mirror of
https://github.com/capstone-engine/llvm-capstone.git
synced 2025-04-02 13:12:09 +00:00

This removes any potential confusion with the `getType` accessors which correspond to SSA results of an operation, and makes it clear what the intent is (i.e. to represent the type of the function). Differential Revision: https://reviews.llvm.org/D121762
805 lines
34 KiB
C++
805 lines
34 KiB
C++
//===-- TargetRewrite.cpp -------------------------------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// Target rewrite: rewriting of ops to make target-specific lowerings manifest.
|
|
// LLVM expects different lowering idioms to be used for distinct target
|
|
// triples. These distinctions are handled by this pass.
|
|
//
|
|
// Coding style: https://mlir.llvm.org/getting_started/DeveloperGuide/
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "PassDetail.h"
|
|
#include "Target.h"
|
|
#include "flang/Lower/Todo.h"
|
|
#include "flang/Optimizer/Builder/Character.h"
|
|
#include "flang/Optimizer/CodeGen/CodeGen.h"
|
|
#include "flang/Optimizer/Dialect/FIRDialect.h"
|
|
#include "flang/Optimizer/Dialect/FIROps.h"
|
|
#include "flang/Optimizer/Dialect/FIROpsSupport.h"
|
|
#include "flang/Optimizer/Dialect/FIRType.h"
|
|
#include "flang/Optimizer/Support/FIRContext.h"
|
|
#include "mlir/Transforms/DialectConversion.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/TypeSwitch.h"
|
|
#include "llvm/Support/Debug.h"
|
|
|
|
using namespace fir;
|
|
using namespace mlir;
|
|
|
|
#define DEBUG_TYPE "flang-target-rewrite"
|
|
|
|
namespace {
|
|
|
|
/// Fixups for updating a FuncOp's arguments and return values.
|
|
struct FixupTy {
|
|
enum class Codes {
|
|
ArgumentAsLoad,
|
|
ArgumentType,
|
|
CharPair,
|
|
ReturnAsStore,
|
|
ReturnType,
|
|
Split,
|
|
Trailing,
|
|
TrailingCharProc
|
|
};
|
|
|
|
FixupTy(Codes code, std::size_t index, std::size_t second = 0)
|
|
: code{code}, index{index}, second{second} {}
|
|
FixupTy(Codes code, std::size_t index,
|
|
std::function<void(mlir::FuncOp)> &&finalizer)
|
|
: code{code}, index{index}, finalizer{finalizer} {}
|
|
FixupTy(Codes code, std::size_t index, std::size_t second,
|
|
std::function<void(mlir::FuncOp)> &&finalizer)
|
|
: code{code}, index{index}, second{second}, finalizer{finalizer} {}
|
|
|
|
Codes code;
|
|
std::size_t index;
|
|
std::size_t second{};
|
|
llvm::Optional<std::function<void(mlir::FuncOp)>> finalizer{};
|
|
}; // namespace
|
|
|
|
/// Target-specific rewriting of the FIR. This is a prerequisite pass to code
|
|
/// generation that traverses the FIR and modifies types and operations to a
|
|
/// form that is appropriate for the specific target. LLVM IR has specific
|
|
/// idioms that are used for distinct target processor and ABI combinations.
|
|
class TargetRewrite : public TargetRewriteBase<TargetRewrite> {
|
|
public:
|
|
TargetRewrite(const TargetRewriteOptions &options) {
|
|
noCharacterConversion = options.noCharacterConversion;
|
|
noComplexConversion = options.noComplexConversion;
|
|
}
|
|
|
|
void runOnOperation() override final {
|
|
auto &context = getContext();
|
|
mlir::OpBuilder rewriter(&context);
|
|
|
|
auto mod = getModule();
|
|
if (!forcedTargetTriple.empty())
|
|
setTargetTriple(mod, forcedTargetTriple);
|
|
|
|
auto specifics = CodeGenSpecifics::get(getOperation().getContext(),
|
|
getTargetTriple(getOperation()),
|
|
getKindMapping(getOperation()));
|
|
setMembers(specifics.get(), &rewriter);
|
|
|
|
// Perform type conversion on signatures and call sites.
|
|
if (mlir::failed(convertTypes(mod))) {
|
|
mlir::emitError(mlir::UnknownLoc::get(&context),
|
|
"error in converting types to target abi");
|
|
signalPassFailure();
|
|
}
|
|
|
|
// Convert ops in target-specific patterns.
|
|
mod.walk([&](mlir::Operation *op) {
|
|
if (auto call = dyn_cast<fir::CallOp>(op)) {
|
|
if (!hasPortableSignature(call.getFunctionType()))
|
|
convertCallOp(call);
|
|
} else if (auto dispatch = dyn_cast<DispatchOp>(op)) {
|
|
if (!hasPortableSignature(dispatch.getFunctionType()))
|
|
convertCallOp(dispatch);
|
|
} else if (auto addr = dyn_cast<AddrOfOp>(op)) {
|
|
if (addr.getType().isa<mlir::FunctionType>() &&
|
|
!hasPortableSignature(addr.getType()))
|
|
convertAddrOp(addr);
|
|
}
|
|
});
|
|
|
|
clearMembers();
|
|
}
|
|
|
|
mlir::ModuleOp getModule() { return getOperation(); }
|
|
|
|
template <typename A, typename B, typename C>
|
|
std::function<mlir::Value(mlir::Operation *)>
|
|
rewriteCallComplexResultType(A ty, B &newResTys, B &newInTys, C &newOpers) {
|
|
auto m = specifics->complexReturnType(ty.getElementType());
|
|
// Currently targets mandate COMPLEX is a single aggregate or packed
|
|
// scalar, including the sret case.
|
|
assert(m.size() == 1 && "target lowering of complex return not supported");
|
|
auto resTy = std::get<mlir::Type>(m[0]);
|
|
auto attr = std::get<CodeGenSpecifics::Attributes>(m[0]);
|
|
auto loc = mlir::UnknownLoc::get(resTy.getContext());
|
|
if (attr.isSRet()) {
|
|
assert(isa_ref_type(resTy));
|
|
mlir::Value stack =
|
|
rewriter->create<fir::AllocaOp>(loc, dyn_cast_ptrEleTy(resTy));
|
|
newInTys.push_back(resTy);
|
|
newOpers.push_back(stack);
|
|
return [=](mlir::Operation *) -> mlir::Value {
|
|
auto memTy = ReferenceType::get(ty);
|
|
auto cast = rewriter->create<ConvertOp>(loc, memTy, stack);
|
|
return rewriter->create<fir::LoadOp>(loc, cast);
|
|
};
|
|
}
|
|
newResTys.push_back(resTy);
|
|
return [=](mlir::Operation *call) -> mlir::Value {
|
|
auto mem = rewriter->create<fir::AllocaOp>(loc, resTy);
|
|
rewriter->create<fir::StoreOp>(loc, call->getResult(0), mem);
|
|
auto memTy = ReferenceType::get(ty);
|
|
auto cast = rewriter->create<ConvertOp>(loc, memTy, mem);
|
|
return rewriter->create<fir::LoadOp>(loc, cast);
|
|
};
|
|
}
|
|
|
|
template <typename A, typename B, typename C>
|
|
void rewriteCallComplexInputType(A ty, mlir::Value oper, B &newInTys,
|
|
C &newOpers) {
|
|
auto m = specifics->complexArgumentType(ty.getElementType());
|
|
auto *ctx = ty.getContext();
|
|
auto loc = mlir::UnknownLoc::get(ctx);
|
|
if (m.size() == 1) {
|
|
// COMPLEX is a single aggregate
|
|
auto resTy = std::get<mlir::Type>(m[0]);
|
|
auto attr = std::get<CodeGenSpecifics::Attributes>(m[0]);
|
|
auto oldRefTy = ReferenceType::get(ty);
|
|
if (attr.isByVal()) {
|
|
auto mem = rewriter->create<fir::AllocaOp>(loc, ty);
|
|
rewriter->create<fir::StoreOp>(loc, oper, mem);
|
|
newOpers.push_back(rewriter->create<ConvertOp>(loc, resTy, mem));
|
|
} else {
|
|
auto mem = rewriter->create<fir::AllocaOp>(loc, resTy);
|
|
auto cast = rewriter->create<ConvertOp>(loc, oldRefTy, mem);
|
|
rewriter->create<fir::StoreOp>(loc, oper, cast);
|
|
newOpers.push_back(rewriter->create<fir::LoadOp>(loc, mem));
|
|
}
|
|
newInTys.push_back(resTy);
|
|
} else {
|
|
assert(m.size() == 2);
|
|
// COMPLEX is split into 2 separate arguments
|
|
auto iTy = rewriter->getIntegerType(32);
|
|
for (auto e : llvm::enumerate(m)) {
|
|
auto &tup = e.value();
|
|
auto ty = std::get<mlir::Type>(tup);
|
|
auto index = e.index();
|
|
auto idx = rewriter->getIntegerAttr(iTy, index);
|
|
auto val = rewriter->create<ExtractValueOp>(
|
|
loc, ty, oper, rewriter->getArrayAttr(idx));
|
|
newInTys.push_back(ty);
|
|
newOpers.push_back(val);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Convert fir.call and fir.dispatch Ops.
|
|
template <typename A>
|
|
void convertCallOp(A callOp) {
|
|
auto fnTy = callOp.getFunctionType();
|
|
auto loc = callOp.getLoc();
|
|
rewriter->setInsertionPoint(callOp);
|
|
llvm::SmallVector<mlir::Type> newResTys;
|
|
llvm::SmallVector<mlir::Type> newInTys;
|
|
llvm::SmallVector<mlir::Value> newOpers;
|
|
|
|
// If the call is indirect, the first argument must still be the function
|
|
// to call.
|
|
int dropFront = 0;
|
|
if constexpr (std::is_same_v<std::decay_t<A>, fir::CallOp>) {
|
|
if (!callOp.getCallee().hasValue()) {
|
|
newInTys.push_back(fnTy.getInput(0));
|
|
newOpers.push_back(callOp.getOperand(0));
|
|
dropFront = 1;
|
|
}
|
|
}
|
|
|
|
// Determine the rewrite function, `wrap`, for the result value.
|
|
llvm::Optional<std::function<mlir::Value(mlir::Operation *)>> wrap;
|
|
if (fnTy.getResults().size() == 1) {
|
|
mlir::Type ty = fnTy.getResult(0);
|
|
llvm::TypeSwitch<mlir::Type>(ty)
|
|
.template Case<fir::ComplexType>([&](fir::ComplexType cmplx) {
|
|
wrap = rewriteCallComplexResultType(cmplx, newResTys, newInTys,
|
|
newOpers);
|
|
})
|
|
.template Case<mlir::ComplexType>([&](mlir::ComplexType cmplx) {
|
|
wrap = rewriteCallComplexResultType(cmplx, newResTys, newInTys,
|
|
newOpers);
|
|
})
|
|
.Default([&](mlir::Type ty) { newResTys.push_back(ty); });
|
|
} else if (fnTy.getResults().size() > 1) {
|
|
TODO(loc, "multiple results not supported yet");
|
|
}
|
|
|
|
llvm::SmallVector<mlir::Type> trailingInTys;
|
|
llvm::SmallVector<mlir::Value> trailingOpers;
|
|
for (auto e : llvm::enumerate(
|
|
llvm::zip(fnTy.getInputs().drop_front(dropFront),
|
|
callOp.getOperands().drop_front(dropFront)))) {
|
|
mlir::Type ty = std::get<0>(e.value());
|
|
mlir::Value oper = std::get<1>(e.value());
|
|
unsigned index = e.index();
|
|
llvm::TypeSwitch<mlir::Type>(ty)
|
|
.template Case<BoxCharType>([&](BoxCharType boxTy) {
|
|
bool sret;
|
|
if constexpr (std::is_same_v<std::decay_t<A>, fir::CallOp>) {
|
|
sret = callOp.getCallee() &&
|
|
functionArgIsSRet(index,
|
|
getModule().lookupSymbol<mlir::FuncOp>(
|
|
*callOp.getCallee()));
|
|
} else {
|
|
// TODO: dispatch case; how do we put arguments on a call?
|
|
// We cannot put both an sret and the dispatch object first.
|
|
sret = false;
|
|
TODO(loc, "dispatch + sret not supported yet");
|
|
}
|
|
auto m = specifics->boxcharArgumentType(boxTy.getEleTy(), sret);
|
|
auto unbox =
|
|
rewriter->create<UnboxCharOp>(loc, std::get<mlir::Type>(m[0]),
|
|
std::get<mlir::Type>(m[1]), oper);
|
|
// unboxed CHARACTER arguments
|
|
for (auto e : llvm::enumerate(m)) {
|
|
unsigned idx = e.index();
|
|
auto attr = std::get<CodeGenSpecifics::Attributes>(e.value());
|
|
auto argTy = std::get<mlir::Type>(e.value());
|
|
if (attr.isAppend()) {
|
|
trailingInTys.push_back(argTy);
|
|
trailingOpers.push_back(unbox.getResult(idx));
|
|
} else {
|
|
newInTys.push_back(argTy);
|
|
newOpers.push_back(unbox.getResult(idx));
|
|
}
|
|
}
|
|
})
|
|
.template Case<fir::ComplexType>([&](fir::ComplexType cmplx) {
|
|
rewriteCallComplexInputType(cmplx, oper, newInTys, newOpers);
|
|
})
|
|
.template Case<mlir::ComplexType>([&](mlir::ComplexType cmplx) {
|
|
rewriteCallComplexInputType(cmplx, oper, newInTys, newOpers);
|
|
})
|
|
.template Case<mlir::TupleType>([&](mlir::TupleType tuple) {
|
|
if (factory::isCharacterProcedureTuple(tuple)) {
|
|
mlir::ModuleOp module = getModule();
|
|
if constexpr (std::is_same_v<std::decay_t<A>, fir::CallOp>) {
|
|
if (callOp.getCallee()) {
|
|
llvm::StringRef charProcAttr =
|
|
fir::getCharacterProcedureDummyAttrName();
|
|
// The charProcAttr attribute is only used as a safety to
|
|
// confirm that this is a dummy procedure and should be split.
|
|
// It cannot be used to match because attributes are not
|
|
// available in case of indirect calls.
|
|
auto funcOp =
|
|
module.lookupSymbol<mlir::FuncOp>(*callOp.getCallee());
|
|
if (funcOp &&
|
|
!funcOp.template getArgAttrOfType<mlir::UnitAttr>(
|
|
index, charProcAttr))
|
|
mlir::emitError(loc, "tuple argument will be split even "
|
|
"though it does not have the `" +
|
|
charProcAttr + "` attribute");
|
|
}
|
|
}
|
|
mlir::Type funcPointerType = tuple.getType(0);
|
|
mlir::Type lenType = tuple.getType(1);
|
|
FirOpBuilder builder(*rewriter, getKindMapping(module));
|
|
auto [funcPointer, len] =
|
|
factory::extractCharacterProcedureTuple(builder, loc, oper);
|
|
newInTys.push_back(funcPointerType);
|
|
newOpers.push_back(funcPointer);
|
|
trailingInTys.push_back(lenType);
|
|
trailingOpers.push_back(len);
|
|
} else {
|
|
newInTys.push_back(tuple);
|
|
newOpers.push_back(oper);
|
|
}
|
|
})
|
|
.Default([&](mlir::Type ty) {
|
|
newInTys.push_back(ty);
|
|
newOpers.push_back(oper);
|
|
});
|
|
}
|
|
newInTys.insert(newInTys.end(), trailingInTys.begin(), trailingInTys.end());
|
|
newOpers.insert(newOpers.end(), trailingOpers.begin(), trailingOpers.end());
|
|
if constexpr (std::is_same_v<std::decay_t<A>, fir::CallOp>) {
|
|
fir::CallOp newCall;
|
|
if (callOp.getCallee().hasValue()) {
|
|
newCall = rewriter->create<A>(loc, callOp.getCallee().getValue(),
|
|
newResTys, newOpers);
|
|
} else {
|
|
// Force new type on the input operand.
|
|
newOpers[0].setType(mlir::FunctionType::get(
|
|
callOp.getContext(),
|
|
mlir::TypeRange{newInTys}.drop_front(dropFront), newResTys));
|
|
newCall = rewriter->create<A>(loc, newResTys, newOpers);
|
|
}
|
|
LLVM_DEBUG(llvm::dbgs() << "replacing call with " << newCall << '\n');
|
|
if (wrap.hasValue())
|
|
replaceOp(callOp, (*wrap)(newCall.getOperation()));
|
|
else
|
|
replaceOp(callOp, newCall.getResults());
|
|
} else {
|
|
// A is fir::DispatchOp
|
|
TODO(loc, "dispatch not implemented");
|
|
}
|
|
}
|
|
|
|
// Result type fixup for fir::ComplexType and mlir::ComplexType
|
|
template <typename A, typename B>
|
|
void lowerComplexSignatureRes(A cmplx, B &newResTys, B &newInTys) {
|
|
if (noComplexConversion) {
|
|
newResTys.push_back(cmplx);
|
|
} else {
|
|
for (auto &tup : specifics->complexReturnType(cmplx.getElementType())) {
|
|
auto argTy = std::get<mlir::Type>(tup);
|
|
if (std::get<CodeGenSpecifics::Attributes>(tup).isSRet())
|
|
newInTys.push_back(argTy);
|
|
else
|
|
newResTys.push_back(argTy);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Argument type fixup for fir::ComplexType and mlir::ComplexType
|
|
template <typename A, typename B>
|
|
void lowerComplexSignatureArg(A cmplx, B &newInTys) {
|
|
if (noComplexConversion)
|
|
newInTys.push_back(cmplx);
|
|
else
|
|
for (auto &tup : specifics->complexArgumentType(cmplx.getElementType()))
|
|
newInTys.push_back(std::get<mlir::Type>(tup));
|
|
}
|
|
|
|
/// Taking the address of a function. Modify the signature as needed.
|
|
void convertAddrOp(AddrOfOp addrOp) {
|
|
rewriter->setInsertionPoint(addrOp);
|
|
auto addrTy = addrOp.getType().cast<mlir::FunctionType>();
|
|
llvm::SmallVector<mlir::Type> newResTys;
|
|
llvm::SmallVector<mlir::Type> newInTys;
|
|
for (mlir::Type ty : addrTy.getResults()) {
|
|
llvm::TypeSwitch<mlir::Type>(ty)
|
|
.Case<fir::ComplexType>([&](fir::ComplexType ty) {
|
|
lowerComplexSignatureRes(ty, newResTys, newInTys);
|
|
})
|
|
.Case<mlir::ComplexType>([&](mlir::ComplexType ty) {
|
|
lowerComplexSignatureRes(ty, newResTys, newInTys);
|
|
})
|
|
.Default([&](mlir::Type ty) { newResTys.push_back(ty); });
|
|
}
|
|
llvm::SmallVector<mlir::Type> trailingInTys;
|
|
for (mlir::Type ty : addrTy.getInputs()) {
|
|
llvm::TypeSwitch<mlir::Type>(ty)
|
|
.Case<BoxCharType>([&](BoxCharType box) {
|
|
if (noCharacterConversion) {
|
|
newInTys.push_back(box);
|
|
} else {
|
|
for (auto &tup : specifics->boxcharArgumentType(box.getEleTy())) {
|
|
auto attr = std::get<CodeGenSpecifics::Attributes>(tup);
|
|
auto argTy = std::get<mlir::Type>(tup);
|
|
llvm::SmallVector<mlir::Type> &vec =
|
|
attr.isAppend() ? trailingInTys : newInTys;
|
|
vec.push_back(argTy);
|
|
}
|
|
}
|
|
})
|
|
.Case<fir::ComplexType>([&](fir::ComplexType ty) {
|
|
lowerComplexSignatureArg(ty, newInTys);
|
|
})
|
|
.Case<mlir::ComplexType>([&](mlir::ComplexType ty) {
|
|
lowerComplexSignatureArg(ty, newInTys);
|
|
})
|
|
.Case<mlir::TupleType>([&](mlir::TupleType tuple) {
|
|
if (factory::isCharacterProcedureTuple(tuple)) {
|
|
newInTys.push_back(tuple.getType(0));
|
|
trailingInTys.push_back(tuple.getType(1));
|
|
} else {
|
|
newInTys.push_back(ty);
|
|
}
|
|
})
|
|
.Default([&](mlir::Type ty) { newInTys.push_back(ty); });
|
|
}
|
|
// append trailing input types
|
|
newInTys.insert(newInTys.end(), trailingInTys.begin(), trailingInTys.end());
|
|
// replace this op with a new one with the updated signature
|
|
auto newTy = rewriter->getFunctionType(newInTys, newResTys);
|
|
auto newOp =
|
|
rewriter->create<AddrOfOp>(addrOp.getLoc(), newTy, addrOp.getSymbol());
|
|
replaceOp(addrOp, newOp.getResult());
|
|
}
|
|
|
|
/// Convert the type signatures on all the functions present in the module.
|
|
/// As the type signature is being changed, this must also update the
|
|
/// function itself to use any new arguments, etc.
|
|
mlir::LogicalResult convertTypes(mlir::ModuleOp mod) {
|
|
for (auto fn : mod.getOps<mlir::FuncOp>())
|
|
convertSignature(fn);
|
|
return mlir::success();
|
|
}
|
|
|
|
/// If the signature does not need any special target-specific converions,
|
|
/// then it is considered portable for any target, and this function will
|
|
/// return `true`. Otherwise, the signature is not portable and `false` is
|
|
/// returned.
|
|
bool hasPortableSignature(mlir::Type signature) {
|
|
assert(signature.isa<mlir::FunctionType>());
|
|
auto func = signature.dyn_cast<mlir::FunctionType>();
|
|
for (auto ty : func.getResults())
|
|
if ((ty.isa<BoxCharType>() && !noCharacterConversion) ||
|
|
(isa_complex(ty) && !noComplexConversion)) {
|
|
LLVM_DEBUG(llvm::dbgs() << "rewrite " << signature << " for target\n");
|
|
return false;
|
|
}
|
|
for (auto ty : func.getInputs())
|
|
if (((ty.isa<BoxCharType>() || factory::isCharacterProcedureTuple(ty)) &&
|
|
!noCharacterConversion) ||
|
|
(isa_complex(ty) && !noComplexConversion)) {
|
|
LLVM_DEBUG(llvm::dbgs() << "rewrite " << signature << " for target\n");
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/// Rewrite the signatures and body of the `FuncOp`s in the module for
|
|
/// the immediately subsequent target code gen.
|
|
void convertSignature(mlir::FuncOp func) {
|
|
auto funcTy = func.getFunctionType().cast<mlir::FunctionType>();
|
|
if (hasPortableSignature(funcTy))
|
|
return;
|
|
llvm::SmallVector<mlir::Type> newResTys;
|
|
llvm::SmallVector<mlir::Type> newInTys;
|
|
llvm::SmallVector<FixupTy> fixups;
|
|
|
|
// Convert return value(s)
|
|
for (auto ty : funcTy.getResults())
|
|
llvm::TypeSwitch<mlir::Type>(ty)
|
|
.Case<fir::ComplexType>([&](fir::ComplexType cmplx) {
|
|
if (noComplexConversion)
|
|
newResTys.push_back(cmplx);
|
|
else
|
|
doComplexReturn(func, cmplx, newResTys, newInTys, fixups);
|
|
})
|
|
.Case<mlir::ComplexType>([&](mlir::ComplexType cmplx) {
|
|
if (noComplexConversion)
|
|
newResTys.push_back(cmplx);
|
|
else
|
|
doComplexReturn(func, cmplx, newResTys, newInTys, fixups);
|
|
})
|
|
.Default([&](mlir::Type ty) { newResTys.push_back(ty); });
|
|
|
|
// Convert arguments
|
|
llvm::SmallVector<mlir::Type> trailingTys;
|
|
for (auto e : llvm::enumerate(funcTy.getInputs())) {
|
|
auto ty = e.value();
|
|
unsigned index = e.index();
|
|
llvm::TypeSwitch<mlir::Type>(ty)
|
|
.Case<BoxCharType>([&](BoxCharType boxTy) {
|
|
if (noCharacterConversion) {
|
|
newInTys.push_back(boxTy);
|
|
} else {
|
|
// Convert a CHARACTER argument type. This can involve separating
|
|
// the pointer and the LEN into two arguments and moving the LEN
|
|
// argument to the end of the arg list.
|
|
bool sret = functionArgIsSRet(index, func);
|
|
for (auto e : llvm::enumerate(specifics->boxcharArgumentType(
|
|
boxTy.getEleTy(), sret))) {
|
|
auto &tup = e.value();
|
|
auto index = e.index();
|
|
auto attr = std::get<CodeGenSpecifics::Attributes>(tup);
|
|
auto argTy = std::get<mlir::Type>(tup);
|
|
if (attr.isAppend()) {
|
|
trailingTys.push_back(argTy);
|
|
} else {
|
|
if (sret) {
|
|
fixups.emplace_back(FixupTy::Codes::CharPair,
|
|
newInTys.size(), index);
|
|
} else {
|
|
fixups.emplace_back(FixupTy::Codes::Trailing,
|
|
newInTys.size(), trailingTys.size());
|
|
}
|
|
newInTys.push_back(argTy);
|
|
}
|
|
}
|
|
}
|
|
})
|
|
.Case<fir::ComplexType>([&](fir::ComplexType cmplx) {
|
|
if (noComplexConversion)
|
|
newInTys.push_back(cmplx);
|
|
else
|
|
doComplexArg(func, cmplx, newInTys, fixups);
|
|
})
|
|
.Case<mlir::ComplexType>([&](mlir::ComplexType cmplx) {
|
|
if (noComplexConversion)
|
|
newInTys.push_back(cmplx);
|
|
else
|
|
doComplexArg(func, cmplx, newInTys, fixups);
|
|
})
|
|
.Case<mlir::TupleType>([&](mlir::TupleType tuple) {
|
|
if (factory::isCharacterProcedureTuple(tuple)) {
|
|
fixups.emplace_back(FixupTy::Codes::TrailingCharProc,
|
|
newInTys.size(), trailingTys.size());
|
|
newInTys.push_back(tuple.getType(0));
|
|
trailingTys.push_back(tuple.getType(1));
|
|
} else {
|
|
newInTys.push_back(ty);
|
|
}
|
|
})
|
|
.Default([&](mlir::Type ty) { newInTys.push_back(ty); });
|
|
}
|
|
|
|
if (!func.empty()) {
|
|
// If the function has a body, then apply the fixups to the arguments and
|
|
// return ops as required. These fixups are done in place.
|
|
auto loc = func.getLoc();
|
|
const auto fixupSize = fixups.size();
|
|
const auto oldArgTys = func.getFunctionType().getInputs();
|
|
int offset = 0;
|
|
for (std::remove_const_t<decltype(fixupSize)> i = 0; i < fixupSize; ++i) {
|
|
const auto &fixup = fixups[i];
|
|
switch (fixup.code) {
|
|
case FixupTy::Codes::ArgumentAsLoad: {
|
|
// Argument was pass-by-value, but is now pass-by-reference and
|
|
// possibly with a different element type.
|
|
auto newArg = func.front().insertArgument(fixup.index,
|
|
newInTys[fixup.index], loc);
|
|
rewriter->setInsertionPointToStart(&func.front());
|
|
auto oldArgTy = ReferenceType::get(oldArgTys[fixup.index - offset]);
|
|
auto cast = rewriter->create<ConvertOp>(loc, oldArgTy, newArg);
|
|
auto load = rewriter->create<fir::LoadOp>(loc, cast);
|
|
func.getArgument(fixup.index + 1).replaceAllUsesWith(load);
|
|
func.front().eraseArgument(fixup.index + 1);
|
|
} break;
|
|
case FixupTy::Codes::ArgumentType: {
|
|
// Argument is pass-by-value, but its type has likely been modified to
|
|
// suit the target ABI convention.
|
|
auto newArg = func.front().insertArgument(fixup.index,
|
|
newInTys[fixup.index], loc);
|
|
rewriter->setInsertionPointToStart(&func.front());
|
|
auto mem =
|
|
rewriter->create<fir::AllocaOp>(loc, newInTys[fixup.index]);
|
|
rewriter->create<fir::StoreOp>(loc, newArg, mem);
|
|
auto oldArgTy = ReferenceType::get(oldArgTys[fixup.index - offset]);
|
|
auto cast = rewriter->create<ConvertOp>(loc, oldArgTy, mem);
|
|
mlir::Value load = rewriter->create<fir::LoadOp>(loc, cast);
|
|
func.getArgument(fixup.index + 1).replaceAllUsesWith(load);
|
|
func.front().eraseArgument(fixup.index + 1);
|
|
LLVM_DEBUG(llvm::dbgs()
|
|
<< "old argument: " << oldArgTy.getEleTy()
|
|
<< ", repl: " << load << ", new argument: "
|
|
<< func.getArgument(fixup.index).getType() << '\n');
|
|
} break;
|
|
case FixupTy::Codes::CharPair: {
|
|
// The FIR boxchar argument has been split into a pair of distinct
|
|
// arguments that are in juxtaposition to each other.
|
|
auto newArg = func.front().insertArgument(fixup.index,
|
|
newInTys[fixup.index], loc);
|
|
if (fixup.second == 1) {
|
|
rewriter->setInsertionPointToStart(&func.front());
|
|
auto boxTy = oldArgTys[fixup.index - offset - fixup.second];
|
|
auto box = rewriter->create<EmboxCharOp>(
|
|
loc, boxTy, func.front().getArgument(fixup.index - 1), newArg);
|
|
func.getArgument(fixup.index + 1).replaceAllUsesWith(box);
|
|
func.front().eraseArgument(fixup.index + 1);
|
|
offset++;
|
|
}
|
|
} break;
|
|
case FixupTy::Codes::ReturnAsStore: {
|
|
// The value being returned is now being returned in memory (callee
|
|
// stack space) through a hidden reference argument.
|
|
auto newArg = func.front().insertArgument(fixup.index,
|
|
newInTys[fixup.index], loc);
|
|
offset++;
|
|
func.walk([&](mlir::func::ReturnOp ret) {
|
|
rewriter->setInsertionPoint(ret);
|
|
auto oldOper = ret.getOperand(0);
|
|
auto oldOperTy = ReferenceType::get(oldOper.getType());
|
|
auto cast = rewriter->create<ConvertOp>(loc, oldOperTy, newArg);
|
|
rewriter->create<fir::StoreOp>(loc, oldOper, cast);
|
|
rewriter->create<mlir::func::ReturnOp>(loc);
|
|
ret.erase();
|
|
});
|
|
} break;
|
|
case FixupTy::Codes::ReturnType: {
|
|
// The function is still returning a value, but its type has likely
|
|
// changed to suit the target ABI convention.
|
|
func.walk([&](mlir::func::ReturnOp ret) {
|
|
rewriter->setInsertionPoint(ret);
|
|
auto oldOper = ret.getOperand(0);
|
|
auto oldOperTy = ReferenceType::get(oldOper.getType());
|
|
auto mem =
|
|
rewriter->create<fir::AllocaOp>(loc, newResTys[fixup.index]);
|
|
auto cast = rewriter->create<ConvertOp>(loc, oldOperTy, mem);
|
|
rewriter->create<fir::StoreOp>(loc, oldOper, cast);
|
|
mlir::Value load = rewriter->create<fir::LoadOp>(loc, mem);
|
|
rewriter->create<mlir::func::ReturnOp>(loc, load);
|
|
ret.erase();
|
|
});
|
|
} break;
|
|
case FixupTy::Codes::Split: {
|
|
// The FIR argument has been split into a pair of distinct arguments
|
|
// that are in juxtaposition to each other. (For COMPLEX value.)
|
|
auto newArg = func.front().insertArgument(fixup.index,
|
|
newInTys[fixup.index], loc);
|
|
if (fixup.second == 1) {
|
|
rewriter->setInsertionPointToStart(&func.front());
|
|
auto cplxTy = oldArgTys[fixup.index - offset - fixup.second];
|
|
auto undef = rewriter->create<UndefOp>(loc, cplxTy);
|
|
auto iTy = rewriter->getIntegerType(32);
|
|
auto zero = rewriter->getIntegerAttr(iTy, 0);
|
|
auto one = rewriter->getIntegerAttr(iTy, 1);
|
|
auto cplx1 = rewriter->create<InsertValueOp>(
|
|
loc, cplxTy, undef, func.front().getArgument(fixup.index - 1),
|
|
rewriter->getArrayAttr(zero));
|
|
auto cplx = rewriter->create<InsertValueOp>(
|
|
loc, cplxTy, cplx1, newArg, rewriter->getArrayAttr(one));
|
|
func.getArgument(fixup.index + 1).replaceAllUsesWith(cplx);
|
|
func.front().eraseArgument(fixup.index + 1);
|
|
offset++;
|
|
}
|
|
} break;
|
|
case FixupTy::Codes::Trailing: {
|
|
// The FIR argument has been split into a pair of distinct arguments.
|
|
// The first part of the pair appears in the original argument
|
|
// position. The second part of the pair is appended after all the
|
|
// original arguments. (Boxchar arguments.)
|
|
auto newBufArg = func.front().insertArgument(
|
|
fixup.index, newInTys[fixup.index], loc);
|
|
auto newLenArg =
|
|
func.front().addArgument(trailingTys[fixup.second], loc);
|
|
auto boxTy = oldArgTys[fixup.index - offset];
|
|
rewriter->setInsertionPointToStart(&func.front());
|
|
auto box =
|
|
rewriter->create<EmboxCharOp>(loc, boxTy, newBufArg, newLenArg);
|
|
func.getArgument(fixup.index + 1).replaceAllUsesWith(box);
|
|
func.front().eraseArgument(fixup.index + 1);
|
|
} break;
|
|
case FixupTy::Codes::TrailingCharProc: {
|
|
// The FIR character procedure argument tuple has been split into a
|
|
// pair of distinct arguments. The first part of the pair appears in
|
|
// the original argument position. The second part of the pair is
|
|
// appended after all the original arguments.
|
|
auto newProcPointerArg = func.front().insertArgument(
|
|
fixup.index, newInTys[fixup.index], loc);
|
|
auto newLenArg =
|
|
func.front().addArgument(trailingTys[fixup.second], loc);
|
|
auto tupleType = oldArgTys[fixup.index - offset];
|
|
rewriter->setInsertionPointToStart(&func.front());
|
|
FirOpBuilder builder(*rewriter, getKindMapping(getModule()));
|
|
auto tuple = factory::createCharacterProcedureTuple(
|
|
builder, loc, tupleType, newProcPointerArg, newLenArg);
|
|
func.getArgument(fixup.index + 1).replaceAllUsesWith(tuple);
|
|
func.front().eraseArgument(fixup.index + 1);
|
|
} break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Set the new type and finalize the arguments, etc.
|
|
newInTys.insert(newInTys.end(), trailingTys.begin(), trailingTys.end());
|
|
auto newFuncTy =
|
|
mlir::FunctionType::get(func.getContext(), newInTys, newResTys);
|
|
LLVM_DEBUG(llvm::dbgs() << "new func: " << newFuncTy << '\n');
|
|
func.setType(newFuncTy);
|
|
|
|
for (auto &fixup : fixups)
|
|
if (fixup.finalizer)
|
|
(*fixup.finalizer)(func);
|
|
}
|
|
|
|
inline bool functionArgIsSRet(unsigned index, mlir::FuncOp func) {
|
|
if (auto attr = func.getArgAttrOfType<mlir::UnitAttr>(index, "llvm.sret"))
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
/// Convert a complex return value. This can involve converting the return
|
|
/// value to a "hidden" first argument or packing the complex into a wide
|
|
/// GPR.
|
|
template <typename A, typename B, typename C>
|
|
void doComplexReturn(mlir::FuncOp func, A cmplx, B &newResTys, B &newInTys,
|
|
C &fixups) {
|
|
if (noComplexConversion) {
|
|
newResTys.push_back(cmplx);
|
|
return;
|
|
}
|
|
auto m = specifics->complexReturnType(cmplx.getElementType());
|
|
assert(m.size() == 1);
|
|
auto &tup = m[0];
|
|
auto attr = std::get<CodeGenSpecifics::Attributes>(tup);
|
|
auto argTy = std::get<mlir::Type>(tup);
|
|
if (attr.isSRet()) {
|
|
unsigned argNo = newInTys.size();
|
|
fixups.emplace_back(
|
|
FixupTy::Codes::ReturnAsStore, argNo, [=](mlir::FuncOp func) {
|
|
func.setArgAttr(argNo, "llvm.sret", rewriter->getUnitAttr());
|
|
});
|
|
newInTys.push_back(argTy);
|
|
return;
|
|
}
|
|
fixups.emplace_back(FixupTy::Codes::ReturnType, newResTys.size());
|
|
newResTys.push_back(argTy);
|
|
}
|
|
|
|
/// Convert a complex argument value. This can involve storing the value to
|
|
/// a temporary memory location or factoring the value into two distinct
|
|
/// arguments.
|
|
template <typename A, typename B, typename C>
|
|
void doComplexArg(mlir::FuncOp func, A cmplx, B &newInTys, C &fixups) {
|
|
if (noComplexConversion) {
|
|
newInTys.push_back(cmplx);
|
|
return;
|
|
}
|
|
auto m = specifics->complexArgumentType(cmplx.getElementType());
|
|
const auto fixupCode =
|
|
m.size() > 1 ? FixupTy::Codes::Split : FixupTy::Codes::ArgumentType;
|
|
for (auto e : llvm::enumerate(m)) {
|
|
auto &tup = e.value();
|
|
auto index = e.index();
|
|
auto attr = std::get<CodeGenSpecifics::Attributes>(tup);
|
|
auto argTy = std::get<mlir::Type>(tup);
|
|
auto argNo = newInTys.size();
|
|
if (attr.isByVal()) {
|
|
if (auto align = attr.getAlignment())
|
|
fixups.emplace_back(
|
|
FixupTy::Codes::ArgumentAsLoad, argNo, [=](mlir::FuncOp func) {
|
|
func.setArgAttr(argNo, "llvm.byval", rewriter->getUnitAttr());
|
|
func.setArgAttr(argNo, "llvm.align",
|
|
rewriter->getIntegerAttr(
|
|
rewriter->getIntegerType(32), align));
|
|
});
|
|
else
|
|
fixups.emplace_back(FixupTy::Codes::ArgumentAsLoad, newInTys.size(),
|
|
[=](mlir::FuncOp func) {
|
|
func.setArgAttr(argNo, "llvm.byval",
|
|
rewriter->getUnitAttr());
|
|
});
|
|
} else {
|
|
if (auto align = attr.getAlignment())
|
|
fixups.emplace_back(fixupCode, argNo, index, [=](mlir::FuncOp func) {
|
|
func.setArgAttr(
|
|
argNo, "llvm.align",
|
|
rewriter->getIntegerAttr(rewriter->getIntegerType(32), align));
|
|
});
|
|
else
|
|
fixups.emplace_back(fixupCode, argNo, index);
|
|
}
|
|
newInTys.push_back(argTy);
|
|
}
|
|
}
|
|
|
|
private:
|
|
// Replace `op` and remove it.
|
|
void replaceOp(mlir::Operation *op, mlir::ValueRange newValues) {
|
|
op->replaceAllUsesWith(newValues);
|
|
op->dropAllReferences();
|
|
op->erase();
|
|
}
|
|
|
|
inline void setMembers(CodeGenSpecifics *s, mlir::OpBuilder *r) {
|
|
specifics = s;
|
|
rewriter = r;
|
|
}
|
|
|
|
inline void clearMembers() { setMembers(nullptr, nullptr); }
|
|
|
|
CodeGenSpecifics *specifics{};
|
|
mlir::OpBuilder *rewriter;
|
|
}; // namespace
|
|
} // namespace
|
|
|
|
std::unique_ptr<mlir::OperationPass<mlir::ModuleOp>>
|
|
fir::createFirTargetRewritePass(const TargetRewriteOptions &options) {
|
|
return std::make_unique<TargetRewrite>(options);
|
|
}
|