45344cf7ac
It isn't very wise to pass an assembly file to the compiler and tell it to compile as a C file and hope that the compiler recognizes it as assembly instead. Simply don't mark the file as C and CMake will recognize the rest. This was attempted earlier in https://reviews.llvm.org/D85706, but reverted due to architecture issues on Apple. Subsequent digging revealed a similar change was done earlier for libunwind in https://reviews.llvm.org/rGb780df052dd2b246a760d00e00f7de9ebdab9d09. Afterwards workarounds were added for MinGW and Apple: * https://reviews.llvm.org/rGb780df052dd2b246a760d00e00f7de9ebdab9d09 * https://reviews.llvm.org/rGd4ded05ba851304b26a437896bc3962ef56f62cb The workarounds in libunwind and compiler-rt are unified and comments added pointing to each other. The workaround is updated to only be used for MinGW for CMake versions before 3.17, which fixed the issue (https://gitlab.kitware.com/cmake/cmake/-/merge_requests/4287). Additionally fixed Clang not being passed as the assembly compiler for compiler-rt runtime build. Example error: [525/634] Building C object lib/tsan/CMakeFiles/clang_rt.tsan-aarch64.dir/rtl/tsan_rtl_aarch64.S.o FAILED: lib/tsan/CMakeFiles/clang_rt.tsan-aarch64.dir/rtl/tsan_rtl_aarch64.S.o /opt/tooling/drive/host/bin/clang --target=aarch64-linux-gnu -I/opt/tooling/drive/llvm/compiler-rt/lib/tsan/.. -isystem /opt/tooling/drive/toolchain/opt/drive/toolchain/include -x c -Wall -Wno-unused-parameter -fno-lto -fPIC -fno-builtin -fno-exceptions -fomit-frame-pointer -funwind-tables -fno-stack-protector -fno-sanitize=safe-stack -fvisibility=hidden -fno-lto -O3 -gline-tables-only -Wno-gnu -Wno-variadic-macros -Wno-c99-extensions -Wno-non-virtual-dtor -fPIE -fno-rtti -Wframe-larger-than=530 -Wglobal-constructors --sysroot=. -MD -MT lib/tsan/CMakeFiles/clang_rt.tsan-aarch64.dir/rtl/tsan_rtl_aarch64.S.o -MF lib/tsan/CMakeFiles/clang_rt.tsan-aarch64.dir/rtl/tsan_rtl_aarch64.S.o.d -o lib/tsan/CMakeFiles/clang_rt.tsan-aarch64.dir/rtl/tsan_rtl_aarch64.S.o -c /opt/tooling/drive/llvm/compiler-rt/lib/tsan/rtl/tsan_rtl_aarch64.S /opt/tooling/drive/llvm/compiler-rt/lib/tsan/rtl/tsan_rtl_aarch64.S:29:1: error: expected identifier or '(' .section .text ^ 1 error generated. Differential Revision: https://reviews.llvm.org/D86308 |
||
---|---|---|
clang | ||
clang-tools-extra | ||
compiler-rt | ||
debuginfo-tests | ||
flang | ||
libc | ||
libclc | ||
libcxx | ||
libcxxabi | ||
libunwind | ||
lld | ||
lldb | ||
llvm | ||
mlir | ||
openmp | ||
parallel-libs | ||
polly | ||
pstl | ||
utils/arcanist | ||
.arcconfig | ||
.arclint | ||
.clang-format | ||
.clang-tidy | ||
.git-blame-ignore-revs | ||
.gitignore | ||
CONTRIBUTING.md | ||
README.md |
The LLVM Compiler Infrastructure
This directory and its sub-directories contain source code for LLVM, a toolkit for the construction of highly optimized compilers, optimizers, and run-time environments.
The README briefly describes how to get started with building LLVM. For more information on how to contribute to the LLVM project, please take a look at the Contributing to LLVM guide.
Getting Started with the LLVM System
Taken from https://llvm.org/docs/GettingStarted.html.
Overview
Welcome to the LLVM project!
The LLVM project has multiple components. The core of the project is itself called "LLVM". This contains all of the tools, libraries, and header files needed to process intermediate representations and converts it into object files. Tools include an assembler, disassembler, bitcode analyzer, and bitcode optimizer. It also contains basic regression tests.
C-like languages use the Clang front end. This component compiles C, C++, Objective-C, and Objective-C++ code into LLVM bitcode -- and from there into object files, using LLVM.
Other components include: the libc++ C++ standard library, the LLD linker, and more.
Getting the Source Code and Building LLVM
The LLVM Getting Started documentation may be out of date. The Clang Getting Started page might have more accurate information.
This is an example work-flow and configuration to get and build the LLVM source:
-
Checkout LLVM (including related sub-projects like Clang):
-
git clone https://github.com/llvm/llvm-project.git
-
Or, on windows,
git clone --config core.autocrlf=false https://github.com/llvm/llvm-project.git
-
-
Configure and build LLVM and Clang:
-
cd llvm-project
-
mkdir build
-
cd build
-
cmake -G <generator> [options] ../llvm
Some common build system generators are:
Ninja
--- for generating Ninja build files. Most llvm developers use Ninja.Unix Makefiles
--- for generating make-compatible parallel makefiles.Visual Studio
--- for generating Visual Studio projects and solutions.Xcode
--- for generating Xcode projects.
Some Common options:
-
-DLLVM_ENABLE_PROJECTS='...'
--- semicolon-separated list of the LLVM sub-projects you'd like to additionally build. Can include any of: clang, clang-tools-extra, libcxx, libcxxabi, libunwind, lldb, compiler-rt, lld, polly, or debuginfo-tests.For example, to build LLVM, Clang, libcxx, and libcxxabi, use
-DLLVM_ENABLE_PROJECTS="clang;libcxx;libcxxabi"
. -
-DCMAKE_INSTALL_PREFIX=directory
--- Specify for directory the full path name of where you want the LLVM tools and libraries to be installed (default/usr/local
). -
-DCMAKE_BUILD_TYPE=type
--- Valid options for type are Debug, Release, RelWithDebInfo, and MinSizeRel. Default is Debug. -
-DLLVM_ENABLE_ASSERTIONS=On
--- Compile with assertion checks enabled (default is Yes for Debug builds, No for all other build types).
-
cmake --build . [-- [options] <target>]
or your build system specified above directly.-
The default target (i.e.
ninja
ormake
) will build all of LLVM. -
The
check-all
target (i.e.ninja check-all
) will run the regression tests to ensure everything is in working order. -
CMake will generate targets for each tool and library, and most LLVM sub-projects generate their own
check-<project>
target. -
Running a serial build will be slow. To improve speed, try running a parallel build. That's done by default in Ninja; for
make
, use the option-j NNN
, whereNNN
is the number of parallel jobs, e.g. the number of CPUs you have.
-
-
For more information see CMake
-
Consult the Getting Started with LLVM page for detailed information on configuring and compiling LLVM. You can visit Directory Layout to learn about the layout of the source code tree.