued bytes.
|
|
uint64_t getSize() const final { return llvm::alignTo(getRawSize(), align); }
|
|
};
|
|
|
|
// The header of the Mach-O file, which must have a file offset of zero.
|
|
class MachHeaderSection final : public SyntheticSection {
|
|
public:
|
|
MachHeaderSection();
|
|
bool isHidden() const override { return true; }
|
|
uint64_t getSize() const override;
|
|
void writeTo(uint8_t *buf) const override;
|
|
|
|
void addLoadCommand(LoadCommand *);
|
|
|
|
protected:
|
|
std::vector<LoadCommand *> loadCommands;
|
|
uint32_t sizeOfCmds = 0;
|
|
};
|
|
|
|
// A hidden section that exists solely for the purpose of creating the
|
|
// __PAGEZERO segment, which is used to catch null pointer dereferences.
|
|
class PageZeroSection final : public SyntheticSection {
|
|
public:
|
|
PageZeroSection();
|
|
bool isHidden() const override { return true; }
|
|
bool isNeeded() const override { return target->pageZeroSize != 0; }
|
|
uint64_t getSize() const override { return target->pageZeroSize; }
|
|
uint64_t getFileSize() const override { return 0; }
|
|
void writeTo(uint8_t *buf) const override {}
|
|
};
|
|
|
|
// This is the base class for the GOT and TLVPointer sections, which are nearly
|
|
// functionally identical -- they will both be populated by dyld with addresses
|
|
// to non-lazily-loaded dylib symbols. The main difference is that the
|
|
// TLVPointerSection stores references to thread-local variables.
|
|
class NonLazyPointerSectionBase : public SyntheticSection {
|
|
public:
|
|
NonLazyPointerSectionBase(const char *segname, const char *name);
|
|
const llvm::SetVector<const Symbol *> &getEntries() const { return entries; }
|
|
bool isNeeded() const override { return !entries.empty(); }
|
|
uint64_t getSize() const override {
|
|
return entries.size() * target->wordSize;
|
|
}
|
|
void writeTo(uint8_t *buf) const override;
|
|
void addEntry(Symbol *sym);
|
|
uint64_t getVA(uint32_t gotIndex) const {
|
|
return addr + gotIndex * target->wordSize;
|
|
}
|
|
|
|
private:
|
|
llvm::SetVector<const Symbol *> entries;
|
|
};
|
|
|
|
class GotSection final : public NonLazyPointerSectionBase {
|
|
public:
|
|
GotSection();
|
|
};
|
|
|
|
class TlvPointerSection final : public NonLazyPointerSectionBase {
|
|
public:
|
|
TlvPointerSection();
|
|
};
|
|
|
|
struct Location {
|
|
const InputSection *isec;
|
|
uint64_t offset;
|
|
|
|
Location(const InputSection *isec, uint64_t offset)
|
|
: isec(isec), offset(offset) {}
|
|
uint64_t getVA() const { return isec->getVA(offset); }
|
|
};
|
|
|
|
// Stores rebase opcodes, which tell dyld where absolute addresses have been
|
|
// encoded in the binary. If the binary is not loaded at its preferred address,
|
|
// dyld has to rebase these addresses by adding an offset to them.
|
|
class RebaseSection final : public LinkEditSection {
|
|
public:
|
|
RebaseSection();
|
|
void finalizeContents() override;
|
|
uint64_t getRawSize() const override { return contents.size(); }
|
|
bool isNeeded() const override { return !locations.empty(); }
|
|
void writeTo(uint8_t *buf) const override;
|
|
|
|
void addEntry(const InputSection *isec, uint64_t offset) {
|
|
if (config->isPic)
|
|
locations.emplace_back(isec, offset);
|
|
}
|
|
|
|
private:
|
|
std::vector<Location> locations;
|
|
SmallVector<char, 128> contents;
|
|
};
|
|
|
|
struct BindingEntry {
|
|
int64_t addend;
|
|
Location target;
|
|
BindingEntry(int64_t addend, Location target)
|
|
: addend(addend), target(target) {}
|
|
};
|
|
|
|
template <class Sym>
|
|
using BindingsMap = llvm::DenseMap<Sym, std::vector<BindingEntry>>;
|
|
|
|
// Stores bind opcodes for telling dyld which symbols to load non-lazily.
|
|
class BindingSection final : public LinkEditSection {
|
|
public:
|
|
BindingSection();
|
|
void finalizeContents() override;
|
|
uint64_t getRawSize() const override { return contents.size(); }
|
|
bool isNeeded() const override { return !bindingsMap.empty(); }
|
|
void writeTo(uint8_t *buf) const override;
|
|
|
|
void addEntry(const Symbol *dysym, const InputSection *isec, uint64_t offset,
|
|
int64_t addend = 0) {
|
|
bindingsMap[dysym].emplace_back(addend, Location(isec, offset));
|
|
}
|
|
|
|
private:
|
|
BindingsMap<const Symbol *> bindingsMap;
|
|
SmallVector<char, 128> contents;
|
|
};
|
|
|
|
// Stores bind opcodes for telling dyld which weak symbols need coalescing.
|
|
// There are two types of entries in this section:
|
|
//
|
|
// 1) Non-weak definitions: This is a symbol definition that weak symbols in
|
|
// other dylibs should coalesce to.
|
|
//
|
|
// 2) Weak bindings: These tell dyld that a given symbol reference should
|
|
// coalesce to a non-weak definition if one is found. Note that unlike the
|
|
// entries in the BindingSection, the bindings here only refer to these
|
|
// symbols by name, but do not specify which dylib to load them from.
|
|
class WeakBindingSection final : public LinkEditSection {
|
|
public:
|
|
WeakBindingSection();
|
|
void finalizeContents() override;
|
|
uint64_t getRawSize() const override { return contents.size(); }
|
|
bool isNeeded() const override {
|
|
return !bindingsMap.empty() || !definitions.empty();
|
|
}
|
|
|
|
void writeTo(uint8_t *buf) const override;
|
|
|
|
void addEntry(const Symbol *symbol, const InputSection *isec, uint64_t offset,
|
|
int64_t addend = 0) {
|
|
bindingsMap[symbol].emplace_back(addend, Location(isec, offset));
|
|
}
|
|
|
|
bool hasEntry() const { return !bindingsMap.empty(); }
|
|
|
|
void addNonWeakDefinition(const Defined *defined) {
|
|
definitions.emplace_back(defined);
|
|
}
|
|
|
|
bool hasNonWeakDefinition() const { return !definitions.empty(); }
|
|
|
|
private:
|
|
BindingsMap<const Symbol *> bindingsMap;
|
|
std::vector<const Defined *> definitions;
|
|
SmallVector<char, 128> contents;
|
|
};
|
|
|
|
// The following sections implement lazy symbol binding -- very similar to the
|
|
// PLT mechanism in ELF.
|
|
//
|
|
// ELF's .plt section is broken up into two sections in Mach-O: StubsSection
|
|
// and StubHelperSection. Calls to functions in dylibs will end up calling into
|
|
// StubsSection, which contains indirect jumps to addresses stored in the
|
|
// LazyPointerSection (the counterpart to ELF's .plt.got).
|
|
//
|
|
// We will first describe how non-weak symbols are handled.
|
|
//
|
|
// At program start, the LazyPointerSection contains addresses that point into
|
|
// one of the entry points in the middle of the StubHelperSection. The code in
|
|
// StubHelperSection will push on the stack an offset into the
|
|
// LazyBindingSection. The push is followed by a jump to the beginning of the
|
|
// StubHelperSection (similar to PLT0), which then calls into dyld_stub_binder.
|
|
// dyld_stub_binder is a non-lazily-bound symbol, so this call looks it up in
|
|
// the GOT.
|
|
//
|
|
// The stub binder will look up the bind opcodes in the LazyBindingSection at
|
|
// the given offset. The bind opcodes will tell the binder to update the
|
|
// address in the LazyPointerSection to point to the symbol, so that subsequent
|
|
// calls don't have to redo the symbol resolution. The binder will then jump to
|
|
// the resolved symbol.
|
|
//
|
|
// With weak symbols, the situation is slightly different. Since there is no
|
|
// "weak lazy" lookup, function calls to weak symbols are always non-lazily
|
|
// bound. We emit both regular non-lazy bindings as well as weak bindings, in
|
|
// order that the weak bindings may overwrite the non-lazy bindings if an
|
|
// appropriate symbol is found at runtime. However, the bound addresses will
|
|
// still be written (non-lazily) into the LazyPointerSection.
|
|
//
|
|
// Symbols are always bound eagerly when chained fixups are used. In that case,
|
|
// StubsSection contains indirect jumps to addresses stored in the GotSection.
|
|
// The GOT directly contains the fixup entries, which will be replaced by the
|
|
// address of the target symbols on load. LazyPointerSection and
|
|
// StubHelperSection are not used.
|
|
|
|
class StubsSection final : public SyntheticSection {
|
|
public:
|
|
StubsSection();
|
|
uint64_t getSize() const override;
|
|
bool isNeeded() const override { return !entries.empty(); }
|
|
void finalize() override;
|
|
void writeTo(uint8_t *buf) const override;
|
|
const llvm::SetVector<Symbol *> &getEntries() const { return entries; }
|
|
// Creates a stub for the symbol and the corresponding entry in the
|
|
// LazyPointerSection.
|
|
void addEntry(Symbol *);
|
|
uint64_t getVA(uint32_t stubsIndex) const {
|
|
assert(isFinal || target->usesThunks());
|
|
// ConcatOutputSection::finalize() can seek the address of a
|
|
// stub before its address is assigned. Before __stubs is
|
|
// finalized, return a contrived out-of-range address.
|
|
return isFinal ? addr + stubsIndex * target->stubSize
|
|
: TargetInfo::outOfRangeVA;
|
|
}
|
|
|
|
bool isFinal = false; // is address assigned?
|
|
|
|
private:
|
|
llvm::SetVector<Symbol *> entries;
|
|
};
|
|
|
|
class StubHelperSection final : public SyntheticSection {
|
|
public:
|
|
StubHelperSection();
|
|
uint64_t getSize() const override;
|
|
bool isNeeded() const override;
|
|
void writeTo(uint8_t *buf) const override;
|
|
|
|
void setUp();
|
|
|
|
DylibSymbol *stubBinder = nullptr;
|
|
Defined *dyldPrivate = nullptr;
|
|
};
|
|
|
|
// Objective-C stubs are hoisted objc_msgSend calls per selector called in the
|
|
// program. Apple Clang produces undefined symbols to each stub, such as
|
|
// '_objc_msgSend$foo', which are then synthesized by the linker. The stubs
|
|
// load the particular selector 'foo' from __objc_selrefs, setting it to the
|
|
// first argument of the objc_msgSend call, and then jumps to objc_msgSend. The
|
|
// actual stub contents are mirrored from ld64.
|
|
class ObjCStubsSection final : public SyntheticSection {
|
|
public:
|
|
ObjCStubsSection();
|
|
void addEntry(Symbol *sym);
|
|
uint64_t getSize() const override;
|
|
bool isNeeded() const override { return !symbols.empty(); }
|
|
void finalize() override { isec->isFinal = true; }
|
|
void writeTo(uint8_t *buf) const override;
|
|
void setUp();
|
|
|
|
static constexpr llvm::StringLiteral symbolPrefix = "_objc_msgSend$";
|
|
|
|
private:
|
|
std::vector<Defined *> symbols;
|
|
std::vector<uint32_t> offsets;
|
|
Symbol *objcMsgSend = nullptr;
|
|
};
|
|
|
|
// Note that this section may also be targeted by non-lazy bindings. In
|
|
// particular, this happens when branch relocations target weak symbols.
|
|
class LazyPointerSection final : public SyntheticSection {
|
|
public:
|
|
LazyPointerSection();
|
|
uint64_t getSize() const override;
|
|
bool isNeeded() const override;
|
|
void writeTo(uint8_t *buf) const override;
|
|
uint64_t getVA(uint32_t index) const {
|
|
return addr + (index << target->p2WordSize);
|
|
}
|
|
};
|
|
|
|
class LazyBindingSection final : public LinkEditSection {
|
|
public:
|
|
LazyBindingSection();
|
|
void finalizeContents() override;
|
|
uint64_t getRawSize() const override { return contents.size(); }
|
|
bool isNeeded() const override { return !entries.empty(); }
|
|
void writeTo(uint8_t *buf) const override;
|
|
// Note that every entry here will by referenced by a corresponding entry in
|
|
// the StubHelperSection.
|
|
void addEntry(Symbol *dysym);
|
|
const llvm::SetVector<Symbol *> &getEntries() const { return entries; }
|
|
|
|
private:
|
|
uint32_t encode(const Symbol &);
|
|
|
|
llvm::SetVector<Symbol *> entries;
|
|
SmallVector<char, 128> contents;
|
|
llvm::raw_svector_ostream os{contents};
|
|
};
|
|
|
|
// Stores a trie that describes the set of exported symbols.
|
|
class ExportSection final : public LinkEditSection {
|
|
public:
|
|
ExportSection();
|
|
void finalizeContents() override;
|
|
uint64_t getRawSize() const override { return size; }
|
|
bool isNeeded() const override { return size; }
|
|
void writeTo(uint8_t *buf) const override;
|
|
|
|
bool hasWeakSymbol = false;
|
|
|
|
private:
|
|
TrieBuilder trieBuilder;
|
|
size_t size = 0;
|
|
};
|
|
|
|
// Stores 'data in code' entries that describe the locations of data regions
|
|
// inside code sections. This is used by llvm-objdump to distinguish jump tables
|
|
// and stop them from being disassembled as instructions.
|
|
class DataInCodeSection final : public LinkEditSection {
|
|
public:
|
|
DataInCodeSection();
|
|
void finalizeContents() override;
|
|
uint64_t getRawSize() const override {
|
|
return sizeof(llvm::MachO::data_in_code_entry) * entries.size();
|
|
}
|
|
void writeTo(uint8_t *buf) const override;
|
|
|
|
private:
|
|
std::vector<llvm::MachO::data_in_code_entry> entries;
|
|
};
|
|
|
|
// Stores ULEB128 delta encoded addresses of functions.
|
|
class FunctionStartsSection final : public LinkEditSection {
|
|
public:
|
|
FunctionStartsSection();
|
|
void finalizeContents() override;
|
|
uint64_t getRawSize() const override { return contents.size(); }
|
|
void writeTo(uint8_t *buf) const override;
|
|
|
|
private:
|
|
SmallVector<char, 128> contents;
|
|
};
|
|
|
|
// Stores the strings referenced by the symbol table.
|
|
class StringTableSection final : public LinkEditSection {
|
|
public:
|
|
StringTableSection();
|
|
// Returns the start offset of the added string.
|
|
uint32_t addString(StringRef);
|
|
uint64_t getRawSize() const override { return size; }
|
|
void writeTo(uint8_t *buf) const override;
|
|
|
|
static constexpr size_t emptyStringIndex = 1;
|
|
|
|
private:
|
|
// ld64 emits string tables which start with a space and a zero byte. We
|
|
// match its behavior here since some tools depend on it.
|
|
// Consequently, the empty string will be at index 1, not zero.
|
|
std::vector<StringRef> strings{" "};
|
|
size_t size = 2;
|
|
};
|
|
|
|
struct SymtabEntry {
|
|
Symbol *sym;
|
|
size_t strx;
|
|
};
|
|
|
|
struct StabsEntry {
|
|
uint8_t type = 0;
|
|
uint32_t strx = StringTableSection::emptyStringIndex;
|
|
uint8_t sect = 0;
|
|
uint16_t desc = 0;
|
|
uint64_t value = 0;
|
|
|
|
StabsEntry() = default;
|
|
explicit StabsEntry(uint8_t type) : type(type) {}
|
|
};
|
|
|
|
// Symbols of the same type must be laid out contiguously: we choose to emit
|
|
// all local symbols first, then external symbols, and finally undefined
|
|
// symbols. For each symbol type, the LC_DYSYMTAB load command will record the
|
|
// range (start index and total number) of those symbols in the symbol table.
|
|
class SymtabSection : public LinkEditSection {
|
|
public:
|
|
void finalizeContents() override;
|
|
uint32_t getNumSymbols() const;
|
|
uint32_t getNumLocalSymbols() const {
|
|
return stabs.size() + localSymbols.size();
|
|
}
|
|
uint32_t getNumExternalSymbols() const { return externalSymbols.size(); }
|
|
uint32_t getNumUndefinedSymbols() const { return undefinedSymbols.size(); }
|
|
|
|
private:
|
|
void emitBeginSourceStab(StringRef);
|
|
void emitEndSourceStab();
|
|
void emitObjectFileStab(ObjFile *);
|
|
void emitEndFunStab(Defined *);
|
|
void emitStabs();
|
|
|
|
protected:
|
|
SymtabSection(StringTableSection &);
|
|
|
|
StringTableSection &stringTableSection;
|
|
// STABS symbols are always local symbols, but we represent them with special
|
|
// entries because they may use fields like n_sect and n_desc differently.
|
|
std::vector<StabsEntry> stabs;
|
|
std::vector<SymtabEntry> localSymbols;
|
|
std::vector<SymtabEntry> externalSymbols;
|
|
std::vector<SymtabEntry> undefinedSymbols;
|
|
};
|
|
|
|
template <class LP> SymtabSection *makeSymtabSection(StringTableSection &);
|
|
|
|
// The indirect symbol table is a list of 32-bit integers that serve as indices
|
|
// into the (actual) symbol table. The indirect symbol table is a
|
|
// concatenation of several sub-arrays of indices, each sub-array belonging to
|
|
// a separate section. The starting offset of each sub-array is stored in the
|
|
// reserved1 header field of the respective section.
|
|
//
|
|
// These sub-arrays provide symbol information for sections that store
|
|
// contiguous sequences of symbol references. These references can be pointers
|
|
// (e.g. those in the GOT and TLVP sections) or assembly sequences (e.g.
|
|
// function stubs).
|
|
class IndirectSymtabSection final : public LinkEditSection {
|
|
public:
|
|
IndirectSymtabSection();
|
|
void finalizeContents() override;
|
|
uint32_t getNumSymbols() const;
|
|
uint64_t getRawSize() const override {
|
|
return getNumSymbols() * sizeof(uint32_t);
|
|
}
|
|
bool isNeeded() const override;
|
|
void writeTo(uint8_t *buf) const override;
|
|
};
|
|
|
|
// The code signature comes at the very end of the linked output file.
|
|
class CodeSignatureSection final : public LinkEditSection {
|
|
public:
|
|
// NOTE: These values are duplicated in llvm-objcopy's MachO/Object.h file
|
|
// and any changes here, should be repeated there.
|
|
static constexpr uint8_t blockSizeShift = 12;
|
|
static constexpr size_t blockSize = (1 << blockSizeShift); // 4 KiB
|
|
static constexpr size_t hashSize = 256 / 8;
|
|
static constexpr size_t blobHeadersSize = llvm::alignTo<8>(
|
|
sizeof(llvm::MachO::CS_SuperBlob) + sizeof(llvm::MachO::CS_BlobIndex));
|
|
static constexpr uint32_t fixedHeadersSize =
|
|
blobHeadersSize + sizeof(llvm::MachO::CS_CodeDirectory);
|
|
|
|
uint32_t fileNamePad = 0;
|
|
uint32_t allHeadersSize = 0;
|
|
StringRef fileName;
|
|
|
|
CodeSignatureSection();
|
|
uint64_t getRawSize() const override;
|
|
bool isNeeded() const override { return true; }
|
|
void writeTo(uint8_t *buf) const override;
|
|
uint32_t getBlockCount() const;
|
|
void writeHashes(uint8_t *buf) const;
|
|
};
|
|
|
|
class CStringSection : public SyntheticSection {
|
|
public:
|
|
CStringSection(const char *name);
|
|
void addInput(CStringInputSection *);
|
|
uint64_t getSize() const override { return size; }
|
|
virtual void finalizeContents();
|
|
bool isNeeded() const override { return !inputs.empty(); }
|
|
void writeTo(uint8_t *buf) const override;
|
|
|
|
std::vector<CStringInputSection *> inputs;
|
|
|
|
private:
|
|
uint64_t size;
|
|
};
|
|
|
|
class DeduplicatedCStringSection final : public CStringSection {
|
|
public:
|
|
DeduplicatedCStringSection(const char *name) : CStringSection(name){};
|
|
uint64_t getSize() const override { return size; }
|
|
void finalizeContents() override;
|
|
void writeTo(uint8_t *buf) const override;
|
|
|
|
struct StringOffset {
|
|
uint8_t trailingZeros;
|
|
uint64_t outSecOff = UINT64_MAX;
|
|
|
|
explicit StringOffset(uint8_t zeros) : trailingZeros(zeros) {}
|
|
};
|
|
|
|
StringOffset getStringOffset(StringRef str) const;
|
|
|
|
private:
|
|
llvm::DenseMap<llvm::CachedHashStringRef, StringOffset> stringOffsetMap;
|
|
size_t size = 0;
|
|
};
|
|
|
|
/*
|
|
* This section contains deduplicated literal values. The 16-byte values are
|
|
* laid out first, followed by the 8- and then the 4-byte ones.
|
|
*/
|
|
class WordLiteralSection final : public SyntheticSection {
|
|
public:
|
|
using UInt128 = std::pair<uint64_t, uint64_t>;
|
|
// I don't think the standard guarantees the size of a pair, so let's make
|
|
// sure it's exact -- that way we can construct it via `mmap`.
|
|
static_assert(sizeof(UInt128) == 16);
|
|
|
|
WordLiteralSection();
|
|
void addInput(WordLiteralInputSection *);
|
|
void finalizeContents();
|
|
void writeTo(uint8_t *buf) const override;
|
|
|
|
uint64_t getSize() const override {
|
|
return literal16Map.size() * 16 + literal8Map.size() * 8 +
|
|
literal4Map.size() * 4;
|
|
}
|
|
|
|
bool isNeeded() const override {
|
|
return !literal16Map.empty() || !literal4Map.empty() ||
|
|
!literal8Map.empty();
|
|
}
|
|
|
|
uint64_t getLiteral16Offset(uintptr_t buf) const {
|
|
return literal16Map.at(*reinterpret_cast<const UInt128 *>(buf)) * 16;
|
|
}
|
|
|
|
uint64_t getLiteral8Offset(uintptr_t buf) const {
|
|
return literal16Map.size() * 16 +
|
|
literal8Map.at(*reinterpret_cast<const uint64_t *>(buf)) * 8;
|
|
}
|
|
|
|
uint64_t getLiteral4Offset(uintptr_t buf) const {
|
|
return literal16Map.size() * 16 + literal8Map.size() * 8 +
|
|
literal4Map.at(*reinterpret_cast<const uint32_t *>(buf)) * 4;
|
|
}
|
|
|
|
private:
|
|
std::vector<WordLiteralInputSection *> inputs;
|
|
|
|
template <class T> struct Hasher {
|
|
llvm::hash_code operator()(T v) const { return llvm::hash_value(v); }
|
|
};
|
|
// We're using unordered_map instead of DenseMap here because we need to
|
|
// support all possible integer values -- there are no suitable tombstone
|
|
// values for DenseMap.
|
|
std::unordered_map<UInt128, uint64_t, Hasher<UInt128>> literal16Map;
|
|
std::unordered_map<uint64_t, uint64_t> literal8Map;
|
|
std::unordered_map<uint32_t, uint64_t> literal4Map;
|
|
};
|
|
|
|
class ObjCImageInfoSection final : public SyntheticSection {
|
|
public:
|
|
ObjCImageInfoSection();
|
|
bool isNeeded() const override { return !files.empty(); }
|
|
uint64_t getSize() const override { return 8; }
|
|
void addFile(const InputFile *file) {
|
|
assert(!file->objCImageInfo.empty());
|
|
files.push_back(file);
|
|
}
|
|
void finalizeContents();
|
|
void writeTo(uint8_t *buf) const override;
|
|
|
|
private:
|
|
struct ImageInfo {
|
|
uint8_t swiftVersion = 0;
|
|
bool hasCategoryClassProperties = false;
|
|
} info;
|
|
static ImageInfo parseImageInfo(const InputFile *);
|
|
std::vector<const InputFile *> files; // files with image info
|
|
};
|
|
|
|
// This section stores 32-bit __TEXT segment offsets of initializer functions.
|
|
//
|
|
// The compiler stores pointers to initializers in __mod_init_func. These need
|
|
// to be fixed up at load time, which takes time and dirties memory. By
|
|
// synthesizing InitOffsetsSection from them, this data can live in the
|
|
// read-only __TEXT segment instead. This section is used by default when
|
|
// chained fixups are enabled.
|
|
//
|
|
// There is no similar counterpart to __mod_term_func, as that section is
|
|
// deprecated, and static destructors are instead handled by registering them
|
|
// via __cxa_atexit from an autogenerated initializer function (see D121736).
|
|
class InitOffsetsSection final : public SyntheticSection {
|
|
public:
|
|
InitOffsetsSection();
|
|
bool isNeeded() const override { return !sections.empty(); }
|
|
uint64_t getSize() const override;
|
|
void writeTo(uint8_t *buf) const override;
|
|
void setUp();
|
|
|
|
void addInput(ConcatInputSection *isec) { sections.push_back(isec); }
|
|
const std::vector<ConcatInputSection *> &inputs() const { return sections; }
|
|
|
|
private:
|
|
std::vector<ConcatInputSection *> sections;
|
|
};
|
|
|
|
// Chained fixups are a replacement for classic dyld opcodes. In this format,
|
|
// most of the metadata necessary for binding symbols and rebasing addresses is
|
|
// stored directly in the memory location that will have the fixup applied.
|
|
//
|
|
// The fixups form singly linked lists; each one covering a single page in
|
|
// memory. The __LINKEDIT,__chainfixups section stores the page offset of the
|
|
// first fixup of each page; the rest can be found by walking the chain using
|
|
// the offset that is embedded in each entry.
|
|
//
|
|
// This setup allows pages to be relocated lazily at page-in time and without
|
|
// being dirtied. The kernel can discard and load them again as needed. This
|
|
// technique, called page-in linking, was introduced in macOS 13.
|
|
//
|
|
// The benefits of this format are:
|
|
// - smaller __LINKEDIT segment, as most of the fixup information is stored in
|
|
// the data segment
|
|
// - faster startup, since not all relocations need to be done upfront
|
|
// - slightly lower memory usage, as fewer pages are dirtied
|
|
//
|
|
// Userspace x86_64 and arm64 binaries have two types of fixup entries:
|
|
// - Rebase entries contain an absolute address, to which the object's load
|
|
// address will be added to get the final value. This is used for loading
|
|
// the address of a symbol defined in the same binary.
|
|
// - Binding entries are mostly used for symbols imported from other dylibs,
|
|
// but for weakly bound and interposable symbols as well. They are looked up
|
|
// by a (symbol name, library) pair stored in __chainfixups. This import
|
|
// entry also encodes whether the import is weak (i.e. if the symbol is
|
|
// missing, it should be set to null instead of producing a load error).
|
|
// The fixup encodes an ordinal associated with the import, and an optional
|
|
// addend.
|
|
//
|
|
// The entries are tightly packed 64-bit bitfields. One of the bits specifies
|
|
// which kind of fixup to interpret them as.
|
|
//
|
|
// LLD generates the fixup data in 5 stages:
|
|
// 1. While scanning relocations, we make a note of each location that needs
|
|
// a fixup by calling addRebase() or addBinding(). During this, we assign
|
|
// a unique ordinal for each (symbol name, library, addend) import tuple.
|
|
// 2. After addresses have been assigned to all sections, and thus the memory
|
|
// layout of the linked image is final; finalizeContents() is called. Here,
|
|
// the page offsets of the chain start entries are calculated.
|
|
// 3. ChainedFixupsSection::writeTo() writes the page start offsets and the
|
|
// imports table to the output file.
|
|
// 4. Each section's fixup entries are encoded and written to disk in
|
|
// ConcatInputSection::writeTo(), but without writing the offsets that form
|
|
// the chain.
|
|
// 5. Finally, each page's (which might correspond to multiple sections)
|
|
// fixups are linked together in Writer::buildFixupChains().
|
|
class ChainedFixupsSection final : public LinkEditSection {
|
|
public:
|
|
ChainedFixupsSection();
|
|
void finalizeContents() override;
|
|
uint64_t getRawSize() const override { return size; }
|
|
bool isNeeded() const override;
|
|
void writeTo(uint8_t *buf) const override;
|
|
|
|
void addRebase(const InputSection *isec, uint64_t offset) {
|
|
locations.emplace_back(isec, offset);
|
|
}
|
|
void addBinding(const Symbol *dysym, const InputSection *isec,
|
|
uint64_t offset, int64_t addend = 0);
|
|
|
|
void setHasNonWeakDefinition() { hasNonWeakDef = true; }
|
|
|
|
// Returns an (ordinal, inline addend) tuple used by dyld_chained_ptr_64_bind.
|
|
std::pair<uint32_t, uint8_t> getBinding(const Symbol *sym,
|
|
int64_t addend) const;
|
|
|
|
const std::vector<Location> &getLocations() const { return locations; }
|
|
|
|
bool hasWeakBinding() const { return hasWeakBind; }
|
|
bool hasNonWeakDefinition() const { return hasNonWeakDef; }
|
|
|
|
private:
|
|
// Location::offset initially stores the offset within an InputSection, but
|
|
// contains output segment offsets after finalizeContents().
|
|
std::vector<Location> locations;
|
|
// (target symbol, addend) => import ordinal
|
|
llvm::MapVector<std::pair<const Symbol *, int64_t>, uint32_t> bindings;
|
|
|
|
struct SegmentInfo {
|
|
SegmentInfo(const OutputSegment *oseg) : oseg(oseg) {}
|
|
|
|
const OutputSegment *oseg;
|
|
// (page index, fixup starts offset)
|
|
llvm::SmallVector<std::pair<uint16_t, uint16_t>> pageStarts;
|
|
|
|
size_t getSize() const;
|
|
size_t writeTo(uint8_t *buf) const;
|
|
};
|
|
llvm::SmallVector<SegmentInfo, 4> fixupSegments;
|
|
|
|
size_t symtabSize = 0;
|
|
size_t size = 0;
|
|
|
|
bool needsAddend = false;
|
|
bool needsLargeAddend = false;
|
|
bool hasWeakBind = false;
|
|
bool hasNonWeakDef = false;
|
|
llvm::MachO::ChainedImportFormat importFormat;
|
|
};
|
|
|
|
void writeChainedRebase(uint8_t *buf, uint64_t targetVA);
|
|
void writeChainedFixup(uint8_t *buf, const Symbol *sym, int64_t addend);
|
|
|
|
struct InStruct {
|
|
const uint8_t *bufferStart = nullptr;
|
|
MachHeaderSection *header = nullptr;
|
|
CStringSection *cStringSection = nullptr;
|
|
DeduplicatedCStringSection *objcMethnameSection = nullptr;
|
|
WordLiteralSection *wordLiteralSection = nullptr;
|
|
RebaseSection *rebase = nullptr;
|
|
BindingSection *binding = nullptr;
|
|
WeakBindingSection *weakBinding = nullptr;
|
|
LazyBindingSection *lazyBinding = nullptr;
|
|
ExportSection *exports = nullptr;
|
|
GotSection *got = nullptr;
|
|
TlvPointerSection *tlvPointers = nullptr;
|
|
LazyPointerSection *lazyPointers = nullptr;
|
|
StubsSection *stubs = nullptr;
|
|
StubHelperSection *stubHelper = nullptr;
|
|
ObjCStubsSection *objcStubs = nullptr;
|
|
ConcatInputSection *objcSelrefs = nullptr;
|
|
UnwindInfoSection *unwindInfo = nullptr;
|
|
ObjCImageInfoSection *objCImageInfo = nullptr;
|
|
ConcatInputSection *imageLoaderCache = nullptr;
|
|
InitOffsetsSection *initOffsets = nullptr;
|
|
ChainedFixupsSection *chainedFixups = nullptr;
|
|
};
|
|
|
|
extern InStruct in;
|
|
extern std::vector<SyntheticSection *> syntheticSections;
|
|
|
|
void createSyntheticSymbols();
|
|
|
|
} // namespace lld::macho
|
|
|
|
#endif
|