mirror of
https://github.com/capstone-engine/llvm-capstone.git
synced 2025-04-03 22:02:12 +00:00

This removes any potential confusion with the `getType` accessors which correspond to SSA results of an operation, and makes it clear what the intent is (i.e. to represent the type of the function). Differential Revision: https://reviews.llvm.org/D121762
1162 lines
47 KiB
C++
1162 lines
47 KiB
C++
//===- ModuleTranslation.cpp - MLIR to LLVM conversion --------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements the translation between an MLIR LLVM dialect module and
|
|
// the corresponding LLVMIR module. It only handles core LLVM IR operations.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "mlir/Target/LLVMIR/ModuleTranslation.h"
|
|
|
|
#include "DebugTranslation.h"
|
|
#include "mlir/Dialect/DLTI/DLTI.h"
|
|
#include "mlir/Dialect/LLVMIR/LLVMDialect.h"
|
|
#include "mlir/Dialect/LLVMIR/Transforms/LegalizeForExport.h"
|
|
#include "mlir/Dialect/OpenMP/OpenMPDialect.h"
|
|
#include "mlir/IR/Attributes.h"
|
|
#include "mlir/IR/BuiltinOps.h"
|
|
#include "mlir/IR/BuiltinTypes.h"
|
|
#include "mlir/IR/RegionGraphTraits.h"
|
|
#include "mlir/Support/LLVM.h"
|
|
#include "mlir/Target/LLVMIR/LLVMTranslationInterface.h"
|
|
#include "mlir/Target/LLVMIR/TypeToLLVM.h"
|
|
#include "llvm/ADT/TypeSwitch.h"
|
|
|
|
#include "llvm/ADT/PostOrderIterator.h"
|
|
#include "llvm/ADT/SetVector.h"
|
|
#include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
|
|
#include "llvm/IR/BasicBlock.h"
|
|
#include "llvm/IR/CFG.h"
|
|
#include "llvm/IR/Constants.h"
|
|
#include "llvm/IR/DerivedTypes.h"
|
|
#include "llvm/IR/IRBuilder.h"
|
|
#include "llvm/IR/InlineAsm.h"
|
|
#include "llvm/IR/IntrinsicsNVPTX.h"
|
|
#include "llvm/IR/LLVMContext.h"
|
|
#include "llvm/IR/MDBuilder.h"
|
|
#include "llvm/IR/Module.h"
|
|
#include "llvm/IR/Verifier.h"
|
|
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
|
|
#include "llvm/Transforms/Utils/Cloning.h"
|
|
#include "llvm/Transforms/Utils/ModuleUtils.h"
|
|
|
|
using namespace mlir;
|
|
using namespace mlir::LLVM;
|
|
using namespace mlir::LLVM::detail;
|
|
|
|
#include "mlir/Dialect/LLVMIR/LLVMConversionEnumsToLLVM.inc"
|
|
|
|
/// Translates the given data layout spec attribute to the LLVM IR data layout.
|
|
/// Only integer, float and endianness entries are currently supported.
|
|
FailureOr<llvm::DataLayout>
|
|
translateDataLayout(DataLayoutSpecInterface attribute,
|
|
const DataLayout &dataLayout,
|
|
Optional<Location> loc = llvm::None) {
|
|
if (!loc)
|
|
loc = UnknownLoc::get(attribute.getContext());
|
|
|
|
// Translate the endianness attribute.
|
|
std::string llvmDataLayout;
|
|
llvm::raw_string_ostream layoutStream(llvmDataLayout);
|
|
for (DataLayoutEntryInterface entry : attribute.getEntries()) {
|
|
auto key = entry.getKey().dyn_cast<StringAttr>();
|
|
if (!key)
|
|
continue;
|
|
if (key.getValue() == DLTIDialect::kDataLayoutEndiannessKey) {
|
|
auto value = entry.getValue().cast<StringAttr>();
|
|
bool isLittleEndian =
|
|
value.getValue() == DLTIDialect::kDataLayoutEndiannessLittle;
|
|
layoutStream << (isLittleEndian ? "e" : "E");
|
|
layoutStream.flush();
|
|
continue;
|
|
}
|
|
emitError(*loc) << "unsupported data layout key " << key;
|
|
return failure();
|
|
}
|
|
|
|
// Go through the list of entries to check which types are explicitly
|
|
// specified in entries. Don't use the entries directly though but query the
|
|
// data from the layout.
|
|
for (DataLayoutEntryInterface entry : attribute.getEntries()) {
|
|
auto type = entry.getKey().dyn_cast<Type>();
|
|
if (!type)
|
|
continue;
|
|
// Data layout for the index type is irrelevant at this point.
|
|
if (type.isa<IndexType>())
|
|
continue;
|
|
FailureOr<std::string> prefix =
|
|
llvm::TypeSwitch<Type, FailureOr<std::string>>(type)
|
|
.Case<IntegerType>(
|
|
[loc](IntegerType integerType) -> FailureOr<std::string> {
|
|
if (integerType.getSignedness() == IntegerType::Signless)
|
|
return std::string("i");
|
|
emitError(*loc)
|
|
<< "unsupported data layout for non-signless integer "
|
|
<< integerType;
|
|
return failure();
|
|
})
|
|
.Case<Float16Type, Float32Type, Float64Type, Float80Type,
|
|
Float128Type>([](Type) { return std::string("f"); })
|
|
.Default([loc](Type type) -> FailureOr<std::string> {
|
|
emitError(*loc) << "unsupported type in data layout: " << type;
|
|
return failure();
|
|
});
|
|
if (failed(prefix))
|
|
return failure();
|
|
|
|
unsigned size = dataLayout.getTypeSizeInBits(type);
|
|
unsigned abi = dataLayout.getTypeABIAlignment(type) * 8u;
|
|
unsigned preferred = dataLayout.getTypePreferredAlignment(type) * 8u;
|
|
layoutStream << "-" << *prefix << size << ":" << abi;
|
|
if (abi != preferred)
|
|
layoutStream << ":" << preferred;
|
|
}
|
|
layoutStream.flush();
|
|
StringRef layoutSpec(llvmDataLayout);
|
|
if (layoutSpec.startswith("-"))
|
|
layoutSpec = layoutSpec.drop_front();
|
|
|
|
return llvm::DataLayout(layoutSpec);
|
|
}
|
|
|
|
/// Builds a constant of a sequential LLVM type `type`, potentially containing
|
|
/// other sequential types recursively, from the individual constant values
|
|
/// provided in `constants`. `shape` contains the number of elements in nested
|
|
/// sequential types. Reports errors at `loc` and returns nullptr on error.
|
|
static llvm::Constant *
|
|
buildSequentialConstant(ArrayRef<llvm::Constant *> &constants,
|
|
ArrayRef<int64_t> shape, llvm::Type *type,
|
|
Location loc) {
|
|
if (shape.empty()) {
|
|
llvm::Constant *result = constants.front();
|
|
constants = constants.drop_front();
|
|
return result;
|
|
}
|
|
|
|
llvm::Type *elementType;
|
|
if (auto *arrayTy = dyn_cast<llvm::ArrayType>(type)) {
|
|
elementType = arrayTy->getElementType();
|
|
} else if (auto *vectorTy = dyn_cast<llvm::VectorType>(type)) {
|
|
elementType = vectorTy->getElementType();
|
|
} else {
|
|
emitError(loc) << "expected sequential LLVM types wrapping a scalar";
|
|
return nullptr;
|
|
}
|
|
|
|
SmallVector<llvm::Constant *, 8> nested;
|
|
nested.reserve(shape.front());
|
|
for (int64_t i = 0; i < shape.front(); ++i) {
|
|
nested.push_back(buildSequentialConstant(constants, shape.drop_front(),
|
|
elementType, loc));
|
|
if (!nested.back())
|
|
return nullptr;
|
|
}
|
|
|
|
if (shape.size() == 1 && type->isVectorTy())
|
|
return llvm::ConstantVector::get(nested);
|
|
return llvm::ConstantArray::get(
|
|
llvm::ArrayType::get(elementType, shape.front()), nested);
|
|
}
|
|
|
|
/// Returns the first non-sequential type nested in sequential types.
|
|
static llvm::Type *getInnermostElementType(llvm::Type *type) {
|
|
do {
|
|
if (auto *arrayTy = dyn_cast<llvm::ArrayType>(type)) {
|
|
type = arrayTy->getElementType();
|
|
} else if (auto *vectorTy = dyn_cast<llvm::VectorType>(type)) {
|
|
type = vectorTy->getElementType();
|
|
} else {
|
|
return type;
|
|
}
|
|
} while (true);
|
|
}
|
|
|
|
/// Convert a dense elements attribute to an LLVM IR constant using its raw data
|
|
/// storage if possible. This supports elements attributes of tensor or vector
|
|
/// type and avoids constructing separate objects for individual values of the
|
|
/// innermost dimension. Constants for other dimensions are still constructed
|
|
/// recursively. Returns null if constructing from raw data is not supported for
|
|
/// this type, e.g., element type is not a power-of-two-sized primitive. Reports
|
|
/// other errors at `loc`.
|
|
static llvm::Constant *
|
|
convertDenseElementsAttr(Location loc, DenseElementsAttr denseElementsAttr,
|
|
llvm::Type *llvmType,
|
|
const ModuleTranslation &moduleTranslation) {
|
|
if (!denseElementsAttr)
|
|
return nullptr;
|
|
|
|
llvm::Type *innermostLLVMType = getInnermostElementType(llvmType);
|
|
if (!llvm::ConstantDataSequential::isElementTypeCompatible(innermostLLVMType))
|
|
return nullptr;
|
|
|
|
ShapedType type = denseElementsAttr.getType();
|
|
if (type.getNumElements() == 0)
|
|
return nullptr;
|
|
|
|
// Compute the shape of all dimensions but the innermost. Note that the
|
|
// innermost dimension may be that of the vector element type.
|
|
bool hasVectorElementType = type.getElementType().isa<VectorType>();
|
|
unsigned numAggregates =
|
|
denseElementsAttr.getNumElements() /
|
|
(hasVectorElementType ? 1
|
|
: denseElementsAttr.getType().getShape().back());
|
|
ArrayRef<int64_t> outerShape = type.getShape();
|
|
if (!hasVectorElementType)
|
|
outerShape = outerShape.drop_back();
|
|
|
|
// Handle the case of vector splat, LLVM has special support for it.
|
|
if (denseElementsAttr.isSplat() &&
|
|
(type.isa<VectorType>() || hasVectorElementType)) {
|
|
llvm::Constant *splatValue = LLVM::detail::getLLVMConstant(
|
|
innermostLLVMType, denseElementsAttr.getSplatValue<Attribute>(), loc,
|
|
moduleTranslation, /*isTopLevel=*/false);
|
|
llvm::Constant *splatVector =
|
|
llvm::ConstantDataVector::getSplat(0, splatValue);
|
|
SmallVector<llvm::Constant *> constants(numAggregates, splatVector);
|
|
ArrayRef<llvm::Constant *> constantsRef = constants;
|
|
return buildSequentialConstant(constantsRef, outerShape, llvmType, loc);
|
|
}
|
|
if (denseElementsAttr.isSplat())
|
|
return nullptr;
|
|
|
|
// In case of non-splat, create a constructor for the innermost constant from
|
|
// a piece of raw data.
|
|
std::function<llvm::Constant *(StringRef)> buildCstData;
|
|
if (type.isa<TensorType>()) {
|
|
auto vectorElementType = type.getElementType().dyn_cast<VectorType>();
|
|
if (vectorElementType && vectorElementType.getRank() == 1) {
|
|
buildCstData = [&](StringRef data) {
|
|
return llvm::ConstantDataVector::getRaw(
|
|
data, vectorElementType.getShape().back(), innermostLLVMType);
|
|
};
|
|
} else if (!vectorElementType) {
|
|
buildCstData = [&](StringRef data) {
|
|
return llvm::ConstantDataArray::getRaw(data, type.getShape().back(),
|
|
innermostLLVMType);
|
|
};
|
|
}
|
|
} else if (type.isa<VectorType>()) {
|
|
buildCstData = [&](StringRef data) {
|
|
return llvm::ConstantDataVector::getRaw(data, type.getShape().back(),
|
|
innermostLLVMType);
|
|
};
|
|
}
|
|
if (!buildCstData)
|
|
return nullptr;
|
|
|
|
// Create innermost constants and defer to the default constant creation
|
|
// mechanism for other dimensions.
|
|
SmallVector<llvm::Constant *> constants;
|
|
unsigned aggregateSize = denseElementsAttr.getType().getShape().back() *
|
|
(innermostLLVMType->getScalarSizeInBits() / 8);
|
|
constants.reserve(numAggregates);
|
|
for (unsigned i = 0; i < numAggregates; ++i) {
|
|
StringRef data(denseElementsAttr.getRawData().data() + i * aggregateSize,
|
|
aggregateSize);
|
|
constants.push_back(buildCstData(data));
|
|
}
|
|
|
|
ArrayRef<llvm::Constant *> constantsRef = constants;
|
|
return buildSequentialConstant(constantsRef, outerShape, llvmType, loc);
|
|
}
|
|
|
|
/// Create an LLVM IR constant of `llvmType` from the MLIR attribute `attr`.
|
|
/// This currently supports integer, floating point, splat and dense element
|
|
/// attributes and combinations thereof. Also, an array attribute with two
|
|
/// elements is supported to represent a complex constant. In case of error,
|
|
/// report it to `loc` and return nullptr.
|
|
llvm::Constant *mlir::LLVM::detail::getLLVMConstant(
|
|
llvm::Type *llvmType, Attribute attr, Location loc,
|
|
const ModuleTranslation &moduleTranslation, bool isTopLevel) {
|
|
if (!attr)
|
|
return llvm::UndefValue::get(llvmType);
|
|
if (auto *structType = dyn_cast<::llvm::StructType>(llvmType)) {
|
|
if (!isTopLevel) {
|
|
emitError(loc, "nested struct types are not supported in constants");
|
|
return nullptr;
|
|
}
|
|
auto arrayAttr = attr.cast<ArrayAttr>();
|
|
llvm::Type *elementType = structType->getElementType(0);
|
|
llvm::Constant *real = getLLVMConstant(elementType, arrayAttr[0], loc,
|
|
moduleTranslation, false);
|
|
if (!real)
|
|
return nullptr;
|
|
llvm::Constant *imag = getLLVMConstant(elementType, arrayAttr[1], loc,
|
|
moduleTranslation, false);
|
|
if (!imag)
|
|
return nullptr;
|
|
return llvm::ConstantStruct::get(structType, {real, imag});
|
|
}
|
|
// For integer types, we allow a mismatch in sizes as the index type in
|
|
// MLIR might have a different size than the index type in the LLVM module.
|
|
if (auto intAttr = attr.dyn_cast<IntegerAttr>())
|
|
return llvm::ConstantInt::get(
|
|
llvmType,
|
|
intAttr.getValue().sextOrTrunc(llvmType->getIntegerBitWidth()));
|
|
if (auto floatAttr = attr.dyn_cast<FloatAttr>()) {
|
|
if (llvmType !=
|
|
llvm::Type::getFloatingPointTy(llvmType->getContext(),
|
|
floatAttr.getValue().getSemantics())) {
|
|
emitError(loc, "FloatAttr does not match expected type of the constant");
|
|
return nullptr;
|
|
}
|
|
return llvm::ConstantFP::get(llvmType, floatAttr.getValue());
|
|
}
|
|
if (auto funcAttr = attr.dyn_cast<FlatSymbolRefAttr>())
|
|
return llvm::ConstantExpr::getBitCast(
|
|
moduleTranslation.lookupFunction(funcAttr.getValue()), llvmType);
|
|
if (auto splatAttr = attr.dyn_cast<SplatElementsAttr>()) {
|
|
llvm::Type *elementType;
|
|
uint64_t numElements;
|
|
bool isScalable = false;
|
|
if (auto *arrayTy = dyn_cast<llvm::ArrayType>(llvmType)) {
|
|
elementType = arrayTy->getElementType();
|
|
numElements = arrayTy->getNumElements();
|
|
} else if (auto *fVectorTy = dyn_cast<llvm::FixedVectorType>(llvmType)) {
|
|
elementType = fVectorTy->getElementType();
|
|
numElements = fVectorTy->getNumElements();
|
|
} else if (auto *sVectorTy = dyn_cast<llvm::ScalableVectorType>(llvmType)) {
|
|
elementType = sVectorTy->getElementType();
|
|
numElements = sVectorTy->getMinNumElements();
|
|
isScalable = true;
|
|
} else {
|
|
llvm_unreachable("unrecognized constant vector type");
|
|
}
|
|
// Splat value is a scalar. Extract it only if the element type is not
|
|
// another sequence type. The recursion terminates because each step removes
|
|
// one outer sequential type.
|
|
bool elementTypeSequential =
|
|
isa<llvm::ArrayType, llvm::VectorType>(elementType);
|
|
llvm::Constant *child = getLLVMConstant(
|
|
elementType,
|
|
elementTypeSequential ? splatAttr
|
|
: splatAttr.getSplatValue<Attribute>(),
|
|
loc, moduleTranslation, false);
|
|
if (!child)
|
|
return nullptr;
|
|
if (llvmType->isVectorTy())
|
|
return llvm::ConstantVector::getSplat(
|
|
llvm::ElementCount::get(numElements, /*Scalable=*/isScalable), child);
|
|
if (llvmType->isArrayTy()) {
|
|
auto *arrayType = llvm::ArrayType::get(elementType, numElements);
|
|
SmallVector<llvm::Constant *, 8> constants(numElements, child);
|
|
return llvm::ConstantArray::get(arrayType, constants);
|
|
}
|
|
}
|
|
|
|
// Try using raw elements data if possible.
|
|
if (llvm::Constant *result =
|
|
convertDenseElementsAttr(loc, attr.dyn_cast<DenseElementsAttr>(),
|
|
llvmType, moduleTranslation)) {
|
|
return result;
|
|
}
|
|
|
|
// Fall back to element-by-element construction otherwise.
|
|
if (auto elementsAttr = attr.dyn_cast<ElementsAttr>()) {
|
|
assert(elementsAttr.getType().hasStaticShape());
|
|
assert(!elementsAttr.getType().getShape().empty() &&
|
|
"unexpected empty elements attribute shape");
|
|
|
|
SmallVector<llvm::Constant *, 8> constants;
|
|
constants.reserve(elementsAttr.getNumElements());
|
|
llvm::Type *innermostType = getInnermostElementType(llvmType);
|
|
for (auto n : elementsAttr.getValues<Attribute>()) {
|
|
constants.push_back(
|
|
getLLVMConstant(innermostType, n, loc, moduleTranslation, false));
|
|
if (!constants.back())
|
|
return nullptr;
|
|
}
|
|
ArrayRef<llvm::Constant *> constantsRef = constants;
|
|
llvm::Constant *result = buildSequentialConstant(
|
|
constantsRef, elementsAttr.getType().getShape(), llvmType, loc);
|
|
assert(constantsRef.empty() && "did not consume all elemental constants");
|
|
return result;
|
|
}
|
|
|
|
if (auto stringAttr = attr.dyn_cast<StringAttr>()) {
|
|
return llvm::ConstantDataArray::get(
|
|
moduleTranslation.getLLVMContext(),
|
|
ArrayRef<char>{stringAttr.getValue().data(),
|
|
stringAttr.getValue().size()});
|
|
}
|
|
emitError(loc, "unsupported constant value");
|
|
return nullptr;
|
|
}
|
|
|
|
ModuleTranslation::ModuleTranslation(Operation *module,
|
|
std::unique_ptr<llvm::Module> llvmModule)
|
|
: mlirModule(module), llvmModule(std::move(llvmModule)),
|
|
debugTranslation(
|
|
std::make_unique<DebugTranslation>(module, *this->llvmModule)),
|
|
typeTranslator(this->llvmModule->getContext()),
|
|
iface(module->getContext()) {
|
|
assert(satisfiesLLVMModule(mlirModule) &&
|
|
"mlirModule should honor LLVM's module semantics.");
|
|
}
|
|
ModuleTranslation::~ModuleTranslation() {
|
|
if (ompBuilder)
|
|
ompBuilder->finalize();
|
|
}
|
|
|
|
void ModuleTranslation::forgetMapping(Region ®ion) {
|
|
SmallVector<Region *> toProcess;
|
|
toProcess.push_back(®ion);
|
|
while (!toProcess.empty()) {
|
|
Region *current = toProcess.pop_back_val();
|
|
for (Block &block : *current) {
|
|
blockMapping.erase(&block);
|
|
for (Value arg : block.getArguments())
|
|
valueMapping.erase(arg);
|
|
for (Operation &op : block) {
|
|
for (Value value : op.getResults())
|
|
valueMapping.erase(value);
|
|
if (op.hasSuccessors())
|
|
branchMapping.erase(&op);
|
|
if (isa<LLVM::GlobalOp>(op))
|
|
globalsMapping.erase(&op);
|
|
accessGroupMetadataMapping.erase(&op);
|
|
llvm::append_range(
|
|
toProcess,
|
|
llvm::map_range(op.getRegions(), [](Region &r) { return &r; }));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Get the SSA value passed to the current block from the terminator operation
|
|
/// of its predecessor.
|
|
static Value getPHISourceValue(Block *current, Block *pred,
|
|
unsigned numArguments, unsigned index) {
|
|
Operation &terminator = *pred->getTerminator();
|
|
if (isa<LLVM::BrOp>(terminator))
|
|
return terminator.getOperand(index);
|
|
|
|
#ifndef NDEBUG
|
|
llvm::SmallPtrSet<Block *, 4> seenSuccessors;
|
|
for (unsigned i = 0, e = terminator.getNumSuccessors(); i < e; ++i) {
|
|
Block *successor = terminator.getSuccessor(i);
|
|
auto branch = cast<BranchOpInterface>(terminator);
|
|
Optional<OperandRange> successorOperands = branch.getSuccessorOperands(i);
|
|
assert(
|
|
(!seenSuccessors.contains(successor) ||
|
|
(successorOperands && successorOperands->empty())) &&
|
|
"successors with arguments in LLVM branches must be different blocks");
|
|
seenSuccessors.insert(successor);
|
|
}
|
|
#endif
|
|
|
|
// For instructions that branch based on a condition value, we need to take
|
|
// the operands for the branch that was taken.
|
|
if (auto condBranchOp = dyn_cast<LLVM::CondBrOp>(terminator)) {
|
|
// For conditional branches, we take the operands from either the "true" or
|
|
// the "false" branch.
|
|
return condBranchOp.getSuccessor(0) == current
|
|
? condBranchOp.getTrueDestOperands()[index]
|
|
: condBranchOp.getFalseDestOperands()[index];
|
|
}
|
|
|
|
if (auto switchOp = dyn_cast<LLVM::SwitchOp>(terminator)) {
|
|
// For switches, we take the operands from either the default case, or from
|
|
// the case branch that was taken.
|
|
if (switchOp.getDefaultDestination() == current)
|
|
return switchOp.getDefaultOperands()[index];
|
|
for (const auto &i : llvm::enumerate(switchOp.getCaseDestinations()))
|
|
if (i.value() == current)
|
|
return switchOp.getCaseOperands(i.index())[index];
|
|
}
|
|
|
|
if (auto invokeOp = dyn_cast<LLVM::InvokeOp>(terminator)) {
|
|
return invokeOp.getNormalDest() == current
|
|
? invokeOp.getNormalDestOperands()[index]
|
|
: invokeOp.getUnwindDestOperands()[index];
|
|
}
|
|
|
|
llvm_unreachable(
|
|
"only branch, switch or invoke operations can be terminators "
|
|
"of a block that has successors");
|
|
}
|
|
|
|
/// Connect the PHI nodes to the results of preceding blocks.
|
|
void mlir::LLVM::detail::connectPHINodes(Region ®ion,
|
|
const ModuleTranslation &state) {
|
|
// Skip the first block, it cannot be branched to and its arguments correspond
|
|
// to the arguments of the LLVM function.
|
|
for (auto it = std::next(region.begin()), eit = region.end(); it != eit;
|
|
++it) {
|
|
Block *bb = &*it;
|
|
llvm::BasicBlock *llvmBB = state.lookupBlock(bb);
|
|
auto phis = llvmBB->phis();
|
|
auto numArguments = bb->getNumArguments();
|
|
assert(numArguments == std::distance(phis.begin(), phis.end()));
|
|
for (auto &numberedPhiNode : llvm::enumerate(phis)) {
|
|
auto &phiNode = numberedPhiNode.value();
|
|
unsigned index = numberedPhiNode.index();
|
|
for (auto *pred : bb->getPredecessors()) {
|
|
// Find the LLVM IR block that contains the converted terminator
|
|
// instruction and use it in the PHI node. Note that this block is not
|
|
// necessarily the same as state.lookupBlock(pred), some operations
|
|
// (in particular, OpenMP operations using OpenMPIRBuilder) may have
|
|
// split the blocks.
|
|
llvm::Instruction *terminator =
|
|
state.lookupBranch(pred->getTerminator());
|
|
assert(terminator && "missing the mapping for a terminator");
|
|
phiNode.addIncoming(
|
|
state.lookupValue(getPHISourceValue(bb, pred, numArguments, index)),
|
|
terminator->getParent());
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Sort function blocks topologically.
|
|
SetVector<Block *>
|
|
mlir::LLVM::detail::getTopologicallySortedBlocks(Region ®ion) {
|
|
// For each block that has not been visited yet (i.e. that has no
|
|
// predecessors), add it to the list as well as its successors.
|
|
SetVector<Block *> blocks;
|
|
for (Block &b : region) {
|
|
if (blocks.count(&b) == 0) {
|
|
llvm::ReversePostOrderTraversal<Block *> traversal(&b);
|
|
blocks.insert(traversal.begin(), traversal.end());
|
|
}
|
|
}
|
|
assert(blocks.size() == region.getBlocks().size() &&
|
|
"some blocks are not sorted");
|
|
|
|
return blocks;
|
|
}
|
|
|
|
llvm::Value *mlir::LLVM::detail::createIntrinsicCall(
|
|
llvm::IRBuilderBase &builder, llvm::Intrinsic::ID intrinsic,
|
|
ArrayRef<llvm::Value *> args, ArrayRef<llvm::Type *> tys) {
|
|
llvm::Module *module = builder.GetInsertBlock()->getModule();
|
|
llvm::Function *fn = llvm::Intrinsic::getDeclaration(module, intrinsic, tys);
|
|
return builder.CreateCall(fn, args);
|
|
}
|
|
|
|
/// Given a single MLIR operation, create the corresponding LLVM IR operation
|
|
/// using the `builder`.
|
|
LogicalResult
|
|
ModuleTranslation::convertOperation(Operation &op,
|
|
llvm::IRBuilderBase &builder) {
|
|
const LLVMTranslationDialectInterface *opIface = iface.getInterfaceFor(&op);
|
|
if (!opIface)
|
|
return op.emitError("cannot be converted to LLVM IR: missing "
|
|
"`LLVMTranslationDialectInterface` registration for "
|
|
"dialect for op: ")
|
|
<< op.getName();
|
|
|
|
if (failed(opIface->convertOperation(&op, builder, *this)))
|
|
return op.emitError("LLVM Translation failed for operation: ")
|
|
<< op.getName();
|
|
|
|
return convertDialectAttributes(&op);
|
|
}
|
|
|
|
/// Convert block to LLVM IR. Unless `ignoreArguments` is set, emit PHI nodes
|
|
/// to define values corresponding to the MLIR block arguments. These nodes
|
|
/// are not connected to the source basic blocks, which may not exist yet. Uses
|
|
/// `builder` to construct the LLVM IR. Expects the LLVM IR basic block to have
|
|
/// been created for `bb` and included in the block mapping. Inserts new
|
|
/// instructions at the end of the block and leaves `builder` in a state
|
|
/// suitable for further insertion into the end of the block.
|
|
LogicalResult ModuleTranslation::convertBlock(Block &bb, bool ignoreArguments,
|
|
llvm::IRBuilderBase &builder) {
|
|
builder.SetInsertPoint(lookupBlock(&bb));
|
|
auto *subprogram = builder.GetInsertBlock()->getParent()->getSubprogram();
|
|
|
|
// Before traversing operations, make block arguments available through
|
|
// value remapping and PHI nodes, but do not add incoming edges for the PHI
|
|
// nodes just yet: those values may be defined by this or following blocks.
|
|
// This step is omitted if "ignoreArguments" is set. The arguments of the
|
|
// first block have been already made available through the remapping of
|
|
// LLVM function arguments.
|
|
if (!ignoreArguments) {
|
|
auto predecessors = bb.getPredecessors();
|
|
unsigned numPredecessors =
|
|
std::distance(predecessors.begin(), predecessors.end());
|
|
for (auto arg : bb.getArguments()) {
|
|
auto wrappedType = arg.getType();
|
|
if (!isCompatibleType(wrappedType))
|
|
return emitError(bb.front().getLoc(),
|
|
"block argument does not have an LLVM type");
|
|
llvm::Type *type = convertType(wrappedType);
|
|
llvm::PHINode *phi = builder.CreatePHI(type, numPredecessors);
|
|
mapValue(arg, phi);
|
|
}
|
|
}
|
|
|
|
// Traverse operations.
|
|
for (auto &op : bb) {
|
|
// Set the current debug location within the builder.
|
|
builder.SetCurrentDebugLocation(
|
|
debugTranslation->translateLoc(op.getLoc(), subprogram));
|
|
|
|
if (failed(convertOperation(op, builder)))
|
|
return failure();
|
|
}
|
|
|
|
return success();
|
|
}
|
|
|
|
/// A helper method to get the single Block in an operation honoring LLVM's
|
|
/// module requirements.
|
|
static Block &getModuleBody(Operation *module) {
|
|
return module->getRegion(0).front();
|
|
}
|
|
|
|
/// A helper method to decide if a constant must not be set as a global variable
|
|
/// initializer. For an external linkage variable, the variable with an
|
|
/// initializer is considered externally visible and defined in this module, the
|
|
/// variable without an initializer is externally available and is defined
|
|
/// elsewhere.
|
|
static bool shouldDropGlobalInitializer(llvm::GlobalValue::LinkageTypes linkage,
|
|
llvm::Constant *cst) {
|
|
return (linkage == llvm::GlobalVariable::ExternalLinkage && !cst) ||
|
|
linkage == llvm::GlobalVariable::ExternalWeakLinkage;
|
|
}
|
|
|
|
/// Sets the runtime preemption specifier of `gv` to dso_local if
|
|
/// `dsoLocalRequested` is true, otherwise it is left unchanged.
|
|
static void addRuntimePreemptionSpecifier(bool dsoLocalRequested,
|
|
llvm::GlobalValue *gv) {
|
|
if (dsoLocalRequested)
|
|
gv->setDSOLocal(true);
|
|
}
|
|
|
|
/// Create named global variables that correspond to llvm.mlir.global
|
|
/// definitions. Convert llvm.global_ctors and global_dtors ops.
|
|
LogicalResult ModuleTranslation::convertGlobals() {
|
|
for (auto op : getModuleBody(mlirModule).getOps<LLVM::GlobalOp>()) {
|
|
llvm::Type *type = convertType(op.getType());
|
|
llvm::Constant *cst = nullptr;
|
|
if (op.getValueOrNull()) {
|
|
// String attributes are treated separately because they cannot appear as
|
|
// in-function constants and are thus not supported by getLLVMConstant.
|
|
if (auto strAttr = op.getValueOrNull().dyn_cast_or_null<StringAttr>()) {
|
|
cst = llvm::ConstantDataArray::getString(
|
|
llvmModule->getContext(), strAttr.getValue(), /*AddNull=*/false);
|
|
type = cst->getType();
|
|
} else if (!(cst = getLLVMConstant(type, op.getValueOrNull(), op.getLoc(),
|
|
*this))) {
|
|
return failure();
|
|
}
|
|
}
|
|
|
|
auto linkage = convertLinkageToLLVM(op.getLinkage());
|
|
auto addrSpace = op.getAddrSpace();
|
|
|
|
// LLVM IR requires constant with linkage other than external or weak
|
|
// external to have initializers. If MLIR does not provide an initializer,
|
|
// default to undef.
|
|
bool dropInitializer = shouldDropGlobalInitializer(linkage, cst);
|
|
if (!dropInitializer && !cst)
|
|
cst = llvm::UndefValue::get(type);
|
|
else if (dropInitializer && cst)
|
|
cst = nullptr;
|
|
|
|
auto *var = new llvm::GlobalVariable(
|
|
*llvmModule, type, op.getConstant(), linkage, cst, op.getSymName(),
|
|
/*InsertBefore=*/nullptr, llvm::GlobalValue::NotThreadLocal, addrSpace);
|
|
|
|
if (op.getUnnamedAddr().hasValue())
|
|
var->setUnnamedAddr(convertUnnamedAddrToLLVM(*op.getUnnamedAddr()));
|
|
|
|
if (op.getSection().hasValue())
|
|
var->setSection(*op.getSection());
|
|
|
|
addRuntimePreemptionSpecifier(op.getDsoLocal(), var);
|
|
|
|
Optional<uint64_t> alignment = op.getAlignment();
|
|
if (alignment.hasValue())
|
|
var->setAlignment(llvm::MaybeAlign(alignment.getValue()));
|
|
|
|
globalsMapping.try_emplace(op, var);
|
|
}
|
|
|
|
// Convert global variable bodies. This is done after all global variables
|
|
// have been created in LLVM IR because a global body may refer to another
|
|
// global or itself. So all global variables need to be mapped first.
|
|
for (auto op : getModuleBody(mlirModule).getOps<LLVM::GlobalOp>()) {
|
|
if (Block *initializer = op.getInitializerBlock()) {
|
|
llvm::IRBuilder<> builder(llvmModule->getContext());
|
|
for (auto &op : initializer->without_terminator()) {
|
|
if (failed(convertOperation(op, builder)) ||
|
|
!isa<llvm::Constant>(lookupValue(op.getResult(0))))
|
|
return emitError(op.getLoc(), "unemittable constant value");
|
|
}
|
|
ReturnOp ret = cast<ReturnOp>(initializer->getTerminator());
|
|
llvm::Constant *cst =
|
|
cast<llvm::Constant>(lookupValue(ret.getOperand(0)));
|
|
auto *global = cast<llvm::GlobalVariable>(lookupGlobal(op));
|
|
if (!shouldDropGlobalInitializer(global->getLinkage(), cst))
|
|
global->setInitializer(cst);
|
|
}
|
|
}
|
|
|
|
// Convert llvm.mlir.global_ctors and dtors.
|
|
for (Operation &op : getModuleBody(mlirModule)) {
|
|
auto ctorOp = dyn_cast<GlobalCtorsOp>(op);
|
|
auto dtorOp = dyn_cast<GlobalDtorsOp>(op);
|
|
if (!ctorOp && !dtorOp)
|
|
continue;
|
|
auto range = ctorOp ? llvm::zip(ctorOp.getCtors(), ctorOp.getPriorities())
|
|
: llvm::zip(dtorOp.getDtors(), dtorOp.getPriorities());
|
|
auto appendGlobalFn =
|
|
ctorOp ? llvm::appendToGlobalCtors : llvm::appendToGlobalDtors;
|
|
for (auto symbolAndPriority : range) {
|
|
llvm::Function *f = lookupFunction(
|
|
std::get<0>(symbolAndPriority).cast<FlatSymbolRefAttr>().getValue());
|
|
appendGlobalFn(
|
|
*llvmModule, f,
|
|
std::get<1>(symbolAndPriority).cast<IntegerAttr>().getInt(),
|
|
/*Data=*/nullptr);
|
|
}
|
|
}
|
|
|
|
return success();
|
|
}
|
|
|
|
/// Attempts to add an attribute identified by `key`, optionally with the given
|
|
/// `value` to LLVM function `llvmFunc`. Reports errors at `loc` if any. If the
|
|
/// attribute has a kind known to LLVM IR, create the attribute of this kind,
|
|
/// otherwise keep it as a string attribute. Performs additional checks for
|
|
/// attributes known to have or not have a value in order to avoid assertions
|
|
/// inside LLVM upon construction.
|
|
static LogicalResult checkedAddLLVMFnAttribute(Location loc,
|
|
llvm::Function *llvmFunc,
|
|
StringRef key,
|
|
StringRef value = StringRef()) {
|
|
auto kind = llvm::Attribute::getAttrKindFromName(key);
|
|
if (kind == llvm::Attribute::None) {
|
|
llvmFunc->addFnAttr(key, value);
|
|
return success();
|
|
}
|
|
|
|
if (llvm::Attribute::isIntAttrKind(kind)) {
|
|
if (value.empty())
|
|
return emitError(loc) << "LLVM attribute '" << key << "' expects a value";
|
|
|
|
int result;
|
|
if (!value.getAsInteger(/*Radix=*/0, result))
|
|
llvmFunc->addFnAttr(
|
|
llvm::Attribute::get(llvmFunc->getContext(), kind, result));
|
|
else
|
|
llvmFunc->addFnAttr(key, value);
|
|
return success();
|
|
}
|
|
|
|
if (!value.empty())
|
|
return emitError(loc) << "LLVM attribute '" << key
|
|
<< "' does not expect a value, found '" << value
|
|
<< "'";
|
|
|
|
llvmFunc->addFnAttr(kind);
|
|
return success();
|
|
}
|
|
|
|
/// Attaches the attributes listed in the given array attribute to `llvmFunc`.
|
|
/// Reports error to `loc` if any and returns immediately. Expects `attributes`
|
|
/// to be an array attribute containing either string attributes, treated as
|
|
/// value-less LLVM attributes, or array attributes containing two string
|
|
/// attributes, with the first string being the name of the corresponding LLVM
|
|
/// attribute and the second string beings its value. Note that even integer
|
|
/// attributes are expected to have their values expressed as strings.
|
|
static LogicalResult
|
|
forwardPassthroughAttributes(Location loc, Optional<ArrayAttr> attributes,
|
|
llvm::Function *llvmFunc) {
|
|
if (!attributes)
|
|
return success();
|
|
|
|
for (Attribute attr : *attributes) {
|
|
if (auto stringAttr = attr.dyn_cast<StringAttr>()) {
|
|
if (failed(
|
|
checkedAddLLVMFnAttribute(loc, llvmFunc, stringAttr.getValue())))
|
|
return failure();
|
|
continue;
|
|
}
|
|
|
|
auto arrayAttr = attr.dyn_cast<ArrayAttr>();
|
|
if (!arrayAttr || arrayAttr.size() != 2)
|
|
return emitError(loc)
|
|
<< "expected 'passthrough' to contain string or array attributes";
|
|
|
|
auto keyAttr = arrayAttr[0].dyn_cast<StringAttr>();
|
|
auto valueAttr = arrayAttr[1].dyn_cast<StringAttr>();
|
|
if (!keyAttr || !valueAttr)
|
|
return emitError(loc)
|
|
<< "expected arrays within 'passthrough' to contain two strings";
|
|
|
|
if (failed(checkedAddLLVMFnAttribute(loc, llvmFunc, keyAttr.getValue(),
|
|
valueAttr.getValue())))
|
|
return failure();
|
|
}
|
|
return success();
|
|
}
|
|
|
|
LogicalResult ModuleTranslation::convertOneFunction(LLVMFuncOp func) {
|
|
// Clear the block, branch value mappings, they are only relevant within one
|
|
// function.
|
|
blockMapping.clear();
|
|
valueMapping.clear();
|
|
branchMapping.clear();
|
|
llvm::Function *llvmFunc = lookupFunction(func.getName());
|
|
|
|
// Translate the debug information for this function.
|
|
debugTranslation->translate(func, *llvmFunc);
|
|
|
|
// Add function arguments to the value remapping table.
|
|
// If there was noalias info then we decorate each argument accordingly.
|
|
unsigned int argIdx = 0;
|
|
for (auto kvp : llvm::zip(func.getArguments(), llvmFunc->args())) {
|
|
llvm::Argument &llvmArg = std::get<1>(kvp);
|
|
BlockArgument mlirArg = std::get<0>(kvp);
|
|
|
|
if (auto attr = func.getArgAttrOfType<UnitAttr>(
|
|
argIdx, LLVMDialect::getNoAliasAttrName())) {
|
|
// NB: Attribute already verified to be boolean, so check if we can indeed
|
|
// attach the attribute to this argument, based on its type.
|
|
auto argTy = mlirArg.getType();
|
|
if (!argTy.isa<LLVM::LLVMPointerType>())
|
|
return func.emitError(
|
|
"llvm.noalias attribute attached to LLVM non-pointer argument");
|
|
llvmArg.addAttr(llvm::Attribute::AttrKind::NoAlias);
|
|
}
|
|
|
|
if (auto attr = func.getArgAttrOfType<IntegerAttr>(
|
|
argIdx, LLVMDialect::getAlignAttrName())) {
|
|
// NB: Attribute already verified to be int, so check if we can indeed
|
|
// attach the attribute to this argument, based on its type.
|
|
auto argTy = mlirArg.getType();
|
|
if (!argTy.isa<LLVM::LLVMPointerType>())
|
|
return func.emitError(
|
|
"llvm.align attribute attached to LLVM non-pointer argument");
|
|
llvmArg.addAttrs(
|
|
llvm::AttrBuilder(llvmArg.getContext()).addAlignmentAttr(llvm::Align(attr.getInt())));
|
|
}
|
|
|
|
if (auto attr = func.getArgAttrOfType<UnitAttr>(argIdx, "llvm.sret")) {
|
|
auto argTy = mlirArg.getType().dyn_cast<LLVM::LLVMPointerType>();
|
|
if (!argTy)
|
|
return func.emitError(
|
|
"llvm.sret attribute attached to LLVM non-pointer argument");
|
|
llvmArg.addAttrs(
|
|
llvm::AttrBuilder(llvmArg.getContext())
|
|
.addStructRetAttr(convertType(argTy.getElementType())));
|
|
}
|
|
|
|
if (auto attr = func.getArgAttrOfType<UnitAttr>(argIdx, "llvm.byval")) {
|
|
auto argTy = mlirArg.getType().dyn_cast<LLVM::LLVMPointerType>();
|
|
if (!argTy)
|
|
return func.emitError(
|
|
"llvm.byval attribute attached to LLVM non-pointer argument");
|
|
llvmArg.addAttrs(llvm::AttrBuilder(llvmArg.getContext())
|
|
.addByValAttr(convertType(argTy.getElementType())));
|
|
}
|
|
|
|
mapValue(mlirArg, &llvmArg);
|
|
argIdx++;
|
|
}
|
|
|
|
// Check the personality and set it.
|
|
if (func.getPersonality().hasValue()) {
|
|
llvm::Type *ty = llvm::Type::getInt8PtrTy(llvmFunc->getContext());
|
|
if (llvm::Constant *pfunc = getLLVMConstant(ty, func.getPersonalityAttr(),
|
|
func.getLoc(), *this))
|
|
llvmFunc->setPersonalityFn(pfunc);
|
|
}
|
|
|
|
if (auto gc = func.getGarbageCollector())
|
|
llvmFunc->setGC(gc->str());
|
|
|
|
// First, create all blocks so we can jump to them.
|
|
llvm::LLVMContext &llvmContext = llvmFunc->getContext();
|
|
for (auto &bb : func) {
|
|
auto *llvmBB = llvm::BasicBlock::Create(llvmContext);
|
|
llvmBB->insertInto(llvmFunc);
|
|
mapBlock(&bb, llvmBB);
|
|
}
|
|
|
|
// Then, convert blocks one by one in topological order to ensure defs are
|
|
// converted before uses.
|
|
auto blocks = detail::getTopologicallySortedBlocks(func.getBody());
|
|
for (Block *bb : blocks) {
|
|
llvm::IRBuilder<> builder(llvmContext);
|
|
if (failed(convertBlock(*bb, bb->isEntryBlock(), builder)))
|
|
return failure();
|
|
}
|
|
|
|
// After all blocks have been traversed and values mapped, connect the PHI
|
|
// nodes to the results of preceding blocks.
|
|
detail::connectPHINodes(func.getBody(), *this);
|
|
|
|
// Finally, convert dialect attributes attached to the function.
|
|
return convertDialectAttributes(func);
|
|
}
|
|
|
|
LogicalResult ModuleTranslation::convertDialectAttributes(Operation *op) {
|
|
for (NamedAttribute attribute : op->getDialectAttrs())
|
|
if (failed(iface.amendOperation(op, attribute, *this)))
|
|
return failure();
|
|
return success();
|
|
}
|
|
|
|
LogicalResult ModuleTranslation::convertFunctionSignatures() {
|
|
// Declare all functions first because there may be function calls that form a
|
|
// call graph with cycles, or global initializers that reference functions.
|
|
for (auto function : getModuleBody(mlirModule).getOps<LLVMFuncOp>()) {
|
|
llvm::FunctionCallee llvmFuncCst = llvmModule->getOrInsertFunction(
|
|
function.getName(),
|
|
cast<llvm::FunctionType>(convertType(function.getFunctionType())));
|
|
llvm::Function *llvmFunc = cast<llvm::Function>(llvmFuncCst.getCallee());
|
|
llvmFunc->setLinkage(convertLinkageToLLVM(function.getLinkage()));
|
|
mapFunction(function.getName(), llvmFunc);
|
|
addRuntimePreemptionSpecifier(function.getDsoLocal(), llvmFunc);
|
|
|
|
// Forward the pass-through attributes to LLVM.
|
|
if (failed(forwardPassthroughAttributes(
|
|
function.getLoc(), function.getPassthrough(), llvmFunc)))
|
|
return failure();
|
|
}
|
|
|
|
return success();
|
|
}
|
|
|
|
LogicalResult ModuleTranslation::convertFunctions() {
|
|
// Convert functions.
|
|
for (auto function : getModuleBody(mlirModule).getOps<LLVMFuncOp>()) {
|
|
// Ignore external functions.
|
|
if (function.isExternal())
|
|
continue;
|
|
|
|
if (failed(convertOneFunction(function)))
|
|
return failure();
|
|
}
|
|
|
|
return success();
|
|
}
|
|
|
|
llvm::MDNode *
|
|
ModuleTranslation::getAccessGroup(Operation &opInst,
|
|
SymbolRefAttr accessGroupRef) const {
|
|
auto metadataName = accessGroupRef.getRootReference();
|
|
auto accessGroupName = accessGroupRef.getLeafReference();
|
|
auto metadataOp = SymbolTable::lookupNearestSymbolFrom<LLVM::MetadataOp>(
|
|
opInst.getParentOp(), metadataName);
|
|
auto *accessGroupOp =
|
|
SymbolTable::lookupNearestSymbolFrom(metadataOp, accessGroupName);
|
|
return accessGroupMetadataMapping.lookup(accessGroupOp);
|
|
}
|
|
|
|
LogicalResult ModuleTranslation::createAccessGroupMetadata() {
|
|
mlirModule->walk([&](LLVM::MetadataOp metadatas) {
|
|
metadatas.walk([&](LLVM::AccessGroupMetadataOp op) {
|
|
llvm::LLVMContext &ctx = llvmModule->getContext();
|
|
llvm::MDNode *accessGroup = llvm::MDNode::getDistinct(ctx, {});
|
|
accessGroupMetadataMapping.insert({op, accessGroup});
|
|
});
|
|
});
|
|
return success();
|
|
}
|
|
|
|
void ModuleTranslation::setAccessGroupsMetadata(Operation *op,
|
|
llvm::Instruction *inst) {
|
|
auto accessGroups =
|
|
op->getAttrOfType<ArrayAttr>(LLVMDialect::getAccessGroupsAttrName());
|
|
if (accessGroups && !accessGroups.empty()) {
|
|
llvm::Module *module = inst->getModule();
|
|
SmallVector<llvm::Metadata *> metadatas;
|
|
for (SymbolRefAttr accessGroupRef :
|
|
accessGroups.getAsRange<SymbolRefAttr>())
|
|
metadatas.push_back(getAccessGroup(*op, accessGroupRef));
|
|
|
|
llvm::MDNode *unionMD = nullptr;
|
|
if (metadatas.size() == 1)
|
|
unionMD = llvm::cast<llvm::MDNode>(metadatas.front());
|
|
else if (metadatas.size() >= 2)
|
|
unionMD = llvm::MDNode::get(module->getContext(), metadatas);
|
|
|
|
inst->setMetadata(module->getMDKindID("llvm.access.group"), unionMD);
|
|
}
|
|
}
|
|
|
|
LogicalResult ModuleTranslation::createAliasScopeMetadata() {
|
|
mlirModule->walk([&](LLVM::MetadataOp metadatas) {
|
|
// Create the domains first, so they can be reference below in the scopes.
|
|
DenseMap<Operation *, llvm::MDNode *> aliasScopeDomainMetadataMapping;
|
|
metadatas.walk([&](LLVM::AliasScopeDomainMetadataOp op) {
|
|
llvm::LLVMContext &ctx = llvmModule->getContext();
|
|
llvm::SmallVector<llvm::Metadata *, 2> operands;
|
|
operands.push_back({}); // Placeholder for self-reference
|
|
if (Optional<StringRef> description = op.getDescription())
|
|
operands.push_back(llvm::MDString::get(ctx, description.getValue()));
|
|
llvm::MDNode *domain = llvm::MDNode::get(ctx, operands);
|
|
domain->replaceOperandWith(0, domain); // Self-reference for uniqueness
|
|
aliasScopeDomainMetadataMapping.insert({op, domain});
|
|
});
|
|
|
|
// Now create the scopes, referencing the domains created above.
|
|
metadatas.walk([&](LLVM::AliasScopeMetadataOp op) {
|
|
llvm::LLVMContext &ctx = llvmModule->getContext();
|
|
assert(isa<LLVM::MetadataOp>(op->getParentOp()));
|
|
auto metadataOp = dyn_cast<LLVM::MetadataOp>(op->getParentOp());
|
|
Operation *domainOp =
|
|
SymbolTable::lookupNearestSymbolFrom(metadataOp, op.getDomainAttr());
|
|
llvm::MDNode *domain = aliasScopeDomainMetadataMapping.lookup(domainOp);
|
|
assert(domain && "Scope's domain should already be valid");
|
|
llvm::SmallVector<llvm::Metadata *, 3> operands;
|
|
operands.push_back({}); // Placeholder for self-reference
|
|
operands.push_back(domain);
|
|
if (Optional<StringRef> description = op.getDescription())
|
|
operands.push_back(llvm::MDString::get(ctx, description.getValue()));
|
|
llvm::MDNode *scope = llvm::MDNode::get(ctx, operands);
|
|
scope->replaceOperandWith(0, scope); // Self-reference for uniqueness
|
|
aliasScopeMetadataMapping.insert({op, scope});
|
|
});
|
|
});
|
|
return success();
|
|
}
|
|
|
|
llvm::MDNode *
|
|
ModuleTranslation::getAliasScope(Operation &opInst,
|
|
SymbolRefAttr aliasScopeRef) const {
|
|
StringAttr metadataName = aliasScopeRef.getRootReference();
|
|
StringAttr scopeName = aliasScopeRef.getLeafReference();
|
|
auto metadataOp = SymbolTable::lookupNearestSymbolFrom<LLVM::MetadataOp>(
|
|
opInst.getParentOp(), metadataName);
|
|
Operation *aliasScopeOp =
|
|
SymbolTable::lookupNearestSymbolFrom(metadataOp, scopeName);
|
|
return aliasScopeMetadataMapping.lookup(aliasScopeOp);
|
|
}
|
|
|
|
void ModuleTranslation::setAliasScopeMetadata(Operation *op,
|
|
llvm::Instruction *inst) {
|
|
auto populateScopeMetadata = [this, op, inst](StringRef attrName,
|
|
StringRef llvmMetadataName) {
|
|
auto scopes = op->getAttrOfType<ArrayAttr>(attrName);
|
|
if (!scopes || scopes.empty())
|
|
return;
|
|
llvm::Module *module = inst->getModule();
|
|
SmallVector<llvm::Metadata *> scopeMDs;
|
|
for (SymbolRefAttr scopeRef : scopes.getAsRange<SymbolRefAttr>())
|
|
scopeMDs.push_back(getAliasScope(*op, scopeRef));
|
|
llvm::MDNode *unionMD = llvm::MDNode::get(module->getContext(), scopeMDs);
|
|
inst->setMetadata(module->getMDKindID(llvmMetadataName), unionMD);
|
|
};
|
|
|
|
populateScopeMetadata(LLVMDialect::getAliasScopesAttrName(), "alias.scope");
|
|
populateScopeMetadata(LLVMDialect::getNoAliasScopesAttrName(), "noalias");
|
|
}
|
|
|
|
llvm::Type *ModuleTranslation::convertType(Type type) {
|
|
return typeTranslator.translateType(type);
|
|
}
|
|
|
|
/// A helper to look up remapped operands in the value remapping table.
|
|
SmallVector<llvm::Value *> ModuleTranslation::lookupValues(ValueRange values) {
|
|
SmallVector<llvm::Value *> remapped;
|
|
remapped.reserve(values.size());
|
|
for (Value v : values)
|
|
remapped.push_back(lookupValue(v));
|
|
return remapped;
|
|
}
|
|
|
|
const llvm::DILocation *
|
|
ModuleTranslation::translateLoc(Location loc, llvm::DILocalScope *scope) {
|
|
return debugTranslation->translateLoc(loc, scope);
|
|
}
|
|
|
|
llvm::NamedMDNode *
|
|
ModuleTranslation::getOrInsertNamedModuleMetadata(StringRef name) {
|
|
return llvmModule->getOrInsertNamedMetadata(name);
|
|
}
|
|
|
|
void ModuleTranslation::StackFrame::anchor() {}
|
|
|
|
static std::unique_ptr<llvm::Module>
|
|
prepareLLVMModule(Operation *m, llvm::LLVMContext &llvmContext,
|
|
StringRef name) {
|
|
m->getContext()->getOrLoadDialect<LLVM::LLVMDialect>();
|
|
auto llvmModule = std::make_unique<llvm::Module>(name, llvmContext);
|
|
if (auto dataLayoutAttr =
|
|
m->getAttr(LLVM::LLVMDialect::getDataLayoutAttrName())) {
|
|
llvmModule->setDataLayout(dataLayoutAttr.cast<StringAttr>().getValue());
|
|
} else {
|
|
FailureOr<llvm::DataLayout> llvmDataLayout(llvm::DataLayout(""));
|
|
if (auto iface = dyn_cast<DataLayoutOpInterface>(m)) {
|
|
if (DataLayoutSpecInterface spec = iface.getDataLayoutSpec()) {
|
|
llvmDataLayout =
|
|
translateDataLayout(spec, DataLayout(iface), m->getLoc());
|
|
}
|
|
} else if (auto mod = dyn_cast<ModuleOp>(m)) {
|
|
if (DataLayoutSpecInterface spec = mod.getDataLayoutSpec()) {
|
|
llvmDataLayout =
|
|
translateDataLayout(spec, DataLayout(mod), m->getLoc());
|
|
}
|
|
}
|
|
if (failed(llvmDataLayout))
|
|
return nullptr;
|
|
llvmModule->setDataLayout(*llvmDataLayout);
|
|
}
|
|
if (auto targetTripleAttr =
|
|
m->getAttr(LLVM::LLVMDialect::getTargetTripleAttrName()))
|
|
llvmModule->setTargetTriple(targetTripleAttr.cast<StringAttr>().getValue());
|
|
|
|
// Inject declarations for `malloc` and `free` functions that can be used in
|
|
// memref allocation/deallocation coming from standard ops lowering.
|
|
llvm::IRBuilder<> builder(llvmContext);
|
|
llvmModule->getOrInsertFunction("malloc", builder.getInt8PtrTy(),
|
|
builder.getInt64Ty());
|
|
llvmModule->getOrInsertFunction("free", builder.getVoidTy(),
|
|
builder.getInt8PtrTy());
|
|
|
|
return llvmModule;
|
|
}
|
|
|
|
std::unique_ptr<llvm::Module>
|
|
mlir::translateModuleToLLVMIR(Operation *module, llvm::LLVMContext &llvmContext,
|
|
StringRef name) {
|
|
if (!satisfiesLLVMModule(module))
|
|
return nullptr;
|
|
|
|
std::unique_ptr<llvm::Module> llvmModule =
|
|
prepareLLVMModule(module, llvmContext, name);
|
|
if (!llvmModule)
|
|
return nullptr;
|
|
|
|
LLVM::ensureDistinctSuccessors(module);
|
|
|
|
ModuleTranslation translator(module, std::move(llvmModule));
|
|
if (failed(translator.convertFunctionSignatures()))
|
|
return nullptr;
|
|
if (failed(translator.convertGlobals()))
|
|
return nullptr;
|
|
if (failed(translator.createAccessGroupMetadata()))
|
|
return nullptr;
|
|
if (failed(translator.createAliasScopeMetadata()))
|
|
return nullptr;
|
|
if (failed(translator.convertFunctions()))
|
|
return nullptr;
|
|
|
|
// Convert other top-level operations if possible.
|
|
llvm::IRBuilder<> llvmBuilder(llvmContext);
|
|
for (Operation &o : getModuleBody(module).getOperations()) {
|
|
if (!isa<LLVM::LLVMFuncOp, LLVM::GlobalOp, LLVM::GlobalCtorsOp,
|
|
LLVM::GlobalDtorsOp, LLVM::MetadataOp>(&o) &&
|
|
!o.hasTrait<OpTrait::IsTerminator>() &&
|
|
failed(translator.convertOperation(o, llvmBuilder))) {
|
|
return nullptr;
|
|
}
|
|
}
|
|
|
|
if (llvm::verifyModule(*translator.llvmModule, &llvm::errs()))
|
|
return nullptr;
|
|
|
|
return std::move(translator.llvmModule);
|
|
}
|