mirror of
https://github.com/capstone-engine/llvm-capstone.git
synced 2025-04-11 10:52:05 +00:00

This CL refactors some of the MLIR vector dependencies to allow decoupling VectorOps, vector analysis, vector transformations and vector conversions from each other. This makes the system more modular and allows extracting VectorToVector into VectorTransforms that do not depend on vector conversions. This refactoring exhibited a bunch of cyclic library dependencies that have been cleaned up. PiperOrigin-RevId: 283660308
284 lines
12 KiB
C++
284 lines
12 KiB
C++
//===- VectorToLLVM.cpp - Conversion from Vector to the LLVM dialect ------===//
|
|
//
|
|
// Copyright 2019 The MLIR Authors.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
// =============================================================================
|
|
|
|
#include "mlir/Conversion/StandardToLLVM/ConvertStandardToLLVM.h"
|
|
#include "mlir/Conversion/StandardToLLVM/ConvertStandardToLLVMPass.h"
|
|
#include "mlir/Conversion/VectorToLLVM/ConvertVectorToLLVM.h"
|
|
#include "mlir/Dialect/LLVMIR/LLVMDialect.h"
|
|
#include "mlir/Dialect/VectorOps/VectorOps.h"
|
|
#include "mlir/IR/Attributes.h"
|
|
#include "mlir/IR/Builders.h"
|
|
#include "mlir/IR/MLIRContext.h"
|
|
#include "mlir/IR/Module.h"
|
|
#include "mlir/IR/Operation.h"
|
|
#include "mlir/IR/PatternMatch.h"
|
|
#include "mlir/IR/StandardTypes.h"
|
|
#include "mlir/IR/Types.h"
|
|
#include "mlir/Pass/Pass.h"
|
|
#include "mlir/Pass/PassManager.h"
|
|
#include "mlir/Transforms/DialectConversion.h"
|
|
#include "mlir/Transforms/Passes.h"
|
|
|
|
#include "llvm/IR/DerivedTypes.h"
|
|
#include "llvm/IR/Module.h"
|
|
#include "llvm/IR/Type.h"
|
|
#include "llvm/Support/Allocator.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
|
|
using namespace mlir;
|
|
|
|
template <typename T>
|
|
static LLVM::LLVMType getPtrToElementType(T containerType,
|
|
LLVMTypeConverter &lowering) {
|
|
return lowering.convertType(containerType.getElementType())
|
|
.template cast<LLVM::LLVMType>()
|
|
.getPointerTo();
|
|
}
|
|
|
|
class VectorExtractElementOpConversion : public LLVMOpLowering {
|
|
public:
|
|
explicit VectorExtractElementOpConversion(MLIRContext *context,
|
|
LLVMTypeConverter &typeConverter)
|
|
: LLVMOpLowering(vector::ExtractElementOp::getOperationName(), context,
|
|
typeConverter) {}
|
|
|
|
PatternMatchResult
|
|
matchAndRewrite(Operation *op, ArrayRef<Value *> operands,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
auto loc = op->getLoc();
|
|
auto adaptor = vector::ExtractElementOpOperandAdaptor(operands);
|
|
auto extractOp = cast<vector::ExtractElementOp>(op);
|
|
auto vectorType = extractOp.vector()->getType().cast<VectorType>();
|
|
auto resultType = extractOp.getResult()->getType();
|
|
auto llvmResultType = lowering.convertType(resultType);
|
|
|
|
auto positionArrayAttr = extractOp.position();
|
|
// One-shot extraction of vector from array (only requires extractvalue).
|
|
if (resultType.isa<VectorType>()) {
|
|
Value *extracted = rewriter.create<LLVM::ExtractValueOp>(
|
|
loc, llvmResultType, adaptor.vector(), positionArrayAttr);
|
|
rewriter.replaceOp(op, extracted);
|
|
return matchSuccess();
|
|
}
|
|
|
|
// Potential extraction of 1-D vector from struct.
|
|
auto *context = op->getContext();
|
|
Value *extracted = adaptor.vector();
|
|
auto positionAttrs = positionArrayAttr.getValue();
|
|
auto i32Type = rewriter.getIntegerType(32);
|
|
if (positionAttrs.size() > 1) {
|
|
auto nDVectorType = vectorType;
|
|
auto oneDVectorType = VectorType::get(nDVectorType.getShape().take_back(),
|
|
nDVectorType.getElementType());
|
|
auto nMinusOnePositionAttrs =
|
|
ArrayAttr::get(positionAttrs.drop_back(), context);
|
|
extracted = rewriter.create<LLVM::ExtractValueOp>(
|
|
loc, lowering.convertType(oneDVectorType), extracted,
|
|
nMinusOnePositionAttrs);
|
|
}
|
|
|
|
// Remaining extraction of element from 1-D LLVM vector
|
|
auto position = positionAttrs.back().cast<IntegerAttr>();
|
|
auto constant = rewriter.create<LLVM::ConstantOp>(
|
|
loc, lowering.convertType(i32Type), position);
|
|
extracted =
|
|
rewriter.create<LLVM::ExtractElementOp>(loc, extracted, constant);
|
|
rewriter.replaceOp(op, extracted);
|
|
|
|
return matchSuccess();
|
|
}
|
|
};
|
|
|
|
class VectorOuterProductOpConversion : public LLVMOpLowering {
|
|
public:
|
|
explicit VectorOuterProductOpConversion(MLIRContext *context,
|
|
LLVMTypeConverter &typeConverter)
|
|
: LLVMOpLowering(vector::OuterProductOp::getOperationName(), context,
|
|
typeConverter) {}
|
|
|
|
PatternMatchResult
|
|
matchAndRewrite(Operation *op, ArrayRef<Value *> operands,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
auto loc = op->getLoc();
|
|
auto adaptor = vector::OuterProductOpOperandAdaptor(operands);
|
|
auto *ctx = op->getContext();
|
|
auto vLHS = adaptor.lhs()->getType().cast<LLVM::LLVMType>();
|
|
auto vRHS = adaptor.rhs()->getType().cast<LLVM::LLVMType>();
|
|
auto rankLHS = vLHS.getUnderlyingType()->getVectorNumElements();
|
|
auto rankRHS = vRHS.getUnderlyingType()->getVectorNumElements();
|
|
auto llvmArrayOfVectType = lowering.convertType(
|
|
cast<vector::OuterProductOp>(op).getResult()->getType());
|
|
Value *desc = rewriter.create<LLVM::UndefOp>(loc, llvmArrayOfVectType);
|
|
Value *a = adaptor.lhs(), *b = adaptor.rhs();
|
|
Value *acc = adaptor.acc().empty() ? nullptr : adaptor.acc().front();
|
|
SmallVector<Value *, 8> lhs, accs;
|
|
lhs.reserve(rankLHS);
|
|
accs.reserve(rankLHS);
|
|
for (unsigned d = 0, e = rankLHS; d < e; ++d) {
|
|
// shufflevector explicitly requires i32.
|
|
auto attr = rewriter.getI32IntegerAttr(d);
|
|
SmallVector<Attribute, 4> bcastAttr(rankRHS, attr);
|
|
auto bcastArrayAttr = ArrayAttr::get(bcastAttr, ctx);
|
|
Value *aD = nullptr, *accD = nullptr;
|
|
// 1. Broadcast the element a[d] into vector aD.
|
|
aD = rewriter.create<LLVM::ShuffleVectorOp>(loc, a, a, bcastArrayAttr);
|
|
// 2. If acc is present, extract 1-d vector acc[d] into accD.
|
|
if (acc)
|
|
accD = rewriter.create<LLVM::ExtractValueOp>(
|
|
loc, vRHS, acc, rewriter.getI64ArrayAttr(d));
|
|
// 3. Compute aD outer b (plus accD, if relevant).
|
|
Value *aOuterbD =
|
|
accD ? rewriter.create<LLVM::FMulAddOp>(loc, vRHS, aD, b, accD)
|
|
.getResult()
|
|
: rewriter.create<LLVM::FMulOp>(loc, aD, b).getResult();
|
|
// 4. Insert as value `d` in the descriptor.
|
|
desc = rewriter.create<LLVM::InsertValueOp>(loc, llvmArrayOfVectType,
|
|
desc, aOuterbD,
|
|
rewriter.getI64ArrayAttr(d));
|
|
}
|
|
rewriter.replaceOp(op, desc);
|
|
return matchSuccess();
|
|
}
|
|
};
|
|
|
|
class VectorTypeCastOpConversion : public LLVMOpLowering {
|
|
public:
|
|
explicit VectorTypeCastOpConversion(MLIRContext *context,
|
|
LLVMTypeConverter &typeConverter)
|
|
: LLVMOpLowering(vector::TypeCastOp::getOperationName(), context,
|
|
typeConverter) {}
|
|
|
|
PatternMatchResult
|
|
matchAndRewrite(Operation *op, ArrayRef<Value *> operands,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
auto loc = op->getLoc();
|
|
vector::TypeCastOp castOp = cast<vector::TypeCastOp>(op);
|
|
MemRefType sourceMemRefType =
|
|
castOp.getOperand()->getType().cast<MemRefType>();
|
|
MemRefType targetMemRefType =
|
|
castOp.getResult()->getType().cast<MemRefType>();
|
|
|
|
// Only static shape casts supported atm.
|
|
if (!sourceMemRefType.hasStaticShape() ||
|
|
!targetMemRefType.hasStaticShape())
|
|
return matchFailure();
|
|
|
|
auto llvmSourceDescriptorTy =
|
|
operands[0]->getType().dyn_cast<LLVM::LLVMType>();
|
|
if (!llvmSourceDescriptorTy || !llvmSourceDescriptorTy.isStructTy())
|
|
return matchFailure();
|
|
MemRefDescriptor sourceMemRef(operands[0]);
|
|
|
|
auto llvmTargetDescriptorTy = lowering.convertType(targetMemRefType)
|
|
.dyn_cast_or_null<LLVM::LLVMType>();
|
|
if (!llvmTargetDescriptorTy || !llvmTargetDescriptorTy.isStructTy())
|
|
return matchFailure();
|
|
|
|
int64_t offset;
|
|
SmallVector<int64_t, 4> strides;
|
|
auto successStrides =
|
|
getStridesAndOffset(sourceMemRefType, strides, offset);
|
|
bool isContiguous = (strides.back() == 1);
|
|
if (isContiguous) {
|
|
auto sizes = sourceMemRefType.getShape();
|
|
for (int index = 0, e = strides.size() - 2; index < e; ++index) {
|
|
if (strides[index] != strides[index + 1] * sizes[index + 1]) {
|
|
isContiguous = false;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
// Only contiguous source tensors supported atm.
|
|
if (failed(successStrides) || !isContiguous)
|
|
return matchFailure();
|
|
|
|
auto int64Ty = LLVM::LLVMType::getInt64Ty(lowering.getDialect());
|
|
|
|
// Create descriptor.
|
|
auto desc = MemRefDescriptor::undef(rewriter, loc, llvmTargetDescriptorTy);
|
|
Type llvmTargetElementTy = desc.getElementType();
|
|
// Set allocated ptr.
|
|
Value *allocated = sourceMemRef.allocatedPtr(rewriter, loc);
|
|
allocated =
|
|
rewriter.create<LLVM::BitcastOp>(loc, llvmTargetElementTy, allocated);
|
|
desc.setAllocatedPtr(rewriter, loc, allocated);
|
|
// Set aligned ptr.
|
|
Value *ptr = sourceMemRef.alignedPtr(rewriter, loc);
|
|
ptr = rewriter.create<LLVM::BitcastOp>(loc, llvmTargetElementTy, ptr);
|
|
desc.setAlignedPtr(rewriter, loc, ptr);
|
|
// Fill offset 0.
|
|
auto attr = rewriter.getIntegerAttr(rewriter.getIndexType(), 0);
|
|
auto zero = rewriter.create<LLVM::ConstantOp>(loc, int64Ty, attr);
|
|
desc.setOffset(rewriter, loc, zero);
|
|
|
|
// Fill size and stride descriptors in memref.
|
|
for (auto indexedSize : llvm::enumerate(targetMemRefType.getShape())) {
|
|
int64_t index = indexedSize.index();
|
|
auto sizeAttr =
|
|
rewriter.getIntegerAttr(rewriter.getIndexType(), indexedSize.value());
|
|
auto size = rewriter.create<LLVM::ConstantOp>(loc, int64Ty, sizeAttr);
|
|
desc.setSize(rewriter, loc, index, size);
|
|
auto strideAttr =
|
|
rewriter.getIntegerAttr(rewriter.getIndexType(), strides[index]);
|
|
auto stride = rewriter.create<LLVM::ConstantOp>(loc, int64Ty, strideAttr);
|
|
desc.setStride(rewriter, loc, index, stride);
|
|
}
|
|
|
|
rewriter.replaceOp(op, {desc});
|
|
return matchSuccess();
|
|
}
|
|
};
|
|
|
|
/// Populate the given list with patterns that convert from Vector to LLVM.
|
|
void mlir::populateVectorToLLVMConversionPatterns(
|
|
LLVMTypeConverter &converter, OwningRewritePatternList &patterns) {
|
|
patterns.insert<VectorExtractElementOpConversion,
|
|
VectorOuterProductOpConversion, VectorTypeCastOpConversion>(
|
|
converter.getDialect()->getContext(), converter);
|
|
}
|
|
|
|
namespace {
|
|
struct LowerVectorToLLVMPass : public ModulePass<LowerVectorToLLVMPass> {
|
|
void runOnModule() override;
|
|
};
|
|
} // namespace
|
|
|
|
void LowerVectorToLLVMPass::runOnModule() {
|
|
// Convert to the LLVM IR dialect using the converter defined above.
|
|
OwningRewritePatternList patterns;
|
|
LLVMTypeConverter converter(&getContext());
|
|
populateVectorToLLVMConversionPatterns(converter, patterns);
|
|
populateStdToLLVMConversionPatterns(converter, patterns);
|
|
|
|
ConversionTarget target(getContext());
|
|
target.addLegalDialect<LLVM::LLVMDialect>();
|
|
target.addDynamicallyLegalOp<FuncOp>(
|
|
[&](FuncOp op) { return converter.isSignatureLegal(op.getType()); });
|
|
if (failed(
|
|
applyPartialConversion(getModule(), target, patterns, &converter))) {
|
|
signalPassFailure();
|
|
}
|
|
}
|
|
|
|
OpPassBase<ModuleOp> *mlir::createLowerVectorToLLVMPass() {
|
|
return new LowerVectorToLLVMPass();
|
|
}
|
|
|
|
static PassRegistration<LowerVectorToLLVMPass>
|
|
pass("convert-vector-to-llvm",
|
|
"Lower the operations from the vector dialect into the LLVM dialect");
|