mirror of
https://github.com/capstone-engine/llvm-capstone.git
synced 2025-02-15 23:40:54 +00:00
![Uday Bondhugula](/assets/img/avatar_default.png)
- loopBodySkew shifts statements of a loop body by stmt-wise delays, and is typically meant to be used to: - allow overlap of non-blocking start/wait until completion operations with other computation - allow shifting of statements (for better register reuse/locality/parallelism) - software pipelining (when applied to the innermost loop) - an additional argument specifies whether to unroll the prologue and epilogue. - add method to check SSA dominance preservation. - add a fake loop pipeline pass to test this utility. Sample input/output are below. While on this, fix/add following: - fix minor bug in getAddMulPureAffineExpr - add additional builder methods for common affine map cases - fix const_operand_iterator's for ForStmt, etc. When there is no such thing as 'const MLValue', the iterator shouldn't be returning const MLValue's. Returning MLValue is const correct. Sample input/output examples: 1) Simplest case: shift second statement by one. Input: for %i = 0 to 7 { %y = "foo"(%i) : (affineint) -> affineint %x = "bar"(%i) : (affineint) -> affineint } Output: #map0 = (d0) -> (d0 - 1) mlfunc @loop_nest_simple1() { %c8 = constant 8 : affineint %c0 = constant 0 : affineint %0 = "foo"(%c0) : (affineint) -> affineint for %i0 = 1 to 7 { %1 = "foo"(%i0) : (affineint) -> affineint %2 = affine_apply #map0(%i0) %3 = "bar"(%2) : (affineint) -> affineint } %4 = affine_apply #map0(%c8) %5 = "bar"(%4) : (affineint) -> affineint return } 2) DMA overlap: shift dma.wait and compute by one. Input for %i = 0 to 7 { %pingpong = affine_apply (d0) -> (d0 mod 2) (%i) "dma.enqueue"(%pingpong) : (affineint) -> affineint %pongping = affine_apply (d0) -> (d0 mod 2) (%i) "dma.wait"(%pongping) : (affineint) -> affineint "compute1"(%pongping) : (affineint) -> affineint } Output #map0 = (d0) -> (d0 mod 2) #map1 = (d0) -> (d0 - 1) #map2 = ()[s0] -> (s0 + 7) mlfunc @loop_nest_dma() { %c8 = constant 8 : affineint %c0 = constant 0 : affineint %0 = affine_apply #map0(%c0) %1 = "dma.enqueue"(%0) : (affineint) -> affineint for %i0 = 1 to 7 { %2 = affine_apply #map0(%i0) %3 = "dma.enqueue"(%2) : (affineint) -> affineint %4 = affine_apply #map1(%i0) %5 = affine_apply #map0(%4) %6 = "dma.wait"(%5) : (affineint) -> affineint %7 = "compute1"(%5) : (affineint) -> affineint } %8 = affine_apply #map1(%c8) %9 = affine_apply #map0(%8) %10 = "dma.wait"(%9) : (affineint) -> affineint %11 = "compute1"(%9) : (affineint) -> affineint return } 3) With arbitrary affine bound maps: Shift last two statements by two. Input: for %i = %N to ()[s0] -> (s0 + 7)()[%N] { %y = "foo"(%i) : (affineint) -> affineint %x = "bar"(%i) : (affineint) -> affineint %z = "foo_bar"(%i) : (affineint) -> (affineint) "bar_foo"(%i) : (affineint) -> (affineint) } Output #map0 = ()[s0] -> (s0 + 1) #map1 = ()[s0] -> (s0 + 2) #map2 = ()[s0] -> (s0 + 7) #map3 = (d0) -> (d0 - 2) #map4 = ()[s0] -> (s0 + 8) #map5 = ()[s0] -> (s0 + 9) for %i0 = %arg0 to #map0()[%arg0] { %0 = "foo"(%i0) : (affineint) -> affineint %1 = "bar"(%i0) : (affineint) -> affineint } for %i1 = #map1()[%arg0] to #map2()[%arg0] { %2 = "foo"(%i1) : (affineint) -> affineint %3 = "bar"(%i1) : (affineint) -> affineint %4 = affine_apply #map3(%i1) %5 = "foo_bar"(%4) : (affineint) -> affineint %6 = "bar_foo"(%4) : (affineint) -> affineint } for %i2 = #map4()[%arg0] to #map5()[%arg0] { %7 = affine_apply #map3(%i2) %8 = "foo_bar"(%7) : (affineint) -> affineint %9 = "bar_foo"(%7) : (affineint) -> affineint } 4) Shift one by zero, second by one, third by two for %i = 0 to 7 { %y = "foo"(%i) : (affineint) -> affineint %x = "bar"(%i) : (affineint) -> affineint %z = "foobar"(%i) : (affineint) -> affineint } #map0 = (d0) -> (d0 - 1) #map1 = (d0) -> (d0 - 2) #map2 = ()[s0] -> (s0 + 7) %c9 = constant 9 : affineint %c8 = constant 8 : affineint %c1 = constant 1 : affineint %c0 = constant 0 : affineint %0 = "foo"(%c0) : (affineint) -> affineint %1 = "foo"(%c1) : (affineint) -> affineint %2 = affine_apply #map0(%c1) %3 = "bar"(%2) : (affineint) -> affineint for %i0 = 2 to 7 { %4 = "foo"(%i0) : (affineint) -> affineint %5 = affine_apply #map0(%i0) %6 = "bar"(%5) : (affineint) -> affineint %7 = affine_apply #map1(%i0) %8 = "foobar"(%7) : (affineint) -> affineint } %9 = affine_apply #map0(%c8) %10 = "bar"(%9) : (affineint) -> affineint %11 = affine_apply #map1(%c8) %12 = "foobar"(%11) : (affineint) -> affineint %13 = affine_apply #map1(%c9) %14 = "foobar"(%13) : (affineint) -> affineint 5) SSA dominance violated; no shifting if a shift is specified for the second statement. for %i = 0 to 7 { %x = "foo"(%i) : (affineint) -> affineint "bar"(%x) : (affineint) -> affineint } PiperOrigin-RevId: 214975731
494 lines
17 KiB
C++
494 lines
17 KiB
C++
//===- Statement.cpp - MLIR Statement Classes ----------------------------===//
|
|
//
|
|
// Copyright 2019 The MLIR Authors.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
// =============================================================================
|
|
|
|
#include "mlir/IR/AffineExpr.h"
|
|
#include "mlir/IR/AffineMap.h"
|
|
#include "mlir/IR/IntegerSet.h"
|
|
#include "mlir/IR/MLFunction.h"
|
|
#include "mlir/IR/MLIRContext.h"
|
|
#include "mlir/IR/StandardOps.h"
|
|
#include "mlir/IR/Statements.h"
|
|
#include "mlir/IR/StmtVisitor.h"
|
|
#include "llvm/ADT/DenseMap.h"
|
|
|
|
using namespace mlir;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// StmtResult
|
|
//===------------------------------------------------------------------===//
|
|
|
|
/// Return the result number of this result.
|
|
unsigned StmtResult::getResultNumber() const {
|
|
// Results are always stored consecutively, so use pointer subtraction to
|
|
// figure out what number this is.
|
|
return this - &getOwner()->getStmtResults()[0];
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Statement
|
|
//===------------------------------------------------------------------===//
|
|
|
|
// Statements are deleted through the destroy() member because we don't have
|
|
// a virtual destructor.
|
|
Statement::~Statement() {
|
|
assert(block == nullptr && "statement destroyed but still in a block");
|
|
}
|
|
|
|
/// Destroy this statement or one of its subclasses.
|
|
void Statement::destroy() {
|
|
switch (this->getKind()) {
|
|
case Kind::Operation:
|
|
cast<OperationStmt>(this)->destroy();
|
|
break;
|
|
case Kind::For:
|
|
delete cast<ForStmt>(this);
|
|
break;
|
|
case Kind::If:
|
|
delete cast<IfStmt>(this);
|
|
break;
|
|
}
|
|
}
|
|
|
|
/// Return the context this operation is associated with.
|
|
MLIRContext *Statement::getContext() const {
|
|
// Work a bit to avoid calling findFunction() and getting its context.
|
|
switch (getKind()) {
|
|
case Kind::Operation:
|
|
return cast<OperationStmt>(this)->getContext();
|
|
case Kind::For:
|
|
return cast<ForStmt>(this)->getContext();
|
|
case Kind::If:
|
|
return cast<IfStmt>(this)->getContext();
|
|
}
|
|
}
|
|
|
|
Statement *Statement::getParentStmt() const {
|
|
return block ? block->getContainingStmt() : nullptr;
|
|
}
|
|
|
|
MLFunction *Statement::findFunction() const {
|
|
return block ? block->findFunction() : nullptr;
|
|
}
|
|
|
|
MLValue *Statement::getOperand(unsigned idx) {
|
|
return getStmtOperand(idx).get();
|
|
}
|
|
|
|
const MLValue *Statement::getOperand(unsigned idx) const {
|
|
return getStmtOperand(idx).get();
|
|
}
|
|
|
|
void Statement::setOperand(unsigned idx, MLValue *value) {
|
|
getStmtOperand(idx).set(value);
|
|
}
|
|
|
|
unsigned Statement::getNumOperands() const {
|
|
switch (getKind()) {
|
|
case Kind::Operation:
|
|
return cast<OperationStmt>(this)->getNumOperands();
|
|
case Kind::For:
|
|
return cast<ForStmt>(this)->getNumOperands();
|
|
case Kind::If:
|
|
return cast<IfStmt>(this)->getNumOperands();
|
|
}
|
|
}
|
|
|
|
MutableArrayRef<StmtOperand> Statement::getStmtOperands() {
|
|
switch (getKind()) {
|
|
case Kind::Operation:
|
|
return cast<OperationStmt>(this)->getStmtOperands();
|
|
case Kind::For:
|
|
return cast<ForStmt>(this)->getStmtOperands();
|
|
case Kind::If:
|
|
return cast<IfStmt>(this)->getStmtOperands();
|
|
}
|
|
}
|
|
|
|
/// Emit a note about this statement, reporting up to any diagnostic
|
|
/// handlers that may be listening.
|
|
void Statement::emitNote(const Twine &message) const {
|
|
getContext()->emitDiagnostic(getLoc(), message,
|
|
MLIRContext::DiagnosticKind::Note);
|
|
}
|
|
|
|
/// Emit a warning about this statement, reporting up to any diagnostic
|
|
/// handlers that may be listening.
|
|
void Statement::emitWarning(const Twine &message) const {
|
|
getContext()->emitDiagnostic(getLoc(), message,
|
|
MLIRContext::DiagnosticKind::Warning);
|
|
}
|
|
|
|
/// Emit an error about fatal conditions with this statement, reporting up to
|
|
/// any diagnostic handlers that may be listening. NOTE: This may terminate
|
|
/// the containing application, only use when the IR is in an inconsistent
|
|
/// state.
|
|
void Statement::emitError(const Twine &message) const {
|
|
getContext()->emitDiagnostic(getLoc(), message,
|
|
MLIRContext::DiagnosticKind::Error);
|
|
}
|
|
//===----------------------------------------------------------------------===//
|
|
// ilist_traits for Statement
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
StmtBlock *llvm::ilist_traits<::mlir::Statement>::getContainingBlock() {
|
|
size_t Offset(
|
|
size_t(&((StmtBlock *)nullptr->*StmtBlock::getSublistAccess(nullptr))));
|
|
iplist<Statement> *Anchor(static_cast<iplist<Statement> *>(this));
|
|
return reinterpret_cast<StmtBlock *>(reinterpret_cast<char *>(Anchor) -
|
|
Offset);
|
|
}
|
|
|
|
/// This is a trait method invoked when a statement is added to a block. We
|
|
/// keep the block pointer up to date.
|
|
void llvm::ilist_traits<::mlir::Statement>::addNodeToList(Statement *stmt) {
|
|
assert(!stmt->getBlock() && "already in a statement block!");
|
|
stmt->block = getContainingBlock();
|
|
}
|
|
|
|
/// This is a trait method invoked when a statement is removed from a block.
|
|
/// We keep the block pointer up to date.
|
|
void llvm::ilist_traits<::mlir::Statement>::removeNodeFromList(
|
|
Statement *stmt) {
|
|
assert(stmt->block && "not already in a statement block!");
|
|
stmt->block = nullptr;
|
|
}
|
|
|
|
/// This is a trait method invoked when a statement is moved from one block
|
|
/// to another. We keep the block pointer up to date.
|
|
void llvm::ilist_traits<::mlir::Statement>::transferNodesFromList(
|
|
ilist_traits<Statement> &otherList, stmt_iterator first,
|
|
stmt_iterator last) {
|
|
// If we are transferring statements within the same block, the block
|
|
// pointer doesn't need to be updated.
|
|
StmtBlock *curParent = getContainingBlock();
|
|
if (curParent == otherList.getContainingBlock())
|
|
return;
|
|
|
|
// Update the 'block' member of each statement.
|
|
for (; first != last; ++first)
|
|
first->block = curParent;
|
|
}
|
|
|
|
/// Remove this statement (and its descendants) from its StmtBlock and delete
|
|
/// all of them.
|
|
void Statement::eraseFromBlock() {
|
|
assert(getBlock() && "Statement has no block");
|
|
getBlock()->getStatements().erase(this);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// OperationStmt
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// Create a new OperationStmt with the specific fields.
|
|
OperationStmt *OperationStmt::create(Location *location, Identifier name,
|
|
ArrayRef<MLValue *> operands,
|
|
ArrayRef<Type *> resultTypes,
|
|
ArrayRef<NamedAttribute> attributes,
|
|
MLIRContext *context) {
|
|
auto byteSize = totalSizeToAlloc<StmtOperand, StmtResult>(operands.size(),
|
|
resultTypes.size());
|
|
void *rawMem = malloc(byteSize);
|
|
|
|
// Initialize the OperationStmt part of the statement.
|
|
auto stmt = ::new (rawMem) OperationStmt(
|
|
location, name, operands.size(), resultTypes.size(), attributes, context);
|
|
|
|
// Initialize the operands and results.
|
|
auto stmtOperands = stmt->getStmtOperands();
|
|
for (unsigned i = 0, e = operands.size(); i != e; ++i)
|
|
new (&stmtOperands[i]) StmtOperand(stmt, operands[i]);
|
|
|
|
auto stmtResults = stmt->getStmtResults();
|
|
for (unsigned i = 0, e = resultTypes.size(); i != e; ++i)
|
|
new (&stmtResults[i]) StmtResult(resultTypes[i], stmt);
|
|
return stmt;
|
|
}
|
|
|
|
OperationStmt::OperationStmt(Location *location, Identifier name,
|
|
unsigned numOperands, unsigned numResults,
|
|
ArrayRef<NamedAttribute> attributes,
|
|
MLIRContext *context)
|
|
: Operation(/*isInstruction=*/false, name, attributes, context),
|
|
Statement(Kind::Operation, location), numOperands(numOperands),
|
|
numResults(numResults) {}
|
|
|
|
OperationStmt::~OperationStmt() {
|
|
// Explicitly run the destructors for the operands and results.
|
|
for (auto &operand : getStmtOperands())
|
|
operand.~StmtOperand();
|
|
|
|
for (auto &result : getStmtResults())
|
|
result.~StmtResult();
|
|
}
|
|
|
|
void OperationStmt::destroy() {
|
|
this->~OperationStmt();
|
|
free(this);
|
|
}
|
|
|
|
/// Return the context this operation is associated with.
|
|
MLIRContext *OperationStmt::getContext() const {
|
|
// If we have a result or operand type, that is a constant time way to get
|
|
// to the context.
|
|
if (getNumResults())
|
|
return getResult(0)->getType()->getContext();
|
|
if (getNumOperands())
|
|
return getOperand(0)->getType()->getContext();
|
|
|
|
// In the very odd case where we have no operands or results, fall back to
|
|
// doing a find.
|
|
return findFunction()->getContext();
|
|
}
|
|
|
|
bool OperationStmt::isReturn() const { return is<ReturnOp>(); }
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// ForStmt
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
ForStmt *ForStmt::create(Location *location, ArrayRef<MLValue *> lbOperands,
|
|
AffineMap *lbMap, ArrayRef<MLValue *> ubOperands,
|
|
AffineMap *ubMap, int64_t step, MLIRContext *context) {
|
|
assert(lbOperands.size() == lbMap->getNumInputs() &&
|
|
"lower bound operand count does not match the affine map");
|
|
assert(ubOperands.size() == ubMap->getNumInputs() &&
|
|
"upper bound operand count does not match the affine map");
|
|
assert(step > 0 && "step has to be a positive integer constant");
|
|
|
|
unsigned numOperands = lbOperands.size() + ubOperands.size();
|
|
ForStmt *stmt =
|
|
new ForStmt(location, numOperands, lbMap, ubMap, step, context);
|
|
|
|
unsigned i = 0;
|
|
for (unsigned e = lbOperands.size(); i != e; ++i)
|
|
stmt->operands.emplace_back(StmtOperand(stmt, lbOperands[i]));
|
|
|
|
for (unsigned j = 0, e = ubOperands.size(); j != e; ++i, ++j)
|
|
stmt->operands.emplace_back(StmtOperand(stmt, ubOperands[j]));
|
|
|
|
return stmt;
|
|
}
|
|
|
|
ForStmt::ForStmt(Location *location, unsigned numOperands, AffineMap *lbMap,
|
|
AffineMap *ubMap, int64_t step, MLIRContext *context)
|
|
: Statement(Kind::For, location),
|
|
MLValue(MLValueKind::ForStmt, Type::getAffineInt(context)),
|
|
StmtBlock(StmtBlockKind::For), lbMap(lbMap), ubMap(ubMap), step(step) {
|
|
operands.reserve(numOperands);
|
|
}
|
|
|
|
const AffineBound ForStmt::getLowerBound() const {
|
|
return AffineBound(*this, 0, lbMap->getNumInputs(), lbMap);
|
|
}
|
|
|
|
const AffineBound ForStmt::getUpperBound() const {
|
|
return AffineBound(*this, lbMap->getNumInputs(), getNumOperands(), ubMap);
|
|
}
|
|
|
|
void ForStmt::setLowerBound(ArrayRef<MLValue *> operands, AffineMap *map) {
|
|
// TODO: handle the case when number of existing or new operands is non-zero.
|
|
assert(getNumOperands() == 0 && operands.empty());
|
|
|
|
this->lbMap = map;
|
|
}
|
|
|
|
void ForStmt::setUpperBound(ArrayRef<MLValue *> operands, AffineMap *map) {
|
|
// TODO: handle the case when number of existing or new operands is non-zero.
|
|
assert(getNumOperands() == 0 && operands.empty());
|
|
|
|
this->ubMap = map;
|
|
}
|
|
|
|
void ForStmt::setLowerBoundMap(AffineMap *map) {
|
|
assert(lbMap->getNumDims() == map->getNumDims() &&
|
|
lbMap->getNumSymbols() == map->getNumSymbols());
|
|
this->lbMap = map;
|
|
}
|
|
|
|
void ForStmt::setUpperBoundMap(AffineMap *map) {
|
|
assert(ubMap->getNumDims() == map->getNumDims() &&
|
|
ubMap->getNumSymbols() == map->getNumSymbols());
|
|
this->ubMap = map;
|
|
}
|
|
|
|
bool ForStmt::hasConstantLowerBound() const {
|
|
return lbMap->isSingleConstant();
|
|
}
|
|
|
|
bool ForStmt::hasConstantUpperBound() const {
|
|
return ubMap->isSingleConstant();
|
|
}
|
|
|
|
int64_t ForStmt::getConstantLowerBound() const {
|
|
return lbMap->getSingleConstantResult();
|
|
}
|
|
|
|
int64_t ForStmt::getConstantUpperBound() const {
|
|
return ubMap->getSingleConstantResult();
|
|
}
|
|
|
|
void ForStmt::setConstantLowerBound(int64_t value) {
|
|
setLowerBound({}, AffineMap::getConstantMap(value, getContext()));
|
|
}
|
|
|
|
void ForStmt::setConstantUpperBound(int64_t value) {
|
|
setUpperBound({}, AffineMap::getConstantMap(value, getContext()));
|
|
}
|
|
|
|
ForStmt::operand_range ForStmt::getLowerBoundOperands() {
|
|
return {operand_begin(),
|
|
operand_begin() + getLowerBoundMap()->getNumInputs()};
|
|
}
|
|
|
|
ForStmt::operand_range ForStmt::getUpperBoundOperands() {
|
|
return {operand_begin() + getLowerBoundMap()->getNumInputs(), operand_end()};
|
|
}
|
|
|
|
bool ForStmt::matchingBoundOperandList() const {
|
|
if (lbMap->getNumDims() != ubMap->getNumDims() ||
|
|
lbMap->getNumSymbols() != ubMap->getNumSymbols())
|
|
return false;
|
|
|
|
unsigned numOperands = lbMap->getNumInputs();
|
|
for (unsigned i = 0, e = lbMap->getNumInputs(); i < e; i++) {
|
|
// Compare MLValue *'s.
|
|
if (getOperand(i) != getOperand(numOperands + i))
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// IfStmt
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
IfStmt::IfStmt(Location *location, unsigned numOperands, IntegerSet *set)
|
|
: Statement(Kind::If, location), thenClause(this), elseClause(nullptr),
|
|
set(set) {
|
|
operands.reserve(numOperands);
|
|
}
|
|
|
|
IfStmt::~IfStmt() {
|
|
if (elseClause)
|
|
delete elseClause;
|
|
|
|
// An IfStmt's IntegerSet 'set' should not be deleted since it is
|
|
// allocated through MLIRContext's bump pointer allocator.
|
|
}
|
|
|
|
IfStmt *IfStmt::create(Location *location, ArrayRef<MLValue *> operands,
|
|
IntegerSet *set) {
|
|
unsigned numOperands = operands.size();
|
|
assert(numOperands == set->getNumOperands() &&
|
|
"operand cound does not match the integer set operand count");
|
|
|
|
IfStmt *stmt = new IfStmt(location, numOperands, set);
|
|
|
|
for (auto *op : operands)
|
|
stmt->operands.emplace_back(StmtOperand(stmt, op));
|
|
|
|
return stmt;
|
|
}
|
|
|
|
const AffineCondition IfStmt::getCondition() const {
|
|
return AffineCondition(*this, set);
|
|
}
|
|
|
|
MLIRContext *IfStmt::getContext() const {
|
|
// Check for degenerate case of if statement with no operands.
|
|
// This is unlikely, but legal.
|
|
if (operands.empty())
|
|
return findFunction()->getContext();
|
|
|
|
return getOperand(0)->getType()->getContext();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Statement Cloning
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// Create a deep copy of this statement, remapping any operands that use
|
|
/// values outside of the statement using the map that is provided (leaving
|
|
/// them alone if no entry is present). Replaces references to cloned
|
|
/// sub-statements to the corresponding statement that is copied, and adds
|
|
/// those mappings to the map.
|
|
Statement *Statement::clone(DenseMap<const MLValue *, MLValue *> &operandMap,
|
|
MLIRContext *context) const {
|
|
// If the specified value is in operandMap, return the remapped value.
|
|
// Otherwise return the value itself.
|
|
auto remapOperand = [&](const MLValue *value) -> MLValue * {
|
|
auto it = operandMap.find(value);
|
|
return it != operandMap.end() ? it->second : const_cast<MLValue *>(value);
|
|
};
|
|
|
|
SmallVector<MLValue *, 8> operands;
|
|
operands.reserve(getNumOperands());
|
|
for (auto *opValue : getOperands())
|
|
operands.push_back(remapOperand(opValue));
|
|
|
|
if (auto *opStmt = dyn_cast<OperationStmt>(this)) {
|
|
SmallVector<Type *, 8> resultTypes;
|
|
resultTypes.reserve(opStmt->getNumResults());
|
|
for (auto *result : opStmt->getResults())
|
|
resultTypes.push_back(result->getType());
|
|
auto *newOp =
|
|
OperationStmt::create(getLoc(), opStmt->getName(), operands,
|
|
resultTypes, opStmt->getAttrs(), context);
|
|
// Remember the mapping of any results.
|
|
for (unsigned i = 0, e = opStmt->getNumResults(); i != e; ++i)
|
|
operandMap[opStmt->getResult(i)] = newOp->getResult(i);
|
|
return newOp;
|
|
}
|
|
|
|
if (auto *forStmt = dyn_cast<ForStmt>(this)) {
|
|
auto *lbMap = forStmt->getLowerBoundMap();
|
|
auto *ubMap = forStmt->getUpperBoundMap();
|
|
|
|
auto *newFor = ForStmt::create(
|
|
getLoc(),
|
|
ArrayRef<MLValue *>(operands).take_front(lbMap->getNumInputs()), lbMap,
|
|
ArrayRef<MLValue *>(operands).take_back(ubMap->getNumInputs()), ubMap,
|
|
forStmt->getStep(), context);
|
|
|
|
// Remember the induction variable mapping.
|
|
operandMap[forStmt] = newFor;
|
|
|
|
// Recursively clone the body of the for loop.
|
|
for (auto &subStmt : *forStmt)
|
|
newFor->push_back(subStmt.clone(operandMap, context));
|
|
|
|
return newFor;
|
|
}
|
|
|
|
// Otherwise, we must have an If statement.
|
|
auto *ifStmt = cast<IfStmt>(this);
|
|
auto *newIf = IfStmt::create(getLoc(), operands, ifStmt->getIntegerSet());
|
|
|
|
auto *resultThen = newIf->getThen();
|
|
for (auto &childStmt : *ifStmt->getThen())
|
|
resultThen->push_back(childStmt.clone(operandMap, context));
|
|
|
|
if (ifStmt->hasElse()) {
|
|
auto *resultElse = newIf->createElse();
|
|
for (auto &childStmt : *ifStmt->getElse())
|
|
resultElse->push_back(childStmt.clone(operandMap, context));
|
|
}
|
|
|
|
return newIf;
|
|
}
|