llvm-capstone/mlir/lib/Dialect/GPU/Transforms/KernelOutlining.cpp
River Riddle 4562e389a4 NFC: Remove unnecessary 'llvm::' prefix from uses of llvm symbols declared in mlir namespace.
Aside from being cleaner, this also makes the codebase more consistent.

PiperOrigin-RevId: 286206974
2019-12-18 09:29:20 -08:00

229 lines
9.2 KiB
C++

//===- KernelOutlining.cpp - Implementation of GPU kernel outlining -------===//
//
// Copyright 2019 The MLIR Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// =============================================================================
//
// This file implements the GPU dialect kernel outlining pass.
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/GPU/GPUDialect.h"
#include "mlir/Dialect/GPU/Passes.h"
#include "mlir/Dialect/StandardOps/Ops.h"
#include "mlir/IR/BlockAndValueMapping.h"
#include "mlir/IR/Builders.h"
#include "mlir/IR/SymbolTable.h"
#include "mlir/Pass/Pass.h"
using namespace mlir;
template <typename OpTy>
static void createForAllDimensions(OpBuilder &builder, Location loc,
SmallVectorImpl<Value *> &values) {
for (StringRef dim : {"x", "y", "z"}) {
Value *v = builder.create<OpTy>(loc, builder.getIndexType(),
builder.getStringAttr(dim));
values.push_back(v);
}
}
// Add operations generating block/thread ids and grid/block dimensions at the
// beginning of the `body` region and replace uses of the respective function
// arguments.
static void injectGpuIndexOperations(Location loc, Region &body) {
OpBuilder builder(loc->getContext());
Block &firstBlock = body.front();
builder.setInsertionPointToStart(&firstBlock);
SmallVector<Value *, 12> indexOps;
createForAllDimensions<gpu::BlockIdOp>(builder, loc, indexOps);
createForAllDimensions<gpu::ThreadIdOp>(builder, loc, indexOps);
createForAllDimensions<gpu::GridDimOp>(builder, loc, indexOps);
createForAllDimensions<gpu::BlockDimOp>(builder, loc, indexOps);
// Replace the leading 12 function args with the respective thread/block index
// operations. Iterate backwards since args are erased and indices change.
for (int i = 11; i >= 0; --i) {
firstBlock.getArgument(i)->replaceAllUsesWith(indexOps[i]);
firstBlock.eraseArgument(i);
}
}
static bool isInliningBeneficiary(Operation *op) {
return isa<ConstantOp>(op) || isa<DimOp>(op);
}
// Move arguments of the given kernel function into the function if this reduces
// the number of kernel arguments.
static gpu::LaunchFuncOp inlineBeneficiaryOps(gpu::GPUFuncOp kernelFunc,
gpu::LaunchFuncOp launch) {
OpBuilder kernelBuilder(kernelFunc.getBody());
auto &firstBlock = kernelFunc.getBody().front();
SmallVector<Value *, 8> newLaunchArgs;
BlockAndValueMapping map;
for (int i = 0, e = launch.getNumKernelOperands(); i < e; ++i) {
map.map(launch.getKernelOperand(i), kernelFunc.getArgument(i));
}
for (int i = launch.getNumKernelOperands() - 1; i >= 0; --i) {
auto operandOp = launch.getKernelOperand(i)->getDefiningOp();
if (!operandOp || !isInliningBeneficiary(operandOp)) {
newLaunchArgs.push_back(launch.getKernelOperand(i));
continue;
}
// Only inline operations that do not create new arguments.
if (!llvm::all_of(operandOp->getOperands(),
[map](Value *value) { return map.contains(value); })) {
continue;
}
auto clone = kernelBuilder.clone(*operandOp, map);
firstBlock.getArgument(i)->replaceAllUsesWith(clone->getResult(0));
firstBlock.eraseArgument(i);
}
if (newLaunchArgs.size() == launch.getNumKernelOperands())
return launch;
std::reverse(newLaunchArgs.begin(), newLaunchArgs.end());
OpBuilder LaunchBuilder(launch);
SmallVector<Type, 8> newArgumentTypes;
newArgumentTypes.reserve(firstBlock.getNumArguments());
for (auto value : firstBlock.getArguments()) {
newArgumentTypes.push_back(value->getType());
}
kernelFunc.setType(LaunchBuilder.getFunctionType(newArgumentTypes, {}));
auto newLaunch = LaunchBuilder.create<gpu::LaunchFuncOp>(
launch.getLoc(), kernelFunc, launch.getGridSizeOperandValues(),
launch.getBlockSizeOperandValues(), newLaunchArgs);
launch.erase();
return newLaunch;
}
// Outline the `gpu.launch` operation body into a kernel function. Replace
// `gpu.return` operations by `std.return` in the generated function.
static gpu::GPUFuncOp outlineKernelFunc(gpu::LaunchOp launchOp) {
Location loc = launchOp.getLoc();
// Create a builder with no insertion point, insertion will happen separately
// due to symbol table manipulation.
OpBuilder builder(launchOp.getContext());
SmallVector<Type, 4> kernelOperandTypes(launchOp.getKernelOperandTypes());
FunctionType type =
FunctionType::get(kernelOperandTypes, {}, launchOp.getContext());
std::string kernelFuncName =
Twine(launchOp.getParentOfType<FuncOp>().getName(), "_kernel").str();
auto outlinedFunc = builder.create<gpu::GPUFuncOp>(loc, kernelFuncName, type);
outlinedFunc.setAttr(gpu::GPUDialect::getKernelFuncAttrName(),
builder.getUnitAttr());
outlinedFunc.body().takeBody(launchOp.body());
injectGpuIndexOperations(loc, outlinedFunc.body());
return outlinedFunc;
}
// Replace `gpu.launch` operations with an `gpu.launch_func` operation launching
// `kernelFunc`. The kernel func contains the body of the `gpu.launch` with
// constant region arguments inlined.
static void convertToLaunchFuncOp(gpu::LaunchOp &launchOp,
gpu::GPUFuncOp kernelFunc) {
OpBuilder builder(launchOp);
auto launchFuncOp = builder.create<gpu::LaunchFuncOp>(
launchOp.getLoc(), kernelFunc, launchOp.getGridSizeOperandValues(),
launchOp.getBlockSizeOperandValues(), launchOp.getKernelOperandValues());
inlineBeneficiaryOps(kernelFunc, launchFuncOp);
launchOp.erase();
}
namespace {
/// Pass that moves the kernel of each LaunchOp into its separate nested module.
///
/// This pass moves the kernel code of each LaunchOp into a function created
/// inside a nested module. It also creates an external function of the same
/// name in the parent module.
///
/// The kernel modules are intended to be compiled to a cubin blob independently
/// in a separate pass. The external functions can then be annotated with the
/// symbol of the cubin accessor function.
class GpuKernelOutliningPass : public ModulePass<GpuKernelOutliningPass> {
public:
void runOnModule() override {
SymbolTable symbolTable(getModule());
bool modified = false;
for (auto func : getModule().getOps<FuncOp>()) {
// Insert just after the function.
Block::iterator insertPt(func.getOperation()->getNextNode());
func.walk([&](gpu::LaunchOp op) {
gpu::GPUFuncOp outlinedFunc = outlineKernelFunc(op);
// Create nested module and insert outlinedFunc. The module will
// originally get the same name as the function, but may be renamed on
// insertion into the parent module.
auto kernelModule = createKernelModule(outlinedFunc, symbolTable);
symbolTable.insert(kernelModule, insertPt);
// Potentially changes signature, pulling in constants.
convertToLaunchFuncOp(op, outlinedFunc);
modified = true;
});
}
// If any new module was inserted in this module, annotate this module as
// a container module.
if (modified)
getModule().setAttr(gpu::GPUDialect::getContainerModuleAttrName(),
UnitAttr::get(&getContext()));
}
private:
// Returns a module containing kernelFunc and all callees (recursive).
ModuleOp createKernelModule(gpu::GPUFuncOp kernelFunc,
const SymbolTable &parentSymbolTable) {
auto context = getModule().getContext();
Builder builder(context);
auto kernelModule =
ModuleOp::create(builder.getUnknownLoc(), kernelFunc.getName());
kernelModule.setAttr(gpu::GPUDialect::getKernelModuleAttrName(),
builder.getUnitAttr());
SymbolTable symbolTable(kernelModule);
symbolTable.insert(kernelFunc);
SmallVector<Operation *, 8> symbolDefWorklist = {kernelFunc};
while (!symbolDefWorklist.empty()) {
if (Optional<SymbolTable::UseRange> symbolUses =
SymbolTable::getSymbolUses(symbolDefWorklist.pop_back_val())) {
for (SymbolTable::SymbolUse symbolUse : *symbolUses) {
StringRef symbolName =
symbolUse.getSymbolRef().cast<FlatSymbolRefAttr>().getValue();
if (symbolTable.lookup(symbolName))
continue;
Operation *symbolDefClone =
parentSymbolTable.lookup(symbolName)->clone();
symbolDefWorklist.push_back(symbolDefClone);
symbolTable.insert(symbolDefClone);
}
}
}
return kernelModule;
}
};
} // namespace
std::unique_ptr<OpPassBase<ModuleOp>> mlir::createGpuKernelOutliningPass() {
return std::make_unique<GpuKernelOutliningPass>();
}
static PassRegistration<GpuKernelOutliningPass>
pass("gpu-kernel-outlining",
"Outline gpu.launch bodies to kernel functions.");