llvm-capstone/mlir/lib/Transforms/CSE.cpp
Tom Eccles dea33c80d3 [mlir][Transforms] teach CSE about recursive memory effects
Add support for reasoning about operations with recursive memory effects
to CSE. The recursive effects are gathered by a helper function. I
decided to allow returning duplicates from the helper function because
there's no benefit to spending the computation time to remove them in
the existing use case.

Differential Revision: https://reviews.llvm.org/D156805
2023-08-10 09:40:01 +00:00

417 lines
16 KiB
C++

//===- CSE.cpp - Common Sub-expression Elimination ------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This transformation pass performs a simple common sub-expression elimination
// algorithm on operations within a region.
//
//===----------------------------------------------------------------------===//
#include "mlir/Transforms/CSE.h"
#include "mlir/IR/Dominance.h"
#include "mlir/IR/PatternMatch.h"
#include "mlir/Interfaces/SideEffectInterfaces.h"
#include "mlir/Pass/Pass.h"
#include "mlir/Transforms/Passes.h"
#include "llvm/ADT/DenseMapInfo.h"
#include "llvm/ADT/Hashing.h"
#include "llvm/ADT/ScopedHashTable.h"
#include "llvm/Support/Allocator.h"
#include "llvm/Support/RecyclingAllocator.h"
#include <deque>
namespace mlir {
#define GEN_PASS_DEF_CSE
#include "mlir/Transforms/Passes.h.inc"
} // namespace mlir
using namespace mlir;
namespace {
struct SimpleOperationInfo : public llvm::DenseMapInfo<Operation *> {
static unsigned getHashValue(const Operation *opC) {
return OperationEquivalence::computeHash(
const_cast<Operation *>(opC),
/*hashOperands=*/OperationEquivalence::directHashValue,
/*hashResults=*/OperationEquivalence::ignoreHashValue,
OperationEquivalence::IgnoreLocations);
}
static bool isEqual(const Operation *lhsC, const Operation *rhsC) {
auto *lhs = const_cast<Operation *>(lhsC);
auto *rhs = const_cast<Operation *>(rhsC);
if (lhs == rhs)
return true;
if (lhs == getTombstoneKey() || lhs == getEmptyKey() ||
rhs == getTombstoneKey() || rhs == getEmptyKey())
return false;
return OperationEquivalence::isEquivalentTo(
const_cast<Operation *>(lhsC), const_cast<Operation *>(rhsC),
OperationEquivalence::IgnoreLocations);
}
};
} // namespace
namespace {
/// Simple common sub-expression elimination.
class CSEDriver {
public:
CSEDriver(RewriterBase &rewriter, DominanceInfo *domInfo)
: rewriter(rewriter), domInfo(domInfo) {}
/// Simplify all operations within the given op.
void simplify(Operation *op, bool *changed = nullptr);
int64_t getNumCSE() const { return numCSE; }
int64_t getNumDCE() const { return numDCE; }
private:
/// Shared implementation of operation elimination and scoped map definitions.
using AllocatorTy = llvm::RecyclingAllocator<
llvm::BumpPtrAllocator,
llvm::ScopedHashTableVal<Operation *, Operation *>>;
using ScopedMapTy = llvm::ScopedHashTable<Operation *, Operation *,
SimpleOperationInfo, AllocatorTy>;
/// Cache holding MemoryEffects information between two operations. The first
/// operation is stored has the key. The second operation is stored inside a
/// pair in the value. The pair also hold the MemoryEffects between those
/// two operations. If the MemoryEffects is nullptr then we assume there is
/// no operation with MemoryEffects::Write between the two operations.
using MemEffectsCache =
DenseMap<Operation *, std::pair<Operation *, MemoryEffects::Effect *>>;
/// Represents a single entry in the depth first traversal of a CFG.
struct CFGStackNode {
CFGStackNode(ScopedMapTy &knownValues, DominanceInfoNode *node)
: scope(knownValues), node(node), childIterator(node->begin()) {}
/// Scope for the known values.
ScopedMapTy::ScopeTy scope;
DominanceInfoNode *node;
DominanceInfoNode::const_iterator childIterator;
/// If this node has been fully processed yet or not.
bool processed = false;
};
/// Attempt to eliminate a redundant operation. Returns success if the
/// operation was marked for removal, failure otherwise.
LogicalResult simplifyOperation(ScopedMapTy &knownValues, Operation *op,
bool hasSSADominance);
void simplifyBlock(ScopedMapTy &knownValues, Block *bb, bool hasSSADominance);
void simplifyRegion(ScopedMapTy &knownValues, Region &region);
void replaceUsesAndDelete(ScopedMapTy &knownValues, Operation *op,
Operation *existing, bool hasSSADominance);
/// Check if there is side-effecting operations other than the given effect
/// between the two operations.
bool hasOtherSideEffectingOpInBetween(Operation *fromOp, Operation *toOp);
/// A rewriter for modifying the IR.
RewriterBase &rewriter;
/// Operations marked as dead and to be erased.
std::vector<Operation *> opsToErase;
DominanceInfo *domInfo = nullptr;
MemEffectsCache memEffectsCache;
// Various statistics.
int64_t numCSE = 0;
int64_t numDCE = 0;
};
} // namespace
void CSEDriver::replaceUsesAndDelete(ScopedMapTy &knownValues, Operation *op,
Operation *existing,
bool hasSSADominance) {
// If we find one then replace all uses of the current operation with the
// existing one and mark it for deletion. We can only replace an operand in
// an operation if it has not been visited yet.
if (hasSSADominance) {
// If the region has SSA dominance, then we are guaranteed to have not
// visited any use of the current operation.
if (auto *rewriteListener =
dyn_cast_if_present<RewriterBase::Listener>(rewriter.getListener()))
rewriteListener->notifyOperationReplaced(op, existing);
// Replace all uses, but do not remote the operation yet. This does not
// notify the listener because the original op is not erased.
rewriter.replaceAllUsesWith(op->getResults(), existing->getResults());
opsToErase.push_back(op);
} else {
// When the region does not have SSA dominance, we need to check if we
// have visited a use before replacing any use.
auto wasVisited = [&](OpOperand &operand) {
return !knownValues.count(operand.getOwner());
};
if (auto *rewriteListener =
dyn_cast_if_present<RewriterBase::Listener>(rewriter.getListener()))
for (Value v : op->getResults())
if (all_of(v.getUses(), wasVisited))
rewriteListener->notifyOperationReplaced(op, existing);
// Replace all uses, but do not remote the operation yet. This does not
// notify the listener because the original op is not erased.
rewriter.replaceUsesWithIf(op->getResults(), existing->getResults(),
wasVisited);
// There may be some remaining uses of the operation.
if (op->use_empty())
opsToErase.push_back(op);
}
// If the existing operation has an unknown location and the current
// operation doesn't, then set the existing op's location to that of the
// current op.
if (isa<UnknownLoc>(existing->getLoc()) && !isa<UnknownLoc>(op->getLoc()))
existing->setLoc(op->getLoc());
++numCSE;
}
bool CSEDriver::hasOtherSideEffectingOpInBetween(Operation *fromOp,
Operation *toOp) {
assert(fromOp->getBlock() == toOp->getBlock());
assert(
isa<MemoryEffectOpInterface>(fromOp) &&
cast<MemoryEffectOpInterface>(fromOp).hasEffect<MemoryEffects::Read>() &&
isa<MemoryEffectOpInterface>(toOp) &&
cast<MemoryEffectOpInterface>(toOp).hasEffect<MemoryEffects::Read>());
Operation *nextOp = fromOp->getNextNode();
auto result =
memEffectsCache.try_emplace(fromOp, std::make_pair(fromOp, nullptr));
if (result.second) {
auto memEffectsCachePair = result.first->second;
if (memEffectsCachePair.second == nullptr) {
// No MemoryEffects::Write has been detected until the cached operation.
// Continue looking from the cached operation to toOp.
nextOp = memEffectsCachePair.first;
} else {
// MemoryEffects::Write has been detected before so there is no need to
// check further.
return true;
}
}
while (nextOp && nextOp != toOp) {
std::optional<SmallVector<MemoryEffects::EffectInstance>> effects =
getEffectsRecursively(nextOp);
if (!effects) {
// TODO: Do we need to handle other effects generically?
// If the operation does not implement the MemoryEffectOpInterface we
// conservatively assume it writes.
result.first->second =
std::make_pair(nextOp, MemoryEffects::Write::get());
return true;
}
for (const MemoryEffects::EffectInstance &effect : *effects) {
if (isa<MemoryEffects::Write>(effect.getEffect())) {
result.first->second = {nextOp, MemoryEffects::Write::get()};
return true;
}
}
nextOp = nextOp->getNextNode();
}
result.first->second = std::make_pair(toOp, nullptr);
return false;
}
/// Attempt to eliminate a redundant operation.
LogicalResult CSEDriver::simplifyOperation(ScopedMapTy &knownValues,
Operation *op,
bool hasSSADominance) {
// Don't simplify terminator operations.
if (op->hasTrait<OpTrait::IsTerminator>())
return failure();
// If the operation is already trivially dead just add it to the erase list.
if (isOpTriviallyDead(op)) {
opsToErase.push_back(op);
++numDCE;
return success();
}
// Don't simplify operations with regions that have multiple blocks.
// TODO: We need additional tests to verify that we handle such IR correctly.
if (!llvm::all_of(op->getRegions(), [](Region &r) {
return r.getBlocks().empty() || llvm::hasSingleElement(r.getBlocks());
}))
return failure();
// Some simple use case of operation with memory side-effect are dealt with
// here. Operations with no side-effect are done after.
if (!isMemoryEffectFree(op)) {
auto memEffects = dyn_cast<MemoryEffectOpInterface>(op);
// TODO: Only basic use case for operations with MemoryEffects::Read can be
// eleminated now. More work needs to be done for more complicated patterns
// and other side-effects.
if (!memEffects || !memEffects.onlyHasEffect<MemoryEffects::Read>())
return failure();
// Look for an existing definition for the operation.
if (auto *existing = knownValues.lookup(op)) {
if (existing->getBlock() == op->getBlock() &&
!hasOtherSideEffectingOpInBetween(existing, op)) {
// The operation that can be deleted has been reach with no
// side-effecting operations in between the existing operation and
// this one so we can remove the duplicate.
replaceUsesAndDelete(knownValues, op, existing, hasSSADominance);
return success();
}
}
knownValues.insert(op, op);
return failure();
}
// Look for an existing definition for the operation.
if (auto *existing = knownValues.lookup(op)) {
replaceUsesAndDelete(knownValues, op, existing, hasSSADominance);
++numCSE;
return success();
}
// Otherwise, we add this operation to the known values map.
knownValues.insert(op, op);
return failure();
}
void CSEDriver::simplifyBlock(ScopedMapTy &knownValues, Block *bb,
bool hasSSADominance) {
for (auto &op : *bb) {
// Most operations don't have regions, so fast path that case.
if (op.getNumRegions() != 0) {
// If this operation is isolated above, we can't process nested regions
// with the given 'knownValues' map. This would cause the insertion of
// implicit captures in explicit capture only regions.
if (op.mightHaveTrait<OpTrait::IsIsolatedFromAbove>()) {
ScopedMapTy nestedKnownValues;
for (auto &region : op.getRegions())
simplifyRegion(nestedKnownValues, region);
} else {
// Otherwise, process nested regions normally.
for (auto &region : op.getRegions())
simplifyRegion(knownValues, region);
}
}
// If the operation is simplified, we don't process any held regions.
if (succeeded(simplifyOperation(knownValues, &op, hasSSADominance)))
continue;
}
// Clear the MemoryEffects cache since its usage is by block only.
memEffectsCache.clear();
}
void CSEDriver::simplifyRegion(ScopedMapTy &knownValues, Region &region) {
// If the region is empty there is nothing to do.
if (region.empty())
return;
bool hasSSADominance = domInfo->hasSSADominance(&region);
// If the region only contains one block, then simplify it directly.
if (region.hasOneBlock()) {
ScopedMapTy::ScopeTy scope(knownValues);
simplifyBlock(knownValues, &region.front(), hasSSADominance);
return;
}
// If the region does not have dominanceInfo, then skip it.
// TODO: Regions without SSA dominance should define a different
// traversal order which is appropriate and can be used here.
if (!hasSSADominance)
return;
// Note, deque is being used here because there was significant performance
// gains over vector when the container becomes very large due to the
// specific access patterns. If/when these performance issues are no
// longer a problem we can change this to vector. For more information see
// the llvm mailing list discussion on this:
// http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20120116/135228.html
std::deque<std::unique_ptr<CFGStackNode>> stack;
// Process the nodes of the dom tree for this region.
stack.emplace_back(std::make_unique<CFGStackNode>(
knownValues, domInfo->getRootNode(&region)));
while (!stack.empty()) {
auto &currentNode = stack.back();
// Check to see if we need to process this node.
if (!currentNode->processed) {
currentNode->processed = true;
simplifyBlock(knownValues, currentNode->node->getBlock(),
hasSSADominance);
}
// Otherwise, check to see if we need to process a child node.
if (currentNode->childIterator != currentNode->node->end()) {
auto *childNode = *(currentNode->childIterator++);
stack.emplace_back(
std::make_unique<CFGStackNode>(knownValues, childNode));
} else {
// Finally, if the node and all of its children have been processed
// then we delete the node.
stack.pop_back();
}
}
}
void CSEDriver::simplify(Operation *op, bool *changed) {
/// Simplify all regions.
ScopedMapTy knownValues;
for (auto &region : op->getRegions())
simplifyRegion(knownValues, region);
/// Erase any operations that were marked as dead during simplification.
for (auto *op : opsToErase)
rewriter.eraseOp(op);
if (changed)
*changed = !opsToErase.empty();
// Note: CSE does currently not remove ops with regions, so DominanceInfo
// does not have to be invalidated.
}
void mlir::eliminateCommonSubExpressions(RewriterBase &rewriter,
DominanceInfo &domInfo, Operation *op,
bool *changed) {
CSEDriver driver(rewriter, &domInfo);
driver.simplify(op, changed);
}
namespace {
/// CSE pass.
struct CSE : public impl::CSEBase<CSE> {
void runOnOperation() override;
};
} // namespace
void CSE::runOnOperation() {
// Simplify the IR.
IRRewriter rewriter(&getContext());
CSEDriver driver(rewriter, &getAnalysis<DominanceInfo>());
bool changed = false;
driver.simplify(getOperation(), &changed);
// Set statistics.
numCSE = driver.getNumCSE();
numDCE = driver.getNumDCE();
// If there was no change to the IR, we mark all analyses as preserved.
if (!changed)
return markAllAnalysesPreserved();
// We currently don't remove region operations, so mark dominance as
// preserved.
markAnalysesPreserved<DominanceInfo, PostDominanceInfo>();
}
std::unique_ptr<Pass> mlir::createCSEPass() { return std::make_unique<CSE>(); }