llvm-capstone/polly
Michael Kruse 549991e48c [ScopBuilder] Move hoistInvariantLoads to ScopBuilder. NFC.
Refactor Scop and ScopBuilder class:

1. Move hoistInvariantLoads function from Scop to ScopBuilder class.

2. Private functions (addInvariantLoads, getNonHoistableCtx) are moved
   to public section of Scop class. hoistInvariantLoads function
   references these functions. These functions will be moved to
   ScopBuilder as well in the next steps.

Patch by Dominik Adamski <adamski.dominik@gmail.com>

Differential Revision: https://reviews.llvm.org/D62925

llvm-svn: 363121
2019-06-12 04:23:05 +00:00
..
cmake [CMake] Fix generation of exported targets in build directory 2018-11-06 15:18:17 +00:00
docs [CodeGen] LLVM OpenMP Backend. 2019-03-19 03:18:21 +00:00
include/polly [ScopBuilder] Move hoistInvariantLoads to ScopBuilder. NFC. 2019-06-12 04:23:05 +00:00
lib [ScopBuilder] Move hoistInvariantLoads to ScopBuilder. NFC. 2019-06-12 04:23:05 +00:00
test [ScheduleOptimizer] Hoist extension nodes after schedule optimization. 2019-05-31 19:26:57 +00:00
tools Fix typos throughout the license files that somehow I and my reviewers 2019-01-21 09:52:34 +00:00
unittests Update the file headers across all of the LLVM projects in the monorepo 2019-01-19 08:50:56 +00:00
utils
www Adjust documentation for git migration. 2019-01-29 16:37:27 +00:00
.arcconfig
.arclint
.gitattributes
.gitignore
CMakeLists.txt [JSONExporter] Replace bundled Jsoncpp with llvm/Support/JSON.h. NFC. 2018-08-01 00:15:16 +00:00
CREDITS.txt
LICENSE.txt Fix typos throughout the license files that somehow I and my reviewers 2019-01-21 09:52:34 +00:00
README

Polly - Polyhedral optimizations for LLVM
-----------------------------------------
http://polly.llvm.org/

Polly uses a mathematical representation, the polyhedral model, to represent and
transform loops and other control flow structures. Using an abstract
representation it is possible to reason about transformations in a more general
way and to use highly optimized linear programming libraries to figure out the
optimal loop structure. These transformations can be used to do constant
propagation through arrays, remove dead loop iterations, optimize loops for
cache locality, optimize arrays, apply advanced automatic parallelization, drive
vectorization, or they can be used to do software pipelining.