llvm-capstone/clang/lib/AST/ASTStructuralEquivalence.cpp
Hans Wennborg 8ba442bc21 Revert "Following up on PR48517, fix handling of template arguments that refer"
Combined with 'da98651 - Revert "DR2064:
decltype(E) is only a dependent', this change (5a391d3) caused verifier
errors when building Chromium. See https://crbug.com/1168494#c1 for a
reproducer.

Additionally it reverts changes that were dependent on this one, see
below.

> Following up on PR48517, fix handling of template arguments that refer
> to dependent declarations.
>
> Treat an id-expression that names a local variable in a templated
> function as being instantiation-dependent.
>
> This addresses a language defect whereby a reference to a dependent
> declaration can be formed without any construct being value-dependent.
> Fixing that through value-dependence turns out to be problematic, so
> instead this patch takes the approach (proposed on the core reflector)
> of allowing the use of pointers or references to (but not values of)
> dependent declarations inside value-dependent expressions, and instead
> treating template arguments as dependent if they evaluate to a constant
> involving such dependent declarations.
>
> This ends up affecting a bunch of OpenMP tests, due to OpenMP
> imprecisely handling instantiation-dependent constructs, bailing out
> early instead of processing dependent constructs to the extent possible
> when handling the template.
>
> Previously committed as 8c1f2d15b8, and
> reverted because a dependency commit was reverted.

This reverts commit 5a391d38ac.

It also restores clang/test/SemaCXX/coroutines.cpp to its state before
da986511fb.

Revert "[c++20] P1907R1: Support for generalized non-type template arguments of scalar type."

> Previously committed as 9e08e51a20, and
> reverted because a dependency commit was reverted. This incorporates the
> following follow-on commits that were also reverted:
>
> 7e84aa1b81 by Simon Pilgrim
> ed13d8c667 by me
> 95c7b6cadb by Sam McCall
> 430d5d8429 by Dave Zarzycki

This reverts commit 4b574008ae.

Revert "[msabi] Mangle a template argument referring to array-to-pointer decay"

> [msabi] Mangle a template argument referring to array-to-pointer decay
> applied to an array the same as the array itself.
>
> This follows MS ABI, and corrects a regression from the implementation
> of generalized non-type template parameters, where we "forgot" how to
> mangle this case.

This reverts commit 18e093faf7.
2021-01-20 15:55:35 +01:00

2087 lines
78 KiB
C++

//===- ASTStructuralEquivalence.cpp ---------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implement StructuralEquivalenceContext class and helper functions
// for layout matching.
//
// The structural equivalence check could have been implemented as a parallel
// BFS on a pair of graphs. That must have been the original approach at the
// beginning.
// Let's consider this simple BFS algorithm from the `s` source:
// ```
// void bfs(Graph G, int s)
// {
// Queue<Integer> queue = new Queue<Integer>();
// marked[s] = true; // Mark the source
// queue.enqueue(s); // and put it on the queue.
// while (!q.isEmpty()) {
// int v = queue.dequeue(); // Remove next vertex from the queue.
// for (int w : G.adj(v))
// if (!marked[w]) // For every unmarked adjacent vertex,
// {
// marked[w] = true;
// queue.enqueue(w);
// }
// }
// }
// ```
// Indeed, it has it's queue, which holds pairs of nodes, one from each graph,
// this is the `DeclsToCheck` member. `VisitedDecls` plays the role of the
// marking (`marked`) functionality above, we use it to check whether we've
// already seen a pair of nodes.
//
// We put in the elements into the queue only in the toplevel decl check
// function:
// ```
// static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
// Decl *D1, Decl *D2);
// ```
// The `while` loop where we iterate over the children is implemented in
// `Finish()`. And `Finish` is called only from the two **member** functions
// which check the equivalency of two Decls or two Types. ASTImporter (and
// other clients) call only these functions.
//
// The `static` implementation functions are called from `Finish`, these push
// the children nodes to the queue via `static bool
// IsStructurallyEquivalent(StructuralEquivalenceContext &Context, Decl *D1,
// Decl *D2)`. So far so good, this is almost like the BFS. However, if we
// let a static implementation function to call `Finish` via another **member**
// function that means we end up with two nested while loops each of them
// working on the same queue. This is wrong and nobody can reason about it's
// doing. Thus, static implementation functions must not call the **member**
// functions.
//
//===----------------------------------------------------------------------===//
#include "clang/AST/ASTStructuralEquivalence.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/ASTDiagnostic.h"
#include "clang/AST/Decl.h"
#include "clang/AST/DeclBase.h"
#include "clang/AST/DeclCXX.h"
#include "clang/AST/DeclFriend.h"
#include "clang/AST/DeclObjC.h"
#include "clang/AST/DeclOpenMP.h"
#include "clang/AST/DeclTemplate.h"
#include "clang/AST/ExprCXX.h"
#include "clang/AST/ExprConcepts.h"
#include "clang/AST/ExprObjC.h"
#include "clang/AST/ExprOpenMP.h"
#include "clang/AST/NestedNameSpecifier.h"
#include "clang/AST/StmtObjC.h"
#include "clang/AST/StmtOpenMP.h"
#include "clang/AST/TemplateBase.h"
#include "clang/AST/TemplateName.h"
#include "clang/AST/Type.h"
#include "clang/Basic/ExceptionSpecificationType.h"
#include "clang/Basic/IdentifierTable.h"
#include "clang/Basic/LLVM.h"
#include "clang/Basic/SourceLocation.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/APSInt.h"
#include "llvm/ADT/None.h"
#include "llvm/ADT/Optional.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/ErrorHandling.h"
#include <cassert>
#include <utility>
using namespace clang;
static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
QualType T1, QualType T2);
static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
Decl *D1, Decl *D2);
static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
const TemplateArgument &Arg1,
const TemplateArgument &Arg2);
static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
NestedNameSpecifier *NNS1,
NestedNameSpecifier *NNS2);
static bool IsStructurallyEquivalent(const IdentifierInfo *Name1,
const IdentifierInfo *Name2);
static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
const DeclarationName Name1,
const DeclarationName Name2) {
if (Name1.getNameKind() != Name2.getNameKind())
return false;
switch (Name1.getNameKind()) {
case DeclarationName::Identifier:
return IsStructurallyEquivalent(Name1.getAsIdentifierInfo(),
Name2.getAsIdentifierInfo());
case DeclarationName::CXXConstructorName:
case DeclarationName::CXXDestructorName:
case DeclarationName::CXXConversionFunctionName:
return IsStructurallyEquivalent(Context, Name1.getCXXNameType(),
Name2.getCXXNameType());
case DeclarationName::CXXDeductionGuideName: {
if (!IsStructurallyEquivalent(
Context, Name1.getCXXDeductionGuideTemplate()->getDeclName(),
Name2.getCXXDeductionGuideTemplate()->getDeclName()))
return false;
return IsStructurallyEquivalent(Context,
Name1.getCXXDeductionGuideTemplate(),
Name2.getCXXDeductionGuideTemplate());
}
case DeclarationName::CXXOperatorName:
return Name1.getCXXOverloadedOperator() == Name2.getCXXOverloadedOperator();
case DeclarationName::CXXLiteralOperatorName:
return IsStructurallyEquivalent(Name1.getCXXLiteralIdentifier(),
Name2.getCXXLiteralIdentifier());
case DeclarationName::CXXUsingDirective:
return true; // FIXME When do we consider two using directives equal?
case DeclarationName::ObjCZeroArgSelector:
case DeclarationName::ObjCOneArgSelector:
case DeclarationName::ObjCMultiArgSelector:
return true; // FIXME
}
llvm_unreachable("Unhandled kind of DeclarationName");
return true;
}
namespace {
/// Encapsulates Stmt comparison logic.
class StmtComparer {
StructuralEquivalenceContext &Context;
// IsStmtEquivalent overloads. Each overload compares a specific statement
// and only has to compare the data that is specific to the specific statement
// class. Should only be called from TraverseStmt.
bool IsStmtEquivalent(const AddrLabelExpr *E1, const AddrLabelExpr *E2) {
return IsStructurallyEquivalent(Context, E1->getLabel(), E2->getLabel());
}
bool IsStmtEquivalent(const AtomicExpr *E1, const AtomicExpr *E2) {
return E1->getOp() == E2->getOp();
}
bool IsStmtEquivalent(const BinaryOperator *E1, const BinaryOperator *E2) {
return E1->getOpcode() == E2->getOpcode();
}
bool IsStmtEquivalent(const CallExpr *E1, const CallExpr *E2) {
// FIXME: IsStructurallyEquivalent requires non-const Decls.
Decl *Callee1 = const_cast<Decl *>(E1->getCalleeDecl());
Decl *Callee2 = const_cast<Decl *>(E2->getCalleeDecl());
// Compare whether both calls know their callee.
if (static_cast<bool>(Callee1) != static_cast<bool>(Callee2))
return false;
// Both calls have no callee, so nothing to do.
if (!static_cast<bool>(Callee1))
return true;
assert(Callee2);
return IsStructurallyEquivalent(Context, Callee1, Callee2);
}
bool IsStmtEquivalent(const CharacterLiteral *E1,
const CharacterLiteral *E2) {
return E1->getValue() == E2->getValue() && E1->getKind() == E2->getKind();
}
bool IsStmtEquivalent(const ChooseExpr *E1, const ChooseExpr *E2) {
return true; // Semantics only depend on children.
}
bool IsStmtEquivalent(const CompoundStmt *E1, const CompoundStmt *E2) {
// Number of children is actually checked by the generic children comparison
// code, but a CompoundStmt is one of the few statements where the number of
// children frequently differs and the number of statements is also always
// precomputed. Directly comparing the number of children here is thus
// just an optimization.
return E1->size() == E2->size();
}
bool IsStmtEquivalent(const DependentScopeDeclRefExpr *DE1,
const DependentScopeDeclRefExpr *DE2) {
if (!IsStructurallyEquivalent(Context, DE1->getDeclName(),
DE2->getDeclName()))
return false;
return IsStructurallyEquivalent(Context, DE1->getQualifier(),
DE2->getQualifier());
}
bool IsStmtEquivalent(const Expr *E1, const Expr *E2) {
return IsStructurallyEquivalent(Context, E1->getType(), E2->getType());
}
bool IsStmtEquivalent(const ExpressionTraitExpr *E1,
const ExpressionTraitExpr *E2) {
return E1->getTrait() == E2->getTrait() && E1->getValue() == E2->getValue();
}
bool IsStmtEquivalent(const FloatingLiteral *E1, const FloatingLiteral *E2) {
return E1->isExact() == E2->isExact() && E1->getValue() == E2->getValue();
}
bool IsStmtEquivalent(const GenericSelectionExpr *E1,
const GenericSelectionExpr *E2) {
for (auto Pair : zip_longest(E1->getAssocTypeSourceInfos(),
E2->getAssocTypeSourceInfos())) {
Optional<TypeSourceInfo *> Child1 = std::get<0>(Pair);
Optional<TypeSourceInfo *> Child2 = std::get<1>(Pair);
// Skip this case if there are a different number of associated types.
if (!Child1 || !Child2)
return false;
if (!IsStructurallyEquivalent(Context, (*Child1)->getType(),
(*Child2)->getType()))
return false;
}
return true;
}
bool IsStmtEquivalent(const ImplicitCastExpr *CastE1,
const ImplicitCastExpr *CastE2) {
return IsStructurallyEquivalent(Context, CastE1->getType(),
CastE2->getType());
}
bool IsStmtEquivalent(const IntegerLiteral *E1, const IntegerLiteral *E2) {
return E1->getValue() == E2->getValue();
}
bool IsStmtEquivalent(const MemberExpr *E1, const MemberExpr *E2) {
return IsStructurallyEquivalent(Context, E1->getFoundDecl(),
E2->getFoundDecl());
}
bool IsStmtEquivalent(const ObjCStringLiteral *E1,
const ObjCStringLiteral *E2) {
// Just wraps a StringLiteral child.
return true;
}
bool IsStmtEquivalent(const Stmt *S1, const Stmt *S2) { return true; }
bool IsStmtEquivalent(const SourceLocExpr *E1, const SourceLocExpr *E2) {
return E1->getIdentKind() == E2->getIdentKind();
}
bool IsStmtEquivalent(const StmtExpr *E1, const StmtExpr *E2) {
return E1->getTemplateDepth() == E2->getTemplateDepth();
}
bool IsStmtEquivalent(const StringLiteral *E1, const StringLiteral *E2) {
return E1->getBytes() == E2->getBytes();
}
bool IsStmtEquivalent(const SubstNonTypeTemplateParmExpr *E1,
const SubstNonTypeTemplateParmExpr *E2) {
return IsStructurallyEquivalent(Context, E1->getParameter(),
E2->getParameter());
}
bool IsStmtEquivalent(const SubstNonTypeTemplateParmPackExpr *E1,
const SubstNonTypeTemplateParmPackExpr *E2) {
return IsStructurallyEquivalent(Context, E1->getArgumentPack(),
E2->getArgumentPack());
}
bool IsStmtEquivalent(const TypeTraitExpr *E1, const TypeTraitExpr *E2) {
if (E1->getTrait() != E2->getTrait())
return false;
for (auto Pair : zip_longest(E1->getArgs(), E2->getArgs())) {
Optional<TypeSourceInfo *> Child1 = std::get<0>(Pair);
Optional<TypeSourceInfo *> Child2 = std::get<1>(Pair);
// Different number of args.
if (!Child1 || !Child2)
return false;
if (!IsStructurallyEquivalent(Context, (*Child1)->getType(),
(*Child2)->getType()))
return false;
}
return true;
}
bool IsStmtEquivalent(const UnaryExprOrTypeTraitExpr *E1,
const UnaryExprOrTypeTraitExpr *E2) {
if (E1->getKind() != E2->getKind())
return false;
return IsStructurallyEquivalent(Context, E1->getTypeOfArgument(),
E2->getTypeOfArgument());
}
bool IsStmtEquivalent(const UnaryOperator *E1, const UnaryOperator *E2) {
return E1->getOpcode() == E2->getOpcode();
}
bool IsStmtEquivalent(const VAArgExpr *E1, const VAArgExpr *E2) {
// Semantics only depend on children.
return true;
}
/// End point of the traversal chain.
bool TraverseStmt(const Stmt *S1, const Stmt *S2) { return true; }
// Create traversal methods that traverse the class hierarchy and return
// the accumulated result of the comparison. Each TraverseStmt overload
// calls the TraverseStmt overload of the parent class. For example,
// the TraverseStmt overload for 'BinaryOperator' calls the TraverseStmt
// overload of 'Expr' which then calls the overload for 'Stmt'.
#define STMT(CLASS, PARENT) \
bool TraverseStmt(const CLASS *S1, const CLASS *S2) { \
if (!TraverseStmt(static_cast<const PARENT *>(S1), \
static_cast<const PARENT *>(S2))) \
return false; \
return IsStmtEquivalent(S1, S2); \
}
#include "clang/AST/StmtNodes.inc"
public:
StmtComparer(StructuralEquivalenceContext &C) : Context(C) {}
/// Determine whether two statements are equivalent. The statements have to
/// be of the same kind. The children of the statements and their properties
/// are not compared by this function.
bool IsEquivalent(const Stmt *S1, const Stmt *S2) {
if (S1->getStmtClass() != S2->getStmtClass())
return false;
// Each TraverseStmt walks the class hierarchy from the leaf class to
// the root class 'Stmt' (e.g. 'BinaryOperator' -> 'Expr' -> 'Stmt'). Cast
// the Stmt we have here to its specific subclass so that we call the
// overload that walks the whole class hierarchy from leaf to root (e.g.,
// cast to 'BinaryOperator' so that 'Expr' and 'Stmt' is traversed).
switch (S1->getStmtClass()) {
case Stmt::NoStmtClass:
llvm_unreachable("Can't traverse NoStmtClass");
#define STMT(CLASS, PARENT) \
case Stmt::StmtClass::CLASS##Class: \
return TraverseStmt(static_cast<const CLASS *>(S1), \
static_cast<const CLASS *>(S2));
#define ABSTRACT_STMT(S)
#include "clang/AST/StmtNodes.inc"
}
llvm_unreachable("Invalid statement kind");
}
};
} // namespace
/// Determine structural equivalence of two statements.
static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
const Stmt *S1, const Stmt *S2) {
if (!S1 || !S2)
return S1 == S2;
// Compare the statements itself.
StmtComparer Comparer(Context);
if (!Comparer.IsEquivalent(S1, S2))
return false;
// Iterate over the children of both statements and also compare them.
for (auto Pair : zip_longest(S1->children(), S2->children())) {
Optional<const Stmt *> Child1 = std::get<0>(Pair);
Optional<const Stmt *> Child2 = std::get<1>(Pair);
// One of the statements has a different amount of children than the other,
// so the statements can't be equivalent.
if (!Child1 || !Child2)
return false;
if (!IsStructurallyEquivalent(Context, *Child1, *Child2))
return false;
}
return true;
}
/// Determine whether two identifiers are equivalent.
static bool IsStructurallyEquivalent(const IdentifierInfo *Name1,
const IdentifierInfo *Name2) {
if (!Name1 || !Name2)
return Name1 == Name2;
return Name1->getName() == Name2->getName();
}
/// Determine whether two nested-name-specifiers are equivalent.
static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
NestedNameSpecifier *NNS1,
NestedNameSpecifier *NNS2) {
if (NNS1->getKind() != NNS2->getKind())
return false;
NestedNameSpecifier *Prefix1 = NNS1->getPrefix(),
*Prefix2 = NNS2->getPrefix();
if ((bool)Prefix1 != (bool)Prefix2)
return false;
if (Prefix1)
if (!IsStructurallyEquivalent(Context, Prefix1, Prefix2))
return false;
switch (NNS1->getKind()) {
case NestedNameSpecifier::Identifier:
return IsStructurallyEquivalent(NNS1->getAsIdentifier(),
NNS2->getAsIdentifier());
case NestedNameSpecifier::Namespace:
return IsStructurallyEquivalent(Context, NNS1->getAsNamespace(),
NNS2->getAsNamespace());
case NestedNameSpecifier::NamespaceAlias:
return IsStructurallyEquivalent(Context, NNS1->getAsNamespaceAlias(),
NNS2->getAsNamespaceAlias());
case NestedNameSpecifier::TypeSpec:
case NestedNameSpecifier::TypeSpecWithTemplate:
return IsStructurallyEquivalent(Context, QualType(NNS1->getAsType(), 0),
QualType(NNS2->getAsType(), 0));
case NestedNameSpecifier::Global:
return true;
case NestedNameSpecifier::Super:
return IsStructurallyEquivalent(Context, NNS1->getAsRecordDecl(),
NNS2->getAsRecordDecl());
}
return false;
}
static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
const TemplateName &N1,
const TemplateName &N2) {
TemplateDecl *TemplateDeclN1 = N1.getAsTemplateDecl();
TemplateDecl *TemplateDeclN2 = N2.getAsTemplateDecl();
if (TemplateDeclN1 && TemplateDeclN2) {
if (!IsStructurallyEquivalent(Context, TemplateDeclN1, TemplateDeclN2))
return false;
// If the kind is different we compare only the template decl.
if (N1.getKind() != N2.getKind())
return true;
} else if (TemplateDeclN1 || TemplateDeclN2)
return false;
else if (N1.getKind() != N2.getKind())
return false;
// Check for special case incompatibilities.
switch (N1.getKind()) {
case TemplateName::OverloadedTemplate: {
OverloadedTemplateStorage *OS1 = N1.getAsOverloadedTemplate(),
*OS2 = N2.getAsOverloadedTemplate();
OverloadedTemplateStorage::iterator I1 = OS1->begin(), I2 = OS2->begin(),
E1 = OS1->end(), E2 = OS2->end();
for (; I1 != E1 && I2 != E2; ++I1, ++I2)
if (!IsStructurallyEquivalent(Context, *I1, *I2))
return false;
return I1 == E1 && I2 == E2;
}
case TemplateName::AssumedTemplate: {
AssumedTemplateStorage *TN1 = N1.getAsAssumedTemplateName(),
*TN2 = N1.getAsAssumedTemplateName();
return TN1->getDeclName() == TN2->getDeclName();
}
case TemplateName::DependentTemplate: {
DependentTemplateName *DN1 = N1.getAsDependentTemplateName(),
*DN2 = N2.getAsDependentTemplateName();
if (!IsStructurallyEquivalent(Context, DN1->getQualifier(),
DN2->getQualifier()))
return false;
if (DN1->isIdentifier() && DN2->isIdentifier())
return IsStructurallyEquivalent(DN1->getIdentifier(),
DN2->getIdentifier());
else if (DN1->isOverloadedOperator() && DN2->isOverloadedOperator())
return DN1->getOperator() == DN2->getOperator();
return false;
}
case TemplateName::SubstTemplateTemplateParmPack: {
SubstTemplateTemplateParmPackStorage
*P1 = N1.getAsSubstTemplateTemplateParmPack(),
*P2 = N2.getAsSubstTemplateTemplateParmPack();
return IsStructurallyEquivalent(Context, P1->getArgumentPack(),
P2->getArgumentPack()) &&
IsStructurallyEquivalent(Context, P1->getParameterPack(),
P2->getParameterPack());
}
case TemplateName::Template:
case TemplateName::QualifiedTemplate:
case TemplateName::SubstTemplateTemplateParm:
// It is sufficient to check value of getAsTemplateDecl.
break;
}
return true;
}
/// Determine whether two template arguments are equivalent.
static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
const TemplateArgument &Arg1,
const TemplateArgument &Arg2) {
if (Arg1.getKind() != Arg2.getKind())
return false;
switch (Arg1.getKind()) {
case TemplateArgument::Null:
return true;
case TemplateArgument::Type:
return IsStructurallyEquivalent(Context, Arg1.getAsType(), Arg2.getAsType());
case TemplateArgument::Integral:
if (!IsStructurallyEquivalent(Context, Arg1.getIntegralType(),
Arg2.getIntegralType()))
return false;
return llvm::APSInt::isSameValue(Arg1.getAsIntegral(),
Arg2.getAsIntegral());
case TemplateArgument::Declaration:
return IsStructurallyEquivalent(Context, Arg1.getAsDecl(), Arg2.getAsDecl());
case TemplateArgument::NullPtr:
return true; // FIXME: Is this correct?
case TemplateArgument::Template:
return IsStructurallyEquivalent(Context, Arg1.getAsTemplate(),
Arg2.getAsTemplate());
case TemplateArgument::TemplateExpansion:
return IsStructurallyEquivalent(Context,
Arg1.getAsTemplateOrTemplatePattern(),
Arg2.getAsTemplateOrTemplatePattern());
case TemplateArgument::Expression:
return IsStructurallyEquivalent(Context, Arg1.getAsExpr(),
Arg2.getAsExpr());
case TemplateArgument::Pack:
if (Arg1.pack_size() != Arg2.pack_size())
return false;
for (unsigned I = 0, N = Arg1.pack_size(); I != N; ++I)
if (!IsStructurallyEquivalent(Context, Arg1.pack_begin()[I],
Arg2.pack_begin()[I]))
return false;
return true;
}
llvm_unreachable("Invalid template argument kind");
}
/// Determine structural equivalence for the common part of array
/// types.
static bool IsArrayStructurallyEquivalent(StructuralEquivalenceContext &Context,
const ArrayType *Array1,
const ArrayType *Array2) {
if (!IsStructurallyEquivalent(Context, Array1->getElementType(),
Array2->getElementType()))
return false;
if (Array1->getSizeModifier() != Array2->getSizeModifier())
return false;
if (Array1->getIndexTypeQualifiers() != Array2->getIndexTypeQualifiers())
return false;
return true;
}
/// Determine structural equivalence based on the ExtInfo of functions. This
/// is inspired by ASTContext::mergeFunctionTypes(), we compare calling
/// conventions bits but must not compare some other bits.
static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
FunctionType::ExtInfo EI1,
FunctionType::ExtInfo EI2) {
// Compatible functions must have compatible calling conventions.
if (EI1.getCC() != EI2.getCC())
return false;
// Regparm is part of the calling convention.
if (EI1.getHasRegParm() != EI2.getHasRegParm())
return false;
if (EI1.getRegParm() != EI2.getRegParm())
return false;
if (EI1.getProducesResult() != EI2.getProducesResult())
return false;
if (EI1.getNoCallerSavedRegs() != EI2.getNoCallerSavedRegs())
return false;
if (EI1.getNoCfCheck() != EI2.getNoCfCheck())
return false;
return true;
}
/// Check the equivalence of exception specifications.
static bool IsEquivalentExceptionSpec(StructuralEquivalenceContext &Context,
const FunctionProtoType *Proto1,
const FunctionProtoType *Proto2) {
auto Spec1 = Proto1->getExceptionSpecType();
auto Spec2 = Proto2->getExceptionSpecType();
if (isUnresolvedExceptionSpec(Spec1) || isUnresolvedExceptionSpec(Spec2))
return true;
if (Spec1 != Spec2)
return false;
if (Spec1 == EST_Dynamic) {
if (Proto1->getNumExceptions() != Proto2->getNumExceptions())
return false;
for (unsigned I = 0, N = Proto1->getNumExceptions(); I != N; ++I) {
if (!IsStructurallyEquivalent(Context, Proto1->getExceptionType(I),
Proto2->getExceptionType(I)))
return false;
}
} else if (isComputedNoexcept(Spec1)) {
if (!IsStructurallyEquivalent(Context, Proto1->getNoexceptExpr(),
Proto2->getNoexceptExpr()))
return false;
}
return true;
}
/// Determine structural equivalence of two types.
static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
QualType T1, QualType T2) {
if (T1.isNull() || T2.isNull())
return T1.isNull() && T2.isNull();
QualType OrigT1 = T1;
QualType OrigT2 = T2;
if (!Context.StrictTypeSpelling) {
// We aren't being strict about token-to-token equivalence of types,
// so map down to the canonical type.
T1 = Context.FromCtx.getCanonicalType(T1);
T2 = Context.ToCtx.getCanonicalType(T2);
}
if (T1.getQualifiers() != T2.getQualifiers())
return false;
Type::TypeClass TC = T1->getTypeClass();
if (T1->getTypeClass() != T2->getTypeClass()) {
// Compare function types with prototypes vs. without prototypes as if
// both did not have prototypes.
if (T1->getTypeClass() == Type::FunctionProto &&
T2->getTypeClass() == Type::FunctionNoProto)
TC = Type::FunctionNoProto;
else if (T1->getTypeClass() == Type::FunctionNoProto &&
T2->getTypeClass() == Type::FunctionProto)
TC = Type::FunctionNoProto;
else
return false;
}
switch (TC) {
case Type::Builtin:
// FIXME: Deal with Char_S/Char_U.
if (cast<BuiltinType>(T1)->getKind() != cast<BuiltinType>(T2)->getKind())
return false;
break;
case Type::Complex:
if (!IsStructurallyEquivalent(Context,
cast<ComplexType>(T1)->getElementType(),
cast<ComplexType>(T2)->getElementType()))
return false;
break;
case Type::Adjusted:
case Type::Decayed:
if (!IsStructurallyEquivalent(Context,
cast<AdjustedType>(T1)->getOriginalType(),
cast<AdjustedType>(T2)->getOriginalType()))
return false;
break;
case Type::Pointer:
if (!IsStructurallyEquivalent(Context,
cast<PointerType>(T1)->getPointeeType(),
cast<PointerType>(T2)->getPointeeType()))
return false;
break;
case Type::BlockPointer:
if (!IsStructurallyEquivalent(Context,
cast<BlockPointerType>(T1)->getPointeeType(),
cast<BlockPointerType>(T2)->getPointeeType()))
return false;
break;
case Type::LValueReference:
case Type::RValueReference: {
const auto *Ref1 = cast<ReferenceType>(T1);
const auto *Ref2 = cast<ReferenceType>(T2);
if (Ref1->isSpelledAsLValue() != Ref2->isSpelledAsLValue())
return false;
if (Ref1->isInnerRef() != Ref2->isInnerRef())
return false;
if (!IsStructurallyEquivalent(Context, Ref1->getPointeeTypeAsWritten(),
Ref2->getPointeeTypeAsWritten()))
return false;
break;
}
case Type::MemberPointer: {
const auto *MemPtr1 = cast<MemberPointerType>(T1);
const auto *MemPtr2 = cast<MemberPointerType>(T2);
if (!IsStructurallyEquivalent(Context, MemPtr1->getPointeeType(),
MemPtr2->getPointeeType()))
return false;
if (!IsStructurallyEquivalent(Context, QualType(MemPtr1->getClass(), 0),
QualType(MemPtr2->getClass(), 0)))
return false;
break;
}
case Type::ConstantArray: {
const auto *Array1 = cast<ConstantArrayType>(T1);
const auto *Array2 = cast<ConstantArrayType>(T2);
if (!llvm::APInt::isSameValue(Array1->getSize(), Array2->getSize()))
return false;
if (!IsArrayStructurallyEquivalent(Context, Array1, Array2))
return false;
break;
}
case Type::IncompleteArray:
if (!IsArrayStructurallyEquivalent(Context, cast<ArrayType>(T1),
cast<ArrayType>(T2)))
return false;
break;
case Type::VariableArray: {
const auto *Array1 = cast<VariableArrayType>(T1);
const auto *Array2 = cast<VariableArrayType>(T2);
if (!IsStructurallyEquivalent(Context, Array1->getSizeExpr(),
Array2->getSizeExpr()))
return false;
if (!IsArrayStructurallyEquivalent(Context, Array1, Array2))
return false;
break;
}
case Type::DependentSizedArray: {
const auto *Array1 = cast<DependentSizedArrayType>(T1);
const auto *Array2 = cast<DependentSizedArrayType>(T2);
if (!IsStructurallyEquivalent(Context, Array1->getSizeExpr(),
Array2->getSizeExpr()))
return false;
if (!IsArrayStructurallyEquivalent(Context, Array1, Array2))
return false;
break;
}
case Type::DependentAddressSpace: {
const auto *DepAddressSpace1 = cast<DependentAddressSpaceType>(T1);
const auto *DepAddressSpace2 = cast<DependentAddressSpaceType>(T2);
if (!IsStructurallyEquivalent(Context, DepAddressSpace1->getAddrSpaceExpr(),
DepAddressSpace2->getAddrSpaceExpr()))
return false;
if (!IsStructurallyEquivalent(Context, DepAddressSpace1->getPointeeType(),
DepAddressSpace2->getPointeeType()))
return false;
break;
}
case Type::DependentSizedExtVector: {
const auto *Vec1 = cast<DependentSizedExtVectorType>(T1);
const auto *Vec2 = cast<DependentSizedExtVectorType>(T2);
if (!IsStructurallyEquivalent(Context, Vec1->getSizeExpr(),
Vec2->getSizeExpr()))
return false;
if (!IsStructurallyEquivalent(Context, Vec1->getElementType(),
Vec2->getElementType()))
return false;
break;
}
case Type::DependentVector: {
const auto *Vec1 = cast<DependentVectorType>(T1);
const auto *Vec2 = cast<DependentVectorType>(T2);
if (Vec1->getVectorKind() != Vec2->getVectorKind())
return false;
if (!IsStructurallyEquivalent(Context, Vec1->getSizeExpr(),
Vec2->getSizeExpr()))
return false;
if (!IsStructurallyEquivalent(Context, Vec1->getElementType(),
Vec2->getElementType()))
return false;
break;
}
case Type::Vector:
case Type::ExtVector: {
const auto *Vec1 = cast<VectorType>(T1);
const auto *Vec2 = cast<VectorType>(T2);
if (!IsStructurallyEquivalent(Context, Vec1->getElementType(),
Vec2->getElementType()))
return false;
if (Vec1->getNumElements() != Vec2->getNumElements())
return false;
if (Vec1->getVectorKind() != Vec2->getVectorKind())
return false;
break;
}
case Type::DependentSizedMatrix: {
const DependentSizedMatrixType *Mat1 = cast<DependentSizedMatrixType>(T1);
const DependentSizedMatrixType *Mat2 = cast<DependentSizedMatrixType>(T2);
// The element types, row and column expressions must be structurally
// equivalent.
if (!IsStructurallyEquivalent(Context, Mat1->getRowExpr(),
Mat2->getRowExpr()) ||
!IsStructurallyEquivalent(Context, Mat1->getColumnExpr(),
Mat2->getColumnExpr()) ||
!IsStructurallyEquivalent(Context, Mat1->getElementType(),
Mat2->getElementType()))
return false;
break;
}
case Type::ConstantMatrix: {
const ConstantMatrixType *Mat1 = cast<ConstantMatrixType>(T1);
const ConstantMatrixType *Mat2 = cast<ConstantMatrixType>(T2);
// The element types must be structurally equivalent and the number of rows
// and columns must match.
if (!IsStructurallyEquivalent(Context, Mat1->getElementType(),
Mat2->getElementType()) ||
Mat1->getNumRows() != Mat2->getNumRows() ||
Mat1->getNumColumns() != Mat2->getNumColumns())
return false;
break;
}
case Type::FunctionProto: {
const auto *Proto1 = cast<FunctionProtoType>(T1);
const auto *Proto2 = cast<FunctionProtoType>(T2);
if (Proto1->getNumParams() != Proto2->getNumParams())
return false;
for (unsigned I = 0, N = Proto1->getNumParams(); I != N; ++I) {
if (!IsStructurallyEquivalent(Context, Proto1->getParamType(I),
Proto2->getParamType(I)))
return false;
}
if (Proto1->isVariadic() != Proto2->isVariadic())
return false;
if (Proto1->getMethodQuals() != Proto2->getMethodQuals())
return false;
// Check exceptions, this information is lost in canonical type.
const auto *OrigProto1 =
cast<FunctionProtoType>(OrigT1.getDesugaredType(Context.FromCtx));
const auto *OrigProto2 =
cast<FunctionProtoType>(OrigT2.getDesugaredType(Context.ToCtx));
if (!IsEquivalentExceptionSpec(Context, OrigProto1, OrigProto2))
return false;
// Fall through to check the bits common with FunctionNoProtoType.
LLVM_FALLTHROUGH;
}
case Type::FunctionNoProto: {
const auto *Function1 = cast<FunctionType>(T1);
const auto *Function2 = cast<FunctionType>(T2);
if (!IsStructurallyEquivalent(Context, Function1->getReturnType(),
Function2->getReturnType()))
return false;
if (!IsStructurallyEquivalent(Context, Function1->getExtInfo(),
Function2->getExtInfo()))
return false;
break;
}
case Type::UnresolvedUsing:
if (!IsStructurallyEquivalent(Context,
cast<UnresolvedUsingType>(T1)->getDecl(),
cast<UnresolvedUsingType>(T2)->getDecl()))
return false;
break;
case Type::Attributed:
if (!IsStructurallyEquivalent(Context,
cast<AttributedType>(T1)->getModifiedType(),
cast<AttributedType>(T2)->getModifiedType()))
return false;
if (!IsStructurallyEquivalent(
Context, cast<AttributedType>(T1)->getEquivalentType(),
cast<AttributedType>(T2)->getEquivalentType()))
return false;
break;
case Type::Paren:
if (!IsStructurallyEquivalent(Context, cast<ParenType>(T1)->getInnerType(),
cast<ParenType>(T2)->getInnerType()))
return false;
break;
case Type::MacroQualified:
if (!IsStructurallyEquivalent(
Context, cast<MacroQualifiedType>(T1)->getUnderlyingType(),
cast<MacroQualifiedType>(T2)->getUnderlyingType()))
return false;
break;
case Type::Typedef:
if (!IsStructurallyEquivalent(Context, cast<TypedefType>(T1)->getDecl(),
cast<TypedefType>(T2)->getDecl()))
return false;
break;
case Type::TypeOfExpr:
if (!IsStructurallyEquivalent(
Context, cast<TypeOfExprType>(T1)->getUnderlyingExpr(),
cast<TypeOfExprType>(T2)->getUnderlyingExpr()))
return false;
break;
case Type::TypeOf:
if (!IsStructurallyEquivalent(Context,
cast<TypeOfType>(T1)->getUnderlyingType(),
cast<TypeOfType>(T2)->getUnderlyingType()))
return false;
break;
case Type::UnaryTransform:
if (!IsStructurallyEquivalent(
Context, cast<UnaryTransformType>(T1)->getUnderlyingType(),
cast<UnaryTransformType>(T2)->getUnderlyingType()))
return false;
break;
case Type::Decltype:
if (!IsStructurallyEquivalent(Context,
cast<DecltypeType>(T1)->getUnderlyingExpr(),
cast<DecltypeType>(T2)->getUnderlyingExpr()))
return false;
break;
case Type::Auto: {
auto *Auto1 = cast<AutoType>(T1);
auto *Auto2 = cast<AutoType>(T2);
if (!IsStructurallyEquivalent(Context, Auto1->getDeducedType(),
Auto2->getDeducedType()))
return false;
if (Auto1->isConstrained() != Auto2->isConstrained())
return false;
if (Auto1->isConstrained()) {
if (Auto1->getTypeConstraintConcept() !=
Auto2->getTypeConstraintConcept())
return false;
ArrayRef<TemplateArgument> Auto1Args =
Auto1->getTypeConstraintArguments();
ArrayRef<TemplateArgument> Auto2Args =
Auto2->getTypeConstraintArguments();
if (Auto1Args.size() != Auto2Args.size())
return false;
for (unsigned I = 0, N = Auto1Args.size(); I != N; ++I) {
if (!IsStructurallyEquivalent(Context, Auto1Args[I], Auto2Args[I]))
return false;
}
}
break;
}
case Type::DeducedTemplateSpecialization: {
const auto *DT1 = cast<DeducedTemplateSpecializationType>(T1);
const auto *DT2 = cast<DeducedTemplateSpecializationType>(T2);
if (!IsStructurallyEquivalent(Context, DT1->getTemplateName(),
DT2->getTemplateName()))
return false;
if (!IsStructurallyEquivalent(Context, DT1->getDeducedType(),
DT2->getDeducedType()))
return false;
break;
}
case Type::Record:
case Type::Enum:
if (!IsStructurallyEquivalent(Context, cast<TagType>(T1)->getDecl(),
cast<TagType>(T2)->getDecl()))
return false;
break;
case Type::TemplateTypeParm: {
const auto *Parm1 = cast<TemplateTypeParmType>(T1);
const auto *Parm2 = cast<TemplateTypeParmType>(T2);
if (Parm1->getDepth() != Parm2->getDepth())
return false;
if (Parm1->getIndex() != Parm2->getIndex())
return false;
if (Parm1->isParameterPack() != Parm2->isParameterPack())
return false;
// Names of template type parameters are never significant.
break;
}
case Type::SubstTemplateTypeParm: {
const auto *Subst1 = cast<SubstTemplateTypeParmType>(T1);
const auto *Subst2 = cast<SubstTemplateTypeParmType>(T2);
if (!IsStructurallyEquivalent(Context,
QualType(Subst1->getReplacedParameter(), 0),
QualType(Subst2->getReplacedParameter(), 0)))
return false;
if (!IsStructurallyEquivalent(Context, Subst1->getReplacementType(),
Subst2->getReplacementType()))
return false;
break;
}
case Type::SubstTemplateTypeParmPack: {
const auto *Subst1 = cast<SubstTemplateTypeParmPackType>(T1);
const auto *Subst2 = cast<SubstTemplateTypeParmPackType>(T2);
if (!IsStructurallyEquivalent(Context,
QualType(Subst1->getReplacedParameter(), 0),
QualType(Subst2->getReplacedParameter(), 0)))
return false;
if (!IsStructurallyEquivalent(Context, Subst1->getArgumentPack(),
Subst2->getArgumentPack()))
return false;
break;
}
case Type::TemplateSpecialization: {
const auto *Spec1 = cast<TemplateSpecializationType>(T1);
const auto *Spec2 = cast<TemplateSpecializationType>(T2);
if (!IsStructurallyEquivalent(Context, Spec1->getTemplateName(),
Spec2->getTemplateName()))
return false;
if (Spec1->getNumArgs() != Spec2->getNumArgs())
return false;
for (unsigned I = 0, N = Spec1->getNumArgs(); I != N; ++I) {
if (!IsStructurallyEquivalent(Context, Spec1->getArg(I),
Spec2->getArg(I)))
return false;
}
break;
}
case Type::Elaborated: {
const auto *Elab1 = cast<ElaboratedType>(T1);
const auto *Elab2 = cast<ElaboratedType>(T2);
// CHECKME: what if a keyword is ETK_None or ETK_typename ?
if (Elab1->getKeyword() != Elab2->getKeyword())
return false;
if (!IsStructurallyEquivalent(Context, Elab1->getQualifier(),
Elab2->getQualifier()))
return false;
if (!IsStructurallyEquivalent(Context, Elab1->getNamedType(),
Elab2->getNamedType()))
return false;
break;
}
case Type::InjectedClassName: {
const auto *Inj1 = cast<InjectedClassNameType>(T1);
const auto *Inj2 = cast<InjectedClassNameType>(T2);
if (!IsStructurallyEquivalent(Context,
Inj1->getInjectedSpecializationType(),
Inj2->getInjectedSpecializationType()))
return false;
break;
}
case Type::DependentName: {
const auto *Typename1 = cast<DependentNameType>(T1);
const auto *Typename2 = cast<DependentNameType>(T2);
if (!IsStructurallyEquivalent(Context, Typename1->getQualifier(),
Typename2->getQualifier()))
return false;
if (!IsStructurallyEquivalent(Typename1->getIdentifier(),
Typename2->getIdentifier()))
return false;
break;
}
case Type::DependentTemplateSpecialization: {
const auto *Spec1 = cast<DependentTemplateSpecializationType>(T1);
const auto *Spec2 = cast<DependentTemplateSpecializationType>(T2);
if (!IsStructurallyEquivalent(Context, Spec1->getQualifier(),
Spec2->getQualifier()))
return false;
if (!IsStructurallyEquivalent(Spec1->getIdentifier(),
Spec2->getIdentifier()))
return false;
if (Spec1->getNumArgs() != Spec2->getNumArgs())
return false;
for (unsigned I = 0, N = Spec1->getNumArgs(); I != N; ++I) {
if (!IsStructurallyEquivalent(Context, Spec1->getArg(I),
Spec2->getArg(I)))
return false;
}
break;
}
case Type::PackExpansion:
if (!IsStructurallyEquivalent(Context,
cast<PackExpansionType>(T1)->getPattern(),
cast<PackExpansionType>(T2)->getPattern()))
return false;
break;
case Type::ObjCInterface: {
const auto *Iface1 = cast<ObjCInterfaceType>(T1);
const auto *Iface2 = cast<ObjCInterfaceType>(T2);
if (!IsStructurallyEquivalent(Context, Iface1->getDecl(),
Iface2->getDecl()))
return false;
break;
}
case Type::ObjCTypeParam: {
const auto *Obj1 = cast<ObjCTypeParamType>(T1);
const auto *Obj2 = cast<ObjCTypeParamType>(T2);
if (!IsStructurallyEquivalent(Context, Obj1->getDecl(), Obj2->getDecl()))
return false;
if (Obj1->getNumProtocols() != Obj2->getNumProtocols())
return false;
for (unsigned I = 0, N = Obj1->getNumProtocols(); I != N; ++I) {
if (!IsStructurallyEquivalent(Context, Obj1->getProtocol(I),
Obj2->getProtocol(I)))
return false;
}
break;
}
case Type::ObjCObject: {
const auto *Obj1 = cast<ObjCObjectType>(T1);
const auto *Obj2 = cast<ObjCObjectType>(T2);
if (!IsStructurallyEquivalent(Context, Obj1->getBaseType(),
Obj2->getBaseType()))
return false;
if (Obj1->getNumProtocols() != Obj2->getNumProtocols())
return false;
for (unsigned I = 0, N = Obj1->getNumProtocols(); I != N; ++I) {
if (!IsStructurallyEquivalent(Context, Obj1->getProtocol(I),
Obj2->getProtocol(I)))
return false;
}
break;
}
case Type::ObjCObjectPointer: {
const auto *Ptr1 = cast<ObjCObjectPointerType>(T1);
const auto *Ptr2 = cast<ObjCObjectPointerType>(T2);
if (!IsStructurallyEquivalent(Context, Ptr1->getPointeeType(),
Ptr2->getPointeeType()))
return false;
break;
}
case Type::Atomic:
if (!IsStructurallyEquivalent(Context, cast<AtomicType>(T1)->getValueType(),
cast<AtomicType>(T2)->getValueType()))
return false;
break;
case Type::Pipe:
if (!IsStructurallyEquivalent(Context, cast<PipeType>(T1)->getElementType(),
cast<PipeType>(T2)->getElementType()))
return false;
break;
case Type::ExtInt: {
const auto *Int1 = cast<ExtIntType>(T1);
const auto *Int2 = cast<ExtIntType>(T2);
if (Int1->isUnsigned() != Int2->isUnsigned() ||
Int1->getNumBits() != Int2->getNumBits())
return false;
break;
}
case Type::DependentExtInt: {
const auto *Int1 = cast<DependentExtIntType>(T1);
const auto *Int2 = cast<DependentExtIntType>(T2);
if (Int1->isUnsigned() != Int2->isUnsigned() ||
!IsStructurallyEquivalent(Context, Int1->getNumBitsExpr(),
Int2->getNumBitsExpr()))
return false;
}
} // end switch
return true;
}
/// Determine structural equivalence of two fields.
static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
FieldDecl *Field1, FieldDecl *Field2) {
const auto *Owner2 = cast<RecordDecl>(Field2->getDeclContext());
// For anonymous structs/unions, match up the anonymous struct/union type
// declarations directly, so that we don't go off searching for anonymous
// types
if (Field1->isAnonymousStructOrUnion() &&
Field2->isAnonymousStructOrUnion()) {
RecordDecl *D1 = Field1->getType()->castAs<RecordType>()->getDecl();
RecordDecl *D2 = Field2->getType()->castAs<RecordType>()->getDecl();
return IsStructurallyEquivalent(Context, D1, D2);
}
// Check for equivalent field names.
IdentifierInfo *Name1 = Field1->getIdentifier();
IdentifierInfo *Name2 = Field2->getIdentifier();
if (!::IsStructurallyEquivalent(Name1, Name2)) {
if (Context.Complain) {
Context.Diag2(
Owner2->getLocation(),
Context.getApplicableDiagnostic(diag::err_odr_tag_type_inconsistent))
<< Context.ToCtx.getTypeDeclType(Owner2);
Context.Diag2(Field2->getLocation(), diag::note_odr_field_name)
<< Field2->getDeclName();
Context.Diag1(Field1->getLocation(), diag::note_odr_field_name)
<< Field1->getDeclName();
}
return false;
}
if (!IsStructurallyEquivalent(Context, Field1->getType(),
Field2->getType())) {
if (Context.Complain) {
Context.Diag2(
Owner2->getLocation(),
Context.getApplicableDiagnostic(diag::err_odr_tag_type_inconsistent))
<< Context.ToCtx.getTypeDeclType(Owner2);
Context.Diag2(Field2->getLocation(), diag::note_odr_field)
<< Field2->getDeclName() << Field2->getType();
Context.Diag1(Field1->getLocation(), diag::note_odr_field)
<< Field1->getDeclName() << Field1->getType();
}
return false;
}
if (Field1->isBitField())
return IsStructurallyEquivalent(Context, Field1->getBitWidth(),
Field2->getBitWidth());
return true;
}
/// Determine structural equivalence of two methods.
static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
CXXMethodDecl *Method1,
CXXMethodDecl *Method2) {
bool PropertiesEqual =
Method1->getDeclKind() == Method2->getDeclKind() &&
Method1->getRefQualifier() == Method2->getRefQualifier() &&
Method1->getAccess() == Method2->getAccess() &&
Method1->getOverloadedOperator() == Method2->getOverloadedOperator() &&
Method1->isStatic() == Method2->isStatic() &&
Method1->isConst() == Method2->isConst() &&
Method1->isVolatile() == Method2->isVolatile() &&
Method1->isVirtual() == Method2->isVirtual() &&
Method1->isPure() == Method2->isPure() &&
Method1->isDefaulted() == Method2->isDefaulted() &&
Method1->isDeleted() == Method2->isDeleted();
if (!PropertiesEqual)
return false;
// FIXME: Check for 'final'.
if (auto *Constructor1 = dyn_cast<CXXConstructorDecl>(Method1)) {
auto *Constructor2 = cast<CXXConstructorDecl>(Method2);
if (!Constructor1->getExplicitSpecifier().isEquivalent(
Constructor2->getExplicitSpecifier()))
return false;
}
if (auto *Conversion1 = dyn_cast<CXXConversionDecl>(Method1)) {
auto *Conversion2 = cast<CXXConversionDecl>(Method2);
if (!Conversion1->getExplicitSpecifier().isEquivalent(
Conversion2->getExplicitSpecifier()))
return false;
if (!IsStructurallyEquivalent(Context, Conversion1->getConversionType(),
Conversion2->getConversionType()))
return false;
}
const IdentifierInfo *Name1 = Method1->getIdentifier();
const IdentifierInfo *Name2 = Method2->getIdentifier();
if (!::IsStructurallyEquivalent(Name1, Name2)) {
return false;
// TODO: Names do not match, add warning like at check for FieldDecl.
}
// Check the prototypes.
if (!::IsStructurallyEquivalent(Context,
Method1->getType(), Method2->getType()))
return false;
return true;
}
/// Determine structural equivalence of two lambda classes.
static bool
IsStructurallyEquivalentLambdas(StructuralEquivalenceContext &Context,
CXXRecordDecl *D1, CXXRecordDecl *D2) {
assert(D1->isLambda() && D2->isLambda() &&
"Must be called on lambda classes");
if (!IsStructurallyEquivalent(Context, D1->getLambdaCallOperator(),
D2->getLambdaCallOperator()))
return false;
return true;
}
/// Determine structural equivalence of two records.
static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
RecordDecl *D1, RecordDecl *D2) {
// Check for equivalent structure names.
IdentifierInfo *Name1 = D1->getIdentifier();
if (!Name1 && D1->getTypedefNameForAnonDecl())
Name1 = D1->getTypedefNameForAnonDecl()->getIdentifier();
IdentifierInfo *Name2 = D2->getIdentifier();
if (!Name2 && D2->getTypedefNameForAnonDecl())
Name2 = D2->getTypedefNameForAnonDecl()->getIdentifier();
if (!IsStructurallyEquivalent(Name1, Name2))
return false;
if (D1->isUnion() != D2->isUnion()) {
if (Context.Complain) {
Context.Diag2(D2->getLocation(), Context.getApplicableDiagnostic(
diag::err_odr_tag_type_inconsistent))
<< Context.ToCtx.getTypeDeclType(D2);
Context.Diag1(D1->getLocation(), diag::note_odr_tag_kind_here)
<< D1->getDeclName() << (unsigned)D1->getTagKind();
}
return false;
}
if (!D1->getDeclName() && !D2->getDeclName()) {
// If both anonymous structs/unions are in a record context, make sure
// they occur in the same location in the context records.
if (Optional<unsigned> Index1 =
StructuralEquivalenceContext::findUntaggedStructOrUnionIndex(D1)) {
if (Optional<unsigned> Index2 =
StructuralEquivalenceContext::findUntaggedStructOrUnionIndex(
D2)) {
if (*Index1 != *Index2)
return false;
}
}
}
// If both declarations are class template specializations, we know
// the ODR applies, so check the template and template arguments.
const auto *Spec1 = dyn_cast<ClassTemplateSpecializationDecl>(D1);
const auto *Spec2 = dyn_cast<ClassTemplateSpecializationDecl>(D2);
if (Spec1 && Spec2) {
// Check that the specialized templates are the same.
if (!IsStructurallyEquivalent(Context, Spec1->getSpecializedTemplate(),
Spec2->getSpecializedTemplate()))
return false;
// Check that the template arguments are the same.
if (Spec1->getTemplateArgs().size() != Spec2->getTemplateArgs().size())
return false;
for (unsigned I = 0, N = Spec1->getTemplateArgs().size(); I != N; ++I)
if (!IsStructurallyEquivalent(Context, Spec1->getTemplateArgs().get(I),
Spec2->getTemplateArgs().get(I)))
return false;
}
// If one is a class template specialization and the other is not, these
// structures are different.
else if (Spec1 || Spec2)
return false;
// Compare the definitions of these two records. If either or both are
// incomplete (i.e. it is a forward decl), we assume that they are
// equivalent.
D1 = D1->getDefinition();
D2 = D2->getDefinition();
if (!D1 || !D2)
return true;
// If any of the records has external storage and we do a minimal check (or
// AST import) we assume they are equivalent. (If we didn't have this
// assumption then `RecordDecl::LoadFieldsFromExternalStorage` could trigger
// another AST import which in turn would call the structural equivalency
// check again and finally we'd have an improper result.)
if (Context.EqKind == StructuralEquivalenceKind::Minimal)
if (D1->hasExternalLexicalStorage() || D2->hasExternalLexicalStorage())
return true;
// If one definition is currently being defined, we do not compare for
// equality and we assume that the decls are equal.
if (D1->isBeingDefined() || D2->isBeingDefined())
return true;
if (auto *D1CXX = dyn_cast<CXXRecordDecl>(D1)) {
if (auto *D2CXX = dyn_cast<CXXRecordDecl>(D2)) {
if (D1CXX->hasExternalLexicalStorage() &&
!D1CXX->isCompleteDefinition()) {
D1CXX->getASTContext().getExternalSource()->CompleteType(D1CXX);
}
if (D1CXX->isLambda() != D2CXX->isLambda())
return false;
if (D1CXX->isLambda()) {
if (!IsStructurallyEquivalentLambdas(Context, D1CXX, D2CXX))
return false;
}
if (D1CXX->getNumBases() != D2CXX->getNumBases()) {
if (Context.Complain) {
Context.Diag2(D2->getLocation(),
Context.getApplicableDiagnostic(
diag::err_odr_tag_type_inconsistent))
<< Context.ToCtx.getTypeDeclType(D2);
Context.Diag2(D2->getLocation(), diag::note_odr_number_of_bases)
<< D2CXX->getNumBases();
Context.Diag1(D1->getLocation(), diag::note_odr_number_of_bases)
<< D1CXX->getNumBases();
}
return false;
}
// Check the base classes.
for (CXXRecordDecl::base_class_iterator Base1 = D1CXX->bases_begin(),
BaseEnd1 = D1CXX->bases_end(),
Base2 = D2CXX->bases_begin();
Base1 != BaseEnd1; ++Base1, ++Base2) {
if (!IsStructurallyEquivalent(Context, Base1->getType(),
Base2->getType())) {
if (Context.Complain) {
Context.Diag2(D2->getLocation(),
Context.getApplicableDiagnostic(
diag::err_odr_tag_type_inconsistent))
<< Context.ToCtx.getTypeDeclType(D2);
Context.Diag2(Base2->getBeginLoc(), diag::note_odr_base)
<< Base2->getType() << Base2->getSourceRange();
Context.Diag1(Base1->getBeginLoc(), diag::note_odr_base)
<< Base1->getType() << Base1->getSourceRange();
}
return false;
}
// Check virtual vs. non-virtual inheritance mismatch.
if (Base1->isVirtual() != Base2->isVirtual()) {
if (Context.Complain) {
Context.Diag2(D2->getLocation(),
Context.getApplicableDiagnostic(
diag::err_odr_tag_type_inconsistent))
<< Context.ToCtx.getTypeDeclType(D2);
Context.Diag2(Base2->getBeginLoc(), diag::note_odr_virtual_base)
<< Base2->isVirtual() << Base2->getSourceRange();
Context.Diag1(Base1->getBeginLoc(), diag::note_odr_base)
<< Base1->isVirtual() << Base1->getSourceRange();
}
return false;
}
}
// Check the friends for consistency.
CXXRecordDecl::friend_iterator Friend2 = D2CXX->friend_begin(),
Friend2End = D2CXX->friend_end();
for (CXXRecordDecl::friend_iterator Friend1 = D1CXX->friend_begin(),
Friend1End = D1CXX->friend_end();
Friend1 != Friend1End; ++Friend1, ++Friend2) {
if (Friend2 == Friend2End) {
if (Context.Complain) {
Context.Diag2(D2->getLocation(),
Context.getApplicableDiagnostic(
diag::err_odr_tag_type_inconsistent))
<< Context.ToCtx.getTypeDeclType(D2CXX);
Context.Diag1((*Friend1)->getFriendLoc(), diag::note_odr_friend);
Context.Diag2(D2->getLocation(), diag::note_odr_missing_friend);
}
return false;
}
if (!IsStructurallyEquivalent(Context, *Friend1, *Friend2)) {
if (Context.Complain) {
Context.Diag2(D2->getLocation(),
Context.getApplicableDiagnostic(
diag::err_odr_tag_type_inconsistent))
<< Context.ToCtx.getTypeDeclType(D2CXX);
Context.Diag1((*Friend1)->getFriendLoc(), diag::note_odr_friend);
Context.Diag2((*Friend2)->getFriendLoc(), diag::note_odr_friend);
}
return false;
}
}
if (Friend2 != Friend2End) {
if (Context.Complain) {
Context.Diag2(D2->getLocation(),
Context.getApplicableDiagnostic(
diag::err_odr_tag_type_inconsistent))
<< Context.ToCtx.getTypeDeclType(D2);
Context.Diag2((*Friend2)->getFriendLoc(), diag::note_odr_friend);
Context.Diag1(D1->getLocation(), diag::note_odr_missing_friend);
}
return false;
}
} else if (D1CXX->getNumBases() > 0) {
if (Context.Complain) {
Context.Diag2(D2->getLocation(),
Context.getApplicableDiagnostic(
diag::err_odr_tag_type_inconsistent))
<< Context.ToCtx.getTypeDeclType(D2);
const CXXBaseSpecifier *Base1 = D1CXX->bases_begin();
Context.Diag1(Base1->getBeginLoc(), diag::note_odr_base)
<< Base1->getType() << Base1->getSourceRange();
Context.Diag2(D2->getLocation(), diag::note_odr_missing_base);
}
return false;
}
}
// Check the fields for consistency.
RecordDecl::field_iterator Field2 = D2->field_begin(),
Field2End = D2->field_end();
for (RecordDecl::field_iterator Field1 = D1->field_begin(),
Field1End = D1->field_end();
Field1 != Field1End; ++Field1, ++Field2) {
if (Field2 == Field2End) {
if (Context.Complain) {
Context.Diag2(D2->getLocation(),
Context.getApplicableDiagnostic(
diag::err_odr_tag_type_inconsistent))
<< Context.ToCtx.getTypeDeclType(D2);
Context.Diag1(Field1->getLocation(), diag::note_odr_field)
<< Field1->getDeclName() << Field1->getType();
Context.Diag2(D2->getLocation(), diag::note_odr_missing_field);
}
return false;
}
if (!IsStructurallyEquivalent(Context, *Field1, *Field2))
return false;
}
if (Field2 != Field2End) {
if (Context.Complain) {
Context.Diag2(D2->getLocation(), Context.getApplicableDiagnostic(
diag::err_odr_tag_type_inconsistent))
<< Context.ToCtx.getTypeDeclType(D2);
Context.Diag2(Field2->getLocation(), diag::note_odr_field)
<< Field2->getDeclName() << Field2->getType();
Context.Diag1(D1->getLocation(), diag::note_odr_missing_field);
}
return false;
}
return true;
}
/// Determine structural equivalence of two enums.
static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
EnumDecl *D1, EnumDecl *D2) {
// Check for equivalent enum names.
IdentifierInfo *Name1 = D1->getIdentifier();
if (!Name1 && D1->getTypedefNameForAnonDecl())
Name1 = D1->getTypedefNameForAnonDecl()->getIdentifier();
IdentifierInfo *Name2 = D2->getIdentifier();
if (!Name2 && D2->getTypedefNameForAnonDecl())
Name2 = D2->getTypedefNameForAnonDecl()->getIdentifier();
if (!IsStructurallyEquivalent(Name1, Name2))
return false;
// Compare the definitions of these two enums. If either or both are
// incomplete (i.e. forward declared), we assume that they are equivalent.
D1 = D1->getDefinition();
D2 = D2->getDefinition();
if (!D1 || !D2)
return true;
EnumDecl::enumerator_iterator EC2 = D2->enumerator_begin(),
EC2End = D2->enumerator_end();
for (EnumDecl::enumerator_iterator EC1 = D1->enumerator_begin(),
EC1End = D1->enumerator_end();
EC1 != EC1End; ++EC1, ++EC2) {
if (EC2 == EC2End) {
if (Context.Complain) {
Context.Diag2(D2->getLocation(),
Context.getApplicableDiagnostic(
diag::err_odr_tag_type_inconsistent))
<< Context.ToCtx.getTypeDeclType(D2);
Context.Diag1(EC1->getLocation(), diag::note_odr_enumerator)
<< EC1->getDeclName() << EC1->getInitVal().toString(10);
Context.Diag2(D2->getLocation(), diag::note_odr_missing_enumerator);
}
return false;
}
llvm::APSInt Val1 = EC1->getInitVal();
llvm::APSInt Val2 = EC2->getInitVal();
if (!llvm::APSInt::isSameValue(Val1, Val2) ||
!IsStructurallyEquivalent(EC1->getIdentifier(), EC2->getIdentifier())) {
if (Context.Complain) {
Context.Diag2(D2->getLocation(),
Context.getApplicableDiagnostic(
diag::err_odr_tag_type_inconsistent))
<< Context.ToCtx.getTypeDeclType(D2);
Context.Diag2(EC2->getLocation(), diag::note_odr_enumerator)
<< EC2->getDeclName() << EC2->getInitVal().toString(10);
Context.Diag1(EC1->getLocation(), diag::note_odr_enumerator)
<< EC1->getDeclName() << EC1->getInitVal().toString(10);
}
return false;
}
}
if (EC2 != EC2End) {
if (Context.Complain) {
Context.Diag2(D2->getLocation(), Context.getApplicableDiagnostic(
diag::err_odr_tag_type_inconsistent))
<< Context.ToCtx.getTypeDeclType(D2);
Context.Diag2(EC2->getLocation(), diag::note_odr_enumerator)
<< EC2->getDeclName() << EC2->getInitVal().toString(10);
Context.Diag1(D1->getLocation(), diag::note_odr_missing_enumerator);
}
return false;
}
return true;
}
static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
TemplateParameterList *Params1,
TemplateParameterList *Params2) {
if (Params1->size() != Params2->size()) {
if (Context.Complain) {
Context.Diag2(Params2->getTemplateLoc(),
Context.getApplicableDiagnostic(
diag::err_odr_different_num_template_parameters))
<< Params1->size() << Params2->size();
Context.Diag1(Params1->getTemplateLoc(),
diag::note_odr_template_parameter_list);
}
return false;
}
for (unsigned I = 0, N = Params1->size(); I != N; ++I) {
if (Params1->getParam(I)->getKind() != Params2->getParam(I)->getKind()) {
if (Context.Complain) {
Context.Diag2(Params2->getParam(I)->getLocation(),
Context.getApplicableDiagnostic(
diag::err_odr_different_template_parameter_kind));
Context.Diag1(Params1->getParam(I)->getLocation(),
diag::note_odr_template_parameter_here);
}
return false;
}
if (!IsStructurallyEquivalent(Context, Params1->getParam(I),
Params2->getParam(I)))
return false;
}
return true;
}
static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
TemplateTypeParmDecl *D1,
TemplateTypeParmDecl *D2) {
if (D1->isParameterPack() != D2->isParameterPack()) {
if (Context.Complain) {
Context.Diag2(D2->getLocation(),
Context.getApplicableDiagnostic(
diag::err_odr_parameter_pack_non_pack))
<< D2->isParameterPack();
Context.Diag1(D1->getLocation(), diag::note_odr_parameter_pack_non_pack)
<< D1->isParameterPack();
}
return false;
}
return true;
}
static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
NonTypeTemplateParmDecl *D1,
NonTypeTemplateParmDecl *D2) {
if (D1->isParameterPack() != D2->isParameterPack()) {
if (Context.Complain) {
Context.Diag2(D2->getLocation(),
Context.getApplicableDiagnostic(
diag::err_odr_parameter_pack_non_pack))
<< D2->isParameterPack();
Context.Diag1(D1->getLocation(), diag::note_odr_parameter_pack_non_pack)
<< D1->isParameterPack();
}
return false;
}
// Check types.
if (!IsStructurallyEquivalent(Context, D1->getType(), D2->getType())) {
if (Context.Complain) {
Context.Diag2(D2->getLocation(),
Context.getApplicableDiagnostic(
diag::err_odr_non_type_parameter_type_inconsistent))
<< D2->getType() << D1->getType();
Context.Diag1(D1->getLocation(), diag::note_odr_value_here)
<< D1->getType();
}
return false;
}
return true;
}
static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
TemplateTemplateParmDecl *D1,
TemplateTemplateParmDecl *D2) {
if (D1->isParameterPack() != D2->isParameterPack()) {
if (Context.Complain) {
Context.Diag2(D2->getLocation(),
Context.getApplicableDiagnostic(
diag::err_odr_parameter_pack_non_pack))
<< D2->isParameterPack();
Context.Diag1(D1->getLocation(), diag::note_odr_parameter_pack_non_pack)
<< D1->isParameterPack();
}
return false;
}
// Check template parameter lists.
return IsStructurallyEquivalent(Context, D1->getTemplateParameters(),
D2->getTemplateParameters());
}
static bool IsTemplateDeclCommonStructurallyEquivalent(
StructuralEquivalenceContext &Ctx, TemplateDecl *D1, TemplateDecl *D2) {
if (!IsStructurallyEquivalent(D1->getIdentifier(), D2->getIdentifier()))
return false;
if (!D1->getIdentifier()) // Special name
if (D1->getNameAsString() != D2->getNameAsString())
return false;
return IsStructurallyEquivalent(Ctx, D1->getTemplateParameters(),
D2->getTemplateParameters());
}
static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
ClassTemplateDecl *D1,
ClassTemplateDecl *D2) {
// Check template parameters.
if (!IsTemplateDeclCommonStructurallyEquivalent(Context, D1, D2))
return false;
// Check the templated declaration.
return IsStructurallyEquivalent(Context, D1->getTemplatedDecl(),
D2->getTemplatedDecl());
}
static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
FunctionTemplateDecl *D1,
FunctionTemplateDecl *D2) {
// Check template parameters.
if (!IsTemplateDeclCommonStructurallyEquivalent(Context, D1, D2))
return false;
// Check the templated declaration.
return IsStructurallyEquivalent(Context, D1->getTemplatedDecl()->getType(),
D2->getTemplatedDecl()->getType());
}
static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
ConceptDecl *D1,
ConceptDecl *D2) {
// Check template parameters.
if (!IsTemplateDeclCommonStructurallyEquivalent(Context, D1, D2))
return false;
// Check the constraint expression.
return IsStructurallyEquivalent(Context, D1->getConstraintExpr(),
D2->getConstraintExpr());
}
static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
FriendDecl *D1, FriendDecl *D2) {
if ((D1->getFriendType() && D2->getFriendDecl()) ||
(D1->getFriendDecl() && D2->getFriendType())) {
return false;
}
if (D1->getFriendType() && D2->getFriendType())
return IsStructurallyEquivalent(Context,
D1->getFriendType()->getType(),
D2->getFriendType()->getType());
if (D1->getFriendDecl() && D2->getFriendDecl())
return IsStructurallyEquivalent(Context, D1->getFriendDecl(),
D2->getFriendDecl());
return false;
}
static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
TypedefNameDecl *D1, TypedefNameDecl *D2) {
if (!IsStructurallyEquivalent(D1->getIdentifier(), D2->getIdentifier()))
return false;
return IsStructurallyEquivalent(Context, D1->getUnderlyingType(),
D2->getUnderlyingType());
}
static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
FunctionDecl *D1, FunctionDecl *D2) {
if (!IsStructurallyEquivalent(D1->getIdentifier(), D2->getIdentifier()))
return false;
if (D1->isOverloadedOperator()) {
if (!D2->isOverloadedOperator())
return false;
if (D1->getOverloadedOperator() != D2->getOverloadedOperator())
return false;
}
// FIXME: Consider checking for function attributes as well.
if (!IsStructurallyEquivalent(Context, D1->getType(), D2->getType()))
return false;
return true;
}
/// Determine structural equivalence of two declarations.
static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
Decl *D1, Decl *D2) {
// FIXME: Check for known structural equivalences via a callback of some sort.
D1 = D1->getCanonicalDecl();
D2 = D2->getCanonicalDecl();
std::pair<Decl *, Decl *> P{D1, D2};
// Check whether we already know that these two declarations are not
// structurally equivalent.
if (Context.NonEquivalentDecls.count(P))
return false;
// Check if a check for these declarations is already pending.
// If yes D1 and D2 will be checked later (from DeclsToCheck),
// or these are already checked (and equivalent).
bool Inserted = Context.VisitedDecls.insert(P).second;
if (!Inserted)
return true;
Context.DeclsToCheck.push(P);
return true;
}
DiagnosticBuilder StructuralEquivalenceContext::Diag1(SourceLocation Loc,
unsigned DiagID) {
assert(Complain && "Not allowed to complain");
if (LastDiagFromC2)
FromCtx.getDiagnostics().notePriorDiagnosticFrom(ToCtx.getDiagnostics());
LastDiagFromC2 = false;
return FromCtx.getDiagnostics().Report(Loc, DiagID);
}
DiagnosticBuilder StructuralEquivalenceContext::Diag2(SourceLocation Loc,
unsigned DiagID) {
assert(Complain && "Not allowed to complain");
if (!LastDiagFromC2)
ToCtx.getDiagnostics().notePriorDiagnosticFrom(FromCtx.getDiagnostics());
LastDiagFromC2 = true;
return ToCtx.getDiagnostics().Report(Loc, DiagID);
}
Optional<unsigned>
StructuralEquivalenceContext::findUntaggedStructOrUnionIndex(RecordDecl *Anon) {
ASTContext &Context = Anon->getASTContext();
QualType AnonTy = Context.getRecordType(Anon);
const auto *Owner = dyn_cast<RecordDecl>(Anon->getDeclContext());
if (!Owner)
return None;
unsigned Index = 0;
for (const auto *D : Owner->noload_decls()) {
const auto *F = dyn_cast<FieldDecl>(D);
if (!F)
continue;
if (F->isAnonymousStructOrUnion()) {
if (Context.hasSameType(F->getType(), AnonTy))
break;
++Index;
continue;
}
// If the field looks like this:
// struct { ... } A;
QualType FieldType = F->getType();
// In case of nested structs.
while (const auto *ElabType = dyn_cast<ElaboratedType>(FieldType))
FieldType = ElabType->getNamedType();
if (const auto *RecType = dyn_cast<RecordType>(FieldType)) {
const RecordDecl *RecDecl = RecType->getDecl();
if (RecDecl->getDeclContext() == Owner && !RecDecl->getIdentifier()) {
if (Context.hasSameType(FieldType, AnonTy))
break;
++Index;
continue;
}
}
}
return Index;
}
unsigned StructuralEquivalenceContext::getApplicableDiagnostic(
unsigned ErrorDiagnostic) {
if (ErrorOnTagTypeMismatch)
return ErrorDiagnostic;
switch (ErrorDiagnostic) {
case diag::err_odr_variable_type_inconsistent:
return diag::warn_odr_variable_type_inconsistent;
case diag::err_odr_variable_multiple_def:
return diag::warn_odr_variable_multiple_def;
case diag::err_odr_function_type_inconsistent:
return diag::warn_odr_function_type_inconsistent;
case diag::err_odr_tag_type_inconsistent:
return diag::warn_odr_tag_type_inconsistent;
case diag::err_odr_field_type_inconsistent:
return diag::warn_odr_field_type_inconsistent;
case diag::err_odr_ivar_type_inconsistent:
return diag::warn_odr_ivar_type_inconsistent;
case diag::err_odr_objc_superclass_inconsistent:
return diag::warn_odr_objc_superclass_inconsistent;
case diag::err_odr_objc_method_result_type_inconsistent:
return diag::warn_odr_objc_method_result_type_inconsistent;
case diag::err_odr_objc_method_num_params_inconsistent:
return diag::warn_odr_objc_method_num_params_inconsistent;
case diag::err_odr_objc_method_param_type_inconsistent:
return diag::warn_odr_objc_method_param_type_inconsistent;
case diag::err_odr_objc_method_variadic_inconsistent:
return diag::warn_odr_objc_method_variadic_inconsistent;
case diag::err_odr_objc_property_type_inconsistent:
return diag::warn_odr_objc_property_type_inconsistent;
case diag::err_odr_objc_property_impl_kind_inconsistent:
return diag::warn_odr_objc_property_impl_kind_inconsistent;
case diag::err_odr_objc_synthesize_ivar_inconsistent:
return diag::warn_odr_objc_synthesize_ivar_inconsistent;
case diag::err_odr_different_num_template_parameters:
return diag::warn_odr_different_num_template_parameters;
case diag::err_odr_different_template_parameter_kind:
return diag::warn_odr_different_template_parameter_kind;
case diag::err_odr_parameter_pack_non_pack:
return diag::warn_odr_parameter_pack_non_pack;
case diag::err_odr_non_type_parameter_type_inconsistent:
return diag::warn_odr_non_type_parameter_type_inconsistent;
}
llvm_unreachable("Diagnostic kind not handled in preceding switch");
}
bool StructuralEquivalenceContext::IsEquivalent(Decl *D1, Decl *D2) {
// Ensure that the implementation functions (all static functions in this TU)
// never call the public ASTStructuralEquivalence::IsEquivalent() functions,
// because that will wreak havoc the internal state (DeclsToCheck and
// VisitedDecls members) and can cause faulty behaviour.
// In other words: Do not start a graph search from a new node with the
// internal data of another search in progress.
// FIXME: Better encapsulation and separation of internal and public
// functionality.
assert(DeclsToCheck.empty());
assert(VisitedDecls.empty());
if (!::IsStructurallyEquivalent(*this, D1, D2))
return false;
return !Finish();
}
bool StructuralEquivalenceContext::IsEquivalent(QualType T1, QualType T2) {
assert(DeclsToCheck.empty());
assert(VisitedDecls.empty());
if (!::IsStructurallyEquivalent(*this, T1, T2))
return false;
return !Finish();
}
bool StructuralEquivalenceContext::IsEquivalent(Stmt *S1, Stmt *S2) {
assert(DeclsToCheck.empty());
assert(VisitedDecls.empty());
if (!::IsStructurallyEquivalent(*this, S1, S2))
return false;
return !Finish();
}
bool StructuralEquivalenceContext::CheckCommonEquivalence(Decl *D1, Decl *D2) {
// Check for equivalent described template.
TemplateDecl *Template1 = D1->getDescribedTemplate();
TemplateDecl *Template2 = D2->getDescribedTemplate();
if ((Template1 != nullptr) != (Template2 != nullptr))
return false;
if (Template1 && !IsStructurallyEquivalent(*this, Template1, Template2))
return false;
// FIXME: Move check for identifier names into this function.
return true;
}
bool StructuralEquivalenceContext::CheckKindSpecificEquivalence(
Decl *D1, Decl *D2) {
// Kind mismatch.
if (D1->getKind() != D2->getKind())
return false;
// Cast the Decls to their actual subclass so that the right overload of
// IsStructurallyEquivalent is called.
switch (D1->getKind()) {
#define ABSTRACT_DECL(DECL)
#define DECL(DERIVED, BASE) \
case Decl::Kind::DERIVED: \
return ::IsStructurallyEquivalent(*this, static_cast<DERIVED##Decl *>(D1), \
static_cast<DERIVED##Decl *>(D2));
#include "clang/AST/DeclNodes.inc"
}
return true;
}
bool StructuralEquivalenceContext::Finish() {
while (!DeclsToCheck.empty()) {
// Check the next declaration.
std::pair<Decl *, Decl *> P = DeclsToCheck.front();
DeclsToCheck.pop();
Decl *D1 = P.first;
Decl *D2 = P.second;
bool Equivalent =
CheckCommonEquivalence(D1, D2) && CheckKindSpecificEquivalence(D1, D2);
if (!Equivalent) {
// Note that these two declarations are not equivalent (and we already
// know about it).
NonEquivalentDecls.insert(P);
return true;
}
}
return false;
}